Introducing and Validating the Multiphasic Evidential Decision-Making Matrix (MedMax) for Clinical Management in Patients with Intrahepatic Cholangiocarcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Factor Extraction from the Scientific Literature
2.1.2. Expert Opinion
2.1.3. Patient Data
2.2. Methods
2.2.1. Structure
- Input Nodes: Forming the first layer of the network, responsible for collecting initial data inputs.
- Hidden Layers: Positioned between the input and output layers, processing input data through weighted connections and activation functions to model complex relationships.
- Output Nodes: Representing the final layer of the network, providing predictions based on the processed inputs from the hidden layers.
2.2.2. Definitive Factors
- Diagnostic Phase (Phase I)
- Staging Phase (Phase II)
- Treatment Planning Phase (Phase III)
- Therapy Phase (Phase IV)
2.2.3. Decision-Making Phases
3. Results
3.1. Primary Results of MedMax
3.1.1. Factor Extraction
3.1.2. Expert Opinion
3.1.3. Phases of Decision Making
- (1)
- Confirm Suspected ihCC According to the Paraclinical and Clinical Workups (Laboratory, Imaging, and Histopathological Findings)
- Medical History,
- Diagnostic Workups (laboratory investigations), and
- Diagnostic Assessments (as illustrated in Figure 7).
- Medical History
- Relevant Laboratory Parameters
- Relevant Diagnostic Procedures
- (A)
- Histopathological Findings: Results indicating intrahepatic cholangiocarcinoma (ihCC) are marked green. Results pointing to other liver tumors are marked red. Unclear findings or suspicion of mixed tumor types are marked yellow.
- (B)
- Endoscopic Investigations: Identification of a primary tumor via endoscopy is marked red.
- (C)
- Imaging (CT): CT findings showing malignancy criteria consistent with ihCC are marked green. CT findings indicating other liver tumors are marked red.
- Red Light: If distant or peritoneal metastases are detected in contrast-enhanced CT or chest X-ray, the patient is marked red.
- Yellow Light: Extensive tumor spread, which could endanger resectability and is associated with increased perioperative morbidity and mortality, is flagged with very high tumor marker levels (CEA > 14.4 ng/L and CA 19-9 > 1000 U/mL) or the involvement of regional lymph nodes.
- i.
- Determining the appropriate anatomical liver resection.
- -
- Minor Hepatectomy
- Segmentectomy:
- “{Tumor present only in one segment} and {other segments are free}.”
- Bisegmentectomy:
- “{Tumor present only in segments VI and VII} and {all other segments are free}.” “{Tumor present only in segments II and III} and {all other segments are free}.”
- -
- Intermediate hepatectomy
- Right Hemihepatectomy:
- “{Tumor present either in segment V or VIII} and {either in segment VI or VII} and {all other segments are free}.”
- Left Hemihepatectomy:
- “{Tumor present either in segment IVa or IVb or I} and {either in segment II or III} and {all other segments are free}.”
- Right Mesohepatectomy:
- “{Tumor present only in segments V and VIII} and {all other segments are free}.”
- Left Mesohepatectomy:
- “{Tumor present only in segments IVa and IVb} and {all other segments are free}.”
- -
- III. Major Hepatectomy
- Extended Right Hepatectomy:
- “{Tumor present in segment VI or VII} and {in segment V or VIII} and {in segment IVa or IVb or I} and {all other segments are free}.”
- Extended Left Hepatectomy:
- “{Tumor present in segment IVa or IVb or I} and {in segment II or III} and {in segment V or VIII} and {all other segments are free}.”
- Mesohepatectomy:
- “{Tumor present in segment IVa or IVb or I} and {in segment V or VIII} and {all other segments are free}.”
- ii.
- Assessing the risk associated with the chosen resection.
- Liver Cirrhosis:
- ○
- Child C: Immediate stop for any resection (red light).
- ○
- Child B:
- ■
- Minor Hepatectomy: No risk, marked green.
- ■
- Intermediate Hepatectomy: Restriction present, marked yellow.
- Liver Steatosis:
- ○
- Grade 3 (≥66%):
- ■
- Major and Intermediate Hepatectomies: Contraindicated, marked red.
- ■
- Minor Hepatectomy: Warning, marked yellow.
- ○
- Grade 2 (33–66%):
- ■
- Major and Intermediate Hepatectomies: Warning, marked yellow.
- ■
- Minor Hepatectomy: Marked green.
- Postoperative Intensive Care:
- ○
- Insufficient care:
- ■
- Minor Hepatectomy: No issue, marked green.
- ■
- Intermediate Hepatectomy: Warning, marked yellow.
- ■
- Major Hepatectomy: Exclusion, marked red.
3.2. Analysis of the Decisions Made by MedMax
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeOliveira, M.L.; Kambakamba, P.; Clavien, P.A. Advances in liver surgery for cholangiocarcinoma. Curr. Opin. Gastroenterol. 2013, 29, 293–298. [Google Scholar] [CrossRef]
- Hemminki, K.; Försti, A.; Hemminki, O.; Liska, V.; Hemminki, A. Long-term survival trends for primary liver and pancreatic cancers in the Nordic countries. JHEP Rep. 2022, 4, 100602. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Park, B.K.; Seo, J.H.; Han, J.-H.; Lee, K.J.; Son, K.J.; Choi, J.K. Trends in treatment patterns and survival outcomes in pancreatic cancer: A nationwide population-based study in Korea. Eur. J. Cancer 2023, 189, 112932. [Google Scholar] [CrossRef]
- Galun, D.; Mijac, D.; Filipovic, A.; Bogdanovic, A.; Zivanovic, M.; Masulovic, D. Precision Medicine for Hepatocellular Carcinoma: Clinical Perspective. J. Pers. Med. 2022, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Balsano, C.; Burra, P.; Duvoux, C.; Alisi, A.; Piscaglia, F.; Gerussi, A. Artificial Intelligence and liver: Opportunities and barriers. Dig. Liver Dis. 2023, 55, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Newman-Griffis, D.; Porcino, J.; Zirikly, A.; Thieu, T.; Camacho Maldonado, J.; Ho, P.S.; Ding, M.; Chan, L.; Rasch, E. Broadening horizons: The case for capturing function and the role of health informatics in its use. BMC Public Health 2019, 19, 1288. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.S.; Bolton, K.; Freriks, G. The effect of patient portals on quality outcomes and its implications to meaningful use: A systematic review. J. Med. Internet Res. 2015, 17, e44. [Google Scholar] [CrossRef] [PubMed]
- Deléger, L.; Grouin, C.; Zweigenbaum, P. Extracting medical information from narrative patient records: The case of medication-related information. J. Am. Med. Inform. Assoc. 2010, 17, 555–558. [Google Scholar] [CrossRef]
- Goyal, P.; Malviya, R. Challenges and opportunities of big data analytics in healthcare. Health Care Sci. 2023, 2, 328–338. [Google Scholar] [CrossRef]
- Batko, K.; Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 2022, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Pratap Singh, R.; Suman, R.; Rab, S. Significance of machine learning in healthcare: Features, pillars and applications. Int. J. Intell. Netw. 2022, 3, 58–73. [Google Scholar] [CrossRef]
- Subrahmanya, S.V.G.; Shetty, D.K.; Patil, V.; Hameed, B.M.Z.; Paul, R.; Smriti, K.; Naik, N.; Somani, B.K. The role of data science in healthcare advancements: Applications, benefits, and future prospects. Ir. J. Med. Sci. 2022, 191, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Majlesara, A.; Aminizadeh, E.; Ramouz, A.; Khajeh, E.; Shahrbaf, M.; Borges, F.; Goncalves, G.; Carvalho, C.; Golriz, M.; Mehrabi, A. Evaluation of quality and quantity of randomized controlled trials in hepatobiliary surgery: A scoping/mapping review. Eur. J. Clin. Investig. 2024, 54, e14210. [Google Scholar] [CrossRef] [PubMed]
- Majlesara, A.; Aminizadeh, E.; Ramouz, A.; Khajeh, E.; Borges, F.; Goncalves, G.; Carvalho, C.; Golriz, M.; Mehrabi, A. Evidence mapping of randomized clinical trials in hepatobiliary surgery. Br. J. Surg. 2023, 110, 1276–1278. [Google Scholar] [CrossRef]
- Edition, S.; Edge, S.; Byrd, D. AJCC Cancer Staging Manual; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Guan, M.C.; Wang, M.D.; Liu, S.Y.; Ouyang, W.; Liang, L.; Pawlik, T.M.; Xu, Q.R.; Huang, D.S.; Shen, F.; Zhu, H.; et al. Early diagnosis and therapeutic strategies for hepatocellular carcinoma: From bench to bedside. World J. Gastrointest. Oncol. 2021, 13, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Urgent Need for Early Diagnosis of Primary Liver Cancer. Pharm. Diagn. Innov. 2005, 3, 7–8. [CrossRef]
- McMahon, B.; Cohen, C.; Brown, R.S., Jr.; El-Serag, H.; Ioannou, G.N.; Lok, A.S.; Roberts, L.R.; Singal, A.G.; Block, T. Opportunities to address gaps in early detection and improve outcomes of liver cancer. JNCI Cancer Spectr. 2023, 7, pkad034. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Bragazzi, M.C.; Venere, R.; Ribichini, E.; Covotta, F.; Cardinale, V.; Alvaro, D. Intrahepatic cholangiocarcinoma: Evolving strategies in management and treatment. Dig. Liver Dis. 2024, 56, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Krenzien, F.; Nevermann, N.; Krombholz, A.; Benzing, C.; Haber, P.; Fehrenbach, U.; Lurje, G.; Pelzer, U.; Pratschke, J.; Schmelzle, M.; et al. Treatment of Intrahepatic Cholangiocarcinoma-A Multidisciplinary Approach. Cancers 2022, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Sanchez, L.; Lamarca, A.; La Casta, A.; Buettner, S.; Utpatel, K.; Klümpen, H.-J.; Adeva, J.; Vogel, A.; Lleo, A.; Fabris, L.; et al. Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J. Hepatol. 2022, 76, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Haghbin, H.; Aziz, M. Artificial intelligence and cholangiocarcinoma: Updates and prospects. World J. Clin. Oncol. 2022, 13, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.N.; Jv, D.W.; Meng, X.F.; Zhang, J.J.; Liu, C.; Wu, Z.Y.; Hong, N.; Lu, Y.Y.; Zhang, N. Feasibility of machine learning-based modeling and prediction using multiple centers data to assess intrahepatic cholangiocarcinoma outcomes. Ann. Med. 2023, 55, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Bai, X.; Qiu, Y.; He, X. Application of AI on cholangiocarcinoma. Front. Oncol. 2024, 14, 1324222. [Google Scholar] [CrossRef]
- Hyder, O.; Marques, H.; Pulitano, C.; Marsh, J.W.; Alexandrescu, S.; Bauer, T.W.; Gamblin, T.C.; Sotiropoulos, G.C.; Paul, A.; Barroso, E.; et al. A nomogram to predict long-term survival after resection for intrahepatic cholangiocarcinoma: An Eastern and Western experience. JAMA Surg. 2014, 149, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Xia, Y.; Gong, R.; Wang, K.; Yan, Z.; Wan, X.; Liu, G.; Wu, D.; Shi, L.; et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J. Clin. Oncol. 2013, 31, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Raoof, M.; Dumitra, S.; Ituarte, P.H.G.; Melstrom, L.; Warner, S.G.; Fong, Y.; Singh, G. Development and Validation of a Prognostic Score for Intrahepatic Cholangiocarcinoma. JAMA Surg. 2017, 152, e170117. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, M.; Shen, J.; Li, B.; Wu, Y.; Xie, W.; Xiao, H.; Tan, L. Development and external validation of a prognosis model to predict outcomes after curative resection of early-stage intrahepatic cholangiocarcinoma. Front. Surg. 2023, 10, 1102871. [Google Scholar] [CrossRef]
- Doussot, A.; Groot-Koerkamp, B.; Wiggers, J.K.; Chou, J.; Gonen, M.; DeMatteo, R.P.; Allen, P.J.; Kingham, T.P.; D’Angelica, M.I.; Jarnagin, W.R. Outcomes after Resection of Intrahepatic Cholangiocarcinoma: External Validation and Comparison of Prognostic Models. J. Am. Coll. Surg. 2015, 221, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, C.F.; Alaimo, L.; Moazzam, Z.; Endo, Y.; Lima, H.A.; Dawood, Z.; Munir, M.M.; Pawlik, T.M. Predicting overall and recurrence-free survival in patients with intrahepatic cholangiocarcinoma using the MEGNA score: A multi-institutional analysis. J. Surg. Oncol. 2023, 127, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zeng, Z.C.; Tang, Z.Y.; Fan, J.; Sun, H.C.; Zhou, J.; Zeng, M.S.; Zhang, B.H.; Ji, Y.; Chen, Y.X. A prognostic scoring system based on clinical features of intrahepatic cholangiocarcinoma: The Fudan score. Ann. Oncol. 2011, 22, 1644–1652. [Google Scholar] [CrossRef]
- Müller, L.; Mähringer-Kunz, A.; Gairing, S.J.; Foerster, F.; Weinmann, A.; Bartsch, F.; Heuft, L.K.; Baumgart, J.; Düber, C.; Hahn, F.; et al. Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof of Concept Study Using Artificial Intelligence for Risk Assessment. J. Clin. Med. 2021, 10, 2071. [Google Scholar] [CrossRef]
- Farrugia, B.; Khor, R.; Foroudi, F.; Chao, M.; Knight, K.; Wright, C. Protocol of a study investigating breath-hold techniques for upper-abdominal radiation therapy (BURDIE): Addressing the challenge of a moving _target. Radiat. Oncol. 2020, 15, 250. [Google Scholar] [CrossRef] [PubMed]
- Beryl, L.L.; Rendle, K.A.; Halley, M.C.; Gillespie, K.A.; May, S.G.; Glover, J.; Yu, P.; Chattopadhyay, R.; Frosch, D.L. Mapping the Decision-Making Process for Adjuvant Endocrine Therapy for Breast Cancer: The Role of Decisional Resolve. Med. Decis. Mak. 2017, 37, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S. Sleep apnea in older adults--is it real and should age be the determining factor in the treatment decision matrix? Sleep. Med. Rev. 2007, 11, 83–85. [Google Scholar] [CrossRef]
- Zihni, E.; Madai, V.I.; Livne, M.; Galinovic, I.; Khalil, A.A.; Fiebach, J.B.; Frey, D. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. PLoS ONE 2020, 15, e0231166. [Google Scholar] [CrossRef] [PubMed]
- London, A.J. Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability. Hast. Cent. Rep. 2019, 49, 15–21. [Google Scholar] [CrossRef]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Tsilimigras, D.I.; Mehta, R.; Moris, D.; Sahara, K.; Bagante, F.; Paredes, A.Z.; Moro, A.; Guglielmi, A.; Aldrighetti, L.; Weiss, M.; et al. A Machine-Based Approach to Preoperatively Identify Patients with the Most and Least Benefit Associated with Resection for Intrahepatic Cholangiocarcinoma: An International Multi-institutional Analysis of 1146 Patients. Ann. Surg. Oncol. 2020, 27, 1110–1119. [Google Scholar] [CrossRef]
- Bagante, F.; Spolverato, G.; Merath, K.; Weiss, M.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; et al. Intrahepatic cholangiocarcinoma tumor burden: A classification and regression tree model to define prognostic groups after resection. Surgery 2019, 166, 983–990. [Google Scholar] [CrossRef]
- Vitale, A.; Spolverato, G.; Bagante, F.; Gani, F.; Popescu, I.; Marques, H.P.; Aldrighetti, L.; Gamblin, T.C.; Maithel, S.K.; Sandroussi, C.; et al. A multi-institutional analysis of elderly patients undergoing a liver resection for intrahepatic cholangiocarcinoma. J. Surg. Oncol. 2016, 113, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Riediger, C.E.; Löck, S.; Frohneberg, L.; Hoffmann, R.; Kahlert, C.; Weitz, J. Oncological liver resection in elderly - A retrospective comparative study. Int. J. Surg. 2022, 104, 106729. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xu, X.; Wu, T.; Chen, Q.; Li, Z.; Yang, Z.; Wang, K.; Shen, F. Sex disparity in clinical characteristics and long-term prognosis after liver resection for patients with intrahepatic cholangiocarcinoma: A propensity score matching analysis. Heliyon 2024, 10, e29910. [Google Scholar] [CrossRef] [PubMed]
- Merath, K.; Mehta, R.; Hyer, J.M.; Bagante, F.; Sahara, K.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; et al. Impact of body mass index on tumor recurrence among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma- a multi-institutional international analysis. Eur. J. Surg. Oncol. 2019, 45, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Yugawa, K.; Itoh, S.; Iseda, N.; Kurihara, T.; Kitamura, Y.; Toshima, T.; Harada, N.; Kohashi, K.; Baba, S.; Ishigami, K.; et al. Obesity is a risk factor for intrahepatic cholangiocarcinoma progression associated with alterations of metabolic activity and immune status. Sci. Rep. 2021, 11, 5845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, J.; Kong, J.; Zheng, X.; Yu, X. The impact of body mass index on short-term and long-term surgical outcomes of laparoscopic hepatectomy in liver carcinoma patients: A retrospective study. World J. Surg. Oncol. 2022, 20, 150. [Google Scholar] [CrossRef]
- Lopez-Lopez, V.; Morise, Z.; Gomez Gavara, C.; Gero, D.; Abu Hilal, M.; Goh, B.K.; Herman, P.; Clavien, P.A.; Robles-Campos, R.; Wakabayashi, G. Global Outcomes Benchmarks in Laparoscopic Liver Surgery for Segments 7 and 8: International Multicenter Analysis. J. Am. Coll. Surg. 2024, 239, 375–386. [Google Scholar] [CrossRef]
- Jehan, F.S.; Ganguli, S.; Hase, N.E.; Seth, A.; Kwon, Y.; Hemming, A.W.; Aziz, H. Does the Surgical Approach Affect the Incidence of Post-Hepatectomy Liver Failure in Cirrhotic Patients? An Analysis of the NSQIP Database. Am. Surg. 2024, 90, 2901–2906. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, J.; Lei, Z.; Wu, D.; Si, A.; Wang, K.; Wang, Y.; Wan, X.; Lau, W.Y.; Shen, F. Prognosis of Intrahepatic Cholangiocarcinomas with HBV Infection is Better than Those with Hepatolithiasis After R0 Liver Resection: A Propensity Score Matching Analysis. Ann. Surg. Oncol. 2017, 24, 1579–1587. [Google Scholar] [CrossRef]
- Jesper, D.; Heyn, S.G.; Schellhaas, B.; Pfeifer, L.; Goertz, R.S.; Zopf, S.; Neurath, M.F.; Strobel, D. Effects of liver cirrhosis and patient condition on clinical outcomes in intrahepatic cholangiocarcinoma: A retrospective analysis of 156 cases in a single center. Eur. J. Gastroenterol. Hepatol. 2018, 30, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.; Aldrighetti, L.; Ratti, F.; Wu, A.G.R.; Kabir, T.; Scatton, O.; Lim, C.; Zhang, W.; Sijberden, J.; Aghayan, D.L.; et al. Impact of Liver Cirrhosis, Severity of Cirrhosis, and Portal Hypertension on the Difficulty and Outcomes of Laparoscopic and Robotic Major Liver Resections for Primary Liver Malignancies. Ann. Surg. Oncol. 2024, 31, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Bagante, F.; Alaimo, L.; Tsilimigras, D.; Dalbeni, A.; Ejaz, A.; Ruzzenente, A.; Donadello, K.; Spolverato, G.; Guglielmi, A.; Pawlik, T.M. Kidney Disease: Improving Global Outcomes Classification of Chronic Kidney Disease and Short-Term Outcomes of Patients Undergoing Liver Resection. J. Am. Coll. Surg. 2022, 234, 827–839. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Nomi, T.; Hokuto, D.; Kamitani, N.; Matsuo, Y.; Sho, M. Outcomes in Patients with Chronic Kidney Disease After Liver Resection for Hepatocellular Carcinoma. World J. Surg. 2021, 45, 598–606. [Google Scholar] [CrossRef] [PubMed]
- van Keulen, A.M.; Olthof, P.B.; Buettner, S.; Bednarsch, J.; Verheij, J.; Erdmann, J.I.; Nooijen, L.E.; Porte, R.J.; Minnee, R.C.; Murad, S.D.; et al. The Influence of Hepatic Steatosis and Fibrosis on Postoperative Outcomes After Major Liver Resection of Perihilar Cholangiocarcinoma. Ann. Surg. Oncol. 2024, 31, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.; Kaido, T.; Hammad, A.; Yagi, S.; Kamo, N.; Yoshizawa, A.; Okajima, H.; Uemoto, S. The Impact of Preoperative Hemoglobin Level on the Short-Term Outcomes After Living Donor Liver Transplantation. World J. Surg. 2018, 42, 4081–4089. [Google Scholar] [CrossRef] [PubMed]
- Giehl-Brown, E.; Geipel, E.; Löck, S.; Dehlke, K.; Schweipert, J.; Weitz, J.; Riediger, C. Transfusions of packed red blood cells in surgery for liver cancer: Predictor of impaired overall survival but not recurrence-free survival - impact of blood transfusions in liver surgery. J. Gastrointest. Surg. 2024, 28, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Chatzipanagiotou, O.P.; Tsilimigras, D.I.; Catalano, G.; Ruzzenente, A.; Aldrighetti, L.; Weiss, M.; Bauer, T.W.; Alexandrescu, S.; Poultsides, G.A.; Maithel, S.K.; et al. Preoperative platelet count as an independent predictor of long-term outcomes among patients undergoing resection for intrahepatic cholangiocarcinoma. J. Surg. Oncol. 2024. [Google Scholar] [CrossRef]
- Chen, Q.; Dai, Z.; Yin, D.; Yang, L.X.; Wang, Z.; Xiao, Y.S.; Fan, J.; Zhou, J. Negative impact of preoperative platelet-lymphocyte ratio on outcome after hepatic resection for intrahepatic cholangiocarcinoma. Medicine 2015, 94, e574. [Google Scholar] [CrossRef]
- Margonis, G.A.; Amini, N.; Buettner, S.; Besharati, S.; Kim, Y.; Sobhani, F.; Kamel, I.R.; Pawlik, T.M. Impact of early postoperative platelet count on volumetric liver gain and perioperative outcomes after major liver resection. Br. J. Surg. 2016, 103, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Shinkawa, H.; Takemura, S.; Tanaka, S.; Nishioka, T.; Miyazaki, T.; Ishihara, A.; Kubo, S. Impact of the Preoperative C-reactive Protein to Albumin Ratio on the Long-Term Outcomes of Hepatic Resection for Intrahepatic Cholangiocarcinoma. Asian Pac. J. Cancer Prev. 2020, 21, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Nakao, Y.; Yamashita, Y.I.; Arima, K.; Miyata, T.; Itoyama, R.; Yusa, T.; Umezaki, N.; Yamao, T.; Nakagawa, S.; Okabe, H.; et al. Clinical Usefulness of Perioperative C-reactive Protein/Albumin Ratio in Patients With Intrahepatic Cholangiocarcinoma: A Retrospective Single Institutional Study. Anticancer Res. 2019, 39, 2641–2646. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Y.; Liang, Z.X.; Zhuang, P.L.; Chen, J.W.; Cao, Y.; Yan, L.X.; Yun, J.P.; Xie, D.; Cai, M.Y. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels. BMC Cancer 2016, 16, 792. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Ebata, T.; Igami, T.; Sugawara, G.; Ando, M.; Nagino, M. Predictive power of prothrombin time and serum total bilirubin for postoperative mortality after major hepatectomy with extrahepatic bile duct resection. Surgery 2014, 155, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Ge, X.X.; Li, Q.P.; Nie, J.J.; Miao, L. Clinical Significance of Prothrombin Time in Cholangiocarcinoma Patients with Surgeries. Can J. Gastroenterol. Hepatol. 2019, 2019, 3413969. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Sawada, T.; Mori, S.; Iso, Y.; Katoh, M.; Rokkaku, K.; Kita, J.; Shimoda, M.; Kubota, K. Estimating glomerular filtration rate preoperatively for patients undergoing hepatectomy. World J. Gastroenterol. 2009, 15, 2252–2257. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.M.; Endo, Y.; Lima, H.A.; Alaimo, L.; Moazzam, Z.; Shaikh, C.; Poultsides, G.A.; Guglielmi, A.; Aldrighetti, L.; Weiss, M.; et al. Albumin-Bilirubin Grade and Tumor Burden Score Predict Outcomes Among Patients with Intrahepatic Cholangiocarcinoma After Hepatic Resection: A Multi-Institutional Analysis. J. Gastrointest. Surg. 2023, 27, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, M.; Verhoeff, K.; Jogiat, U.; Mocanu, V.; Shapiro, A.M.J.; Anderson, B.; Bigam, D.L.; Dajani, K. Persistent hyperbilirubinemia following preoperative biliary stenting in patients undergoing anatomic hepatectomy predicts serious complications. Surg. Endosc. 2024, 38, 4287–4295. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wen, T.; Li, C.; Yan, L.; Li, B.; Yang, J. The Prognostic Prediction Role of Preoperative Serum Albumin Level in Patients with Intahepatic Cholangiocarcinoma Following Hepatectomy. Dig. Dis. 2018, 36, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Tsilimigras, D.I.; Hyer, J.M.; Moris, D.; Sahara, K.; Bagante, F.; Guglielmi, A.; Aldrighetti, L.; Alexandrescu, S.; Marques, H.P.; Shen, F.; et al. Prognostic utility of albumin-bilirubin grade for short- and long-term outcomes following hepatic resection for intrahepatic cholangiocarcinoma: A multi-institutional analysis of 706 patients. J. Surg. Oncol. 2019, 120, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lu, S.; Tian, M.; Hu, K.; Chen, R.; Zhang, B.; Ren, Z.; Shi, Y.; Yin, X. Albumin-to-Alkaline Phosphatase Ratio is an Independent Prognostic Indicator in Combined Hepatocellular and Cholangiocarcinoma. J. Cancer 2020, 11, 5177–5186. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.; Mehta, R.; Sahara, K.; Tsilimigras, D.I.; Paredes, A.Z.; Farooq, A.; Hyer, J.M.; Endo, I.; Shen, F.; Guglielmi, A.; et al. The Impact of Preoperative CA19-9 and CEA on Outcomes of Patients with Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2020, 27, 2888–2901. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zheng, L.; Tang, S.; Lin, K.; Zheng, S.; Bi, X.; Wang, J.; Guo, W.; Li, F.; Wang, J.; et al. Tumor burden score and carcinoembryonic antigen predict outcomes in patients with intrahepatic cholangiocarcinoma following liver resection: A multi-institutional analysis. BMC Cancer 2024, 24, 358. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chen, Q.; Yu, Y.; You, W.; Ding, Z.; Gao, Y.; Li, H.; Zeng, Y. Impact of portal hypertension on short- and long-term outcomes after liver resection for intrahepatic cholangiocarcinoma: A propensity score matching analysis. Cancer Med. 2021, 10, 6985–6997. [Google Scholar] [CrossRef] [PubMed]
- Jansson, H.; Villard, C.; Nooijen, L.E.; Ghorbani, P.; Erdmann, J.I.; Sparrelid, E. Prognostic influence of multiple hepatic lesions in resectable intrahepatic cholangiocarcinoma: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2023, 49, 688–699. [Google Scholar] [CrossRef]
- Buettner, S.; Ten Cate, D.W.G.; Bagante, F.; Alexandrescu, S.; Marques, H.P.; Lamelas, J.; Aldrighetti, L.; Gamblin, T.C.; Maithel, S.K.; Pulitano, C.; et al. Survival after Resection of Multiple Tumor Foci of Intrahepatic Cholangiocarcinoma. J. Gastrointest. Surg. 2019, 23, 2239–2246. [Google Scholar] [CrossRef]
- Nassar, A.; Tzedakis, S.; Sindayigaya, R.; Hobeika, C.; Marchese, U.; Veziant, J.; Codjia, T.; Beaufrère, A.; Dhote, A.; Strigalev, M.; et al. Factors of Early Recurrence After Resection for Intrahepatic Cholangiocarcinoma. World J. Surg. 2022, 46, 2459–2467. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Cao, Y.; Chai, J.; Liu, X.; Lin, C.; Wang, J.; Liu, J. Effect of Tumor Size on Long-Term Survival After Resection for Solitary Intrahepatic Cholangiocarcinoma. Front. Oncol. 2020, 10, 559911. [Google Scholar] [CrossRef]
- Kanu, E.N.; Rhodin, K.E.; Masoud, S.J.; Eckhoff, A.M.; Bartholomew, A.J.; Howell, T.C.; Bao, J.; Befera, N.T.; Kim, C.Y.; Blazer, D.G.; et al. Tumor size and survival in intrahepatic cholangiocarcinoma treated with surgical resection or ablation. J. Surg. Oncol. 2023, 128, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Jolissaint, J.S.; Soares, K.C.; Seier, K.P.; Kundra, R.; Gönen, M.; Shin, P.J.; Boerner, T.; Sigel, C.; Madupuri, R.; Vakiani, E.; et al. Intrahepatic Cholangiocarcinoma with Lymph Node Metastasis: Treatment-Related Outcomes and the Role of Tumor Genomics in Patient Selection. Clin. Cancer Res. 2021, 27, 4101–4108. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xue, F.; Dong, D.H.; Weiss, M.; Popescu, I.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; et al. Number and Station of Lymph Node Metastasis After Curative-intent Resection of Intrahepatic Cholangiocarcinoma Impact Prognosis. Ann. Surg. 2021, 274, e1187–e1195. [Google Scholar] [CrossRef]
- Kim, S.H.; Han, D.H.; Choi, G.H.; Choi, J.S.; Kim, K.S. Prognostic impact of the metastatic lymph node number in intrahepatic cholangiocarcinoma. Surgery 2022, 172, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Orimo, T.; Kamiyama, T.; Mitsuhashi, T.; Kamachi, H.; Yokoo, H.; Wakayama, K.; Shimada, S.; Nagatsu, A.; Taketomi, A. Impact of tumor localization on the outcomes of surgery for an intrahepatic cholangiocarcinoma. J. Gastroenterol. 2018, 53, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, R.; Li, J.; Li, J.; Wu, H.; Wang, G.; Li, D. Tumor location influences perioperative and oncologic outcomes in solitary intrahepatic cholangiocarcinoma following curative resection: A multi-center analysis. HPB 2022, 24, 1543–1550. [Google Scholar] [CrossRef]
- Wang, C.; Ciren, P.; Danzeng, A.; Li, Y.; Zeng, C.L.; Zhang, Z.W.; Huang, Z.Y.; Chen, Y.F.; Zhang, W.G.; Zhang, B.X.; et al. Anatomical Resection Improved the Outcome of Intrahepatic Cholangiocarcinoma: A Propensity Score Matching Analysis of a Retrospective Cohort. J. Oncol. 2022, 2022, 4446243. [Google Scholar] [CrossRef] [PubMed]
- Bednarsch, J.; Czigany, Z.; Lurje, I.; Amygdalos, I.; Strnad, P.; Halm, P.; Wiltberger, G.; Ulmer, T.F.; Schulze-Hagen, M.; Bruners, P.; et al. Insufficient future liver remnant and preoperative cholangitis predict perioperative outcome in perihilar cholangiocarcinoma. HPB 2021, 23, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Reames, B.N.; Ejaz, A.; Koerkamp, B.G.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; Shen, F.; et al. Impact of major vascular resection on outcomes and survival in patients with intrahepatic cholangiocarcinoma: A multi-institutional analysis. J. Surg. Oncol. 2017, 116, 133–139. [Google Scholar] [CrossRef]
- Conci, S.; Viganò, L.; Ercolani, G.; Gonzalez, E.; Ruzzenente, A.; Isa, G.; Salaris, C.; Fontana, A.; Bagante, F.; Pedrazzani, C.; et al. Outcomes of vascular resection associated with curative intent hepatectomy for intrahepatic cholangiocarcinoma. European J. Surg. Oncol. 2020, 46, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Lafaro, K.J.; Cosgrove, D.; Geschwind, J.-F.H.; Kamel, I.; Herman, J.M.; Pawlik, T.M. Multidisciplinary Care of Patients with Intrahepatic Cholangiocarcinoma: Updates in Management. Gastroenterol. Res. Pract. 2015, 2015, 860861. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramouz, A.; Adeliansedehi, A.; Khajeh, E.; März, K.; Michael, D.; Wagner, M.; Müller-Stich, B.P.; Mehrabi, A.; Majlesara, A. Introducing and Validating the Multiphasic Evidential Decision-Making Matrix (MedMax) for Clinical Management in Patients with Intrahepatic Cholangiocarcinoma. Cancers 2025, 17, 52. https://doi.org/10.3390/cancers17010052
Ramouz A, Adeliansedehi A, Khajeh E, März K, Michael D, Wagner M, Müller-Stich BP, Mehrabi A, Majlesara A. Introducing and Validating the Multiphasic Evidential Decision-Making Matrix (MedMax) for Clinical Management in Patients with Intrahepatic Cholangiocarcinoma. Cancers. 2025; 17(1):52. https://doi.org/10.3390/cancers17010052
Chicago/Turabian StyleRamouz, Ali, Ali Adeliansedehi, Elias Khajeh, Keno März, Dominik Michael, Martin Wagner, Beat Peter Müller-Stich, Arianeb Mehrabi, and Ali Majlesara. 2025. "Introducing and Validating the Multiphasic Evidential Decision-Making Matrix (MedMax) for Clinical Management in Patients with Intrahepatic Cholangiocarcinoma" Cancers 17, no. 1: 52. https://doi.org/10.3390/cancers17010052
APA StyleRamouz, A., Adeliansedehi, A., Khajeh, E., März, K., Michael, D., Wagner, M., Müller-Stich, B. P., Mehrabi, A., & Majlesara, A. (2025). Introducing and Validating the Multiphasic Evidential Decision-Making Matrix (MedMax) for Clinical Management in Patients with Intrahepatic Cholangiocarcinoma. Cancers, 17(1), 52. https://doi.org/10.3390/cancers17010052