The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development
Simple Summary
Abstract
1. Introduction
2. IL-23/IL-23R Interaction
3. IL-23R Signaling Cascade
4. IL-23R in Immune Cells
4.1. T Cells
4.2. Innate Lymphoid Cells
4.3. Myeloid Cells
4.4. B Cells
5. Disease Overview
6. IL-23R Genetic Variants
Variant ID | Genomic Position | Molecular Consequence | Transcript Change | Protein Change | MAF (Population) | Clinical Significance | Protective or Risk Effect | Ref. |
---|---|---|---|---|---|---|---|---|
rs41313262 | chr1:67240217 | missense variant | c.1084G>A | p.V362I | 0.016 (European) | Benign (RCV001513561.4) | Protective against Crohn’s disease (OR = 0.548; 95% CI: 0.000–0.851) and ulcerative colitis (OR = 0.582; 95% CI: 0.000–0.854) | [109] |
rs76575803 | chr1:67169528 | missense variant | c.257G>A | p.R86Q | 0.003 (European) | Benign (RCV001521058.4) | Protective against Crohn’s disease (OR = 0.180; 95% CI: 0.000–1.125) | [109] |
rs371531867 | chr1:67200762 | missense variant | c.517T>C | p.Y173H | Not Reported in ClinVar | No difference in functional activity compared with wild-type in transduced human T cell blasts | [110] | |
rs76418789 | chr1:67182913 | missense variant | c.445G>A | p.G149R | 0.005 (European) | Benign (RCV001517127.4) | Protective against Crohn’s disease (OR = 0.230; 95% CI: 0.000–0.879) and ulcerative colitis (OR = 0.423; 95% CI: 0.000–1.146) | [109] |
rs1884444 | chr1:67168129 | missense variant | c.9G>T | p.Q3H | 0.529 (European) | Benign (RCV001520832.4) | Strong susceptibility nature in ulcerative colitis (OR = 3.13; 95% CI: 1.60–6.13) and in psoriasis (p = 0.005; OR = 2.68; 95% CI: 1.35–5.35) | [108] |
0.636 (Chinese) | Increased gastric cancer susceptibility (OR = 1.67; 95% CI: 1.27–2.22) | [106] | ||||||
0.636 (Chinese) | The frequency of genotype TT was higher in patients with breast tumors < 2 cm (p < 0.0001), whereas the frequencies of genotype GG and the G allele were higher in patients with breast tumors > 5 cm (p < 0.0001) and lower in Her2+ than in Her2− patients (p = 0.0464) | [111] | ||||||
0.636 (Chinese) | The G allele is associated with a significant increased risk of HCC compared to the T allele (OR = 1.58; 95% CI: 0.96–2.60) | [112] | ||||||
0.636 (Chinese) | Associated with increased HCC risk in a recessive genetic model (GG vs. TT/TG: OR = 1.36, 95% CI = 1.05–1.77) | [113] | ||||||
0.645 (Japanese) | TT genotype is significantly associated with higher frequency of bone lesions (p = 0.04) and plasmacytoma (p = 0.02) than the TG and GG genotypes | [114] | ||||||
rs11209026 | chr1:67240275 | missense variant | c.1142G>A | p.R381Q | 0.061 (Global) | Protective (RCV000003254.6) | All the genetic models significantly decrease CD risk (allelic: OR = 0.42; 95% CI: 0.38–0.46; dominant: OR = 0.45; 95% CI: 0.39–0.51; recessive: OR = 0.42; 95% CI: 0.24–0.75) and UC risk (allelic: OR = 0.65; 95% CI: 0.58–0.73; dominant: OR = 0.62; 95% CI: 0.52–0.73), except for the recessive model in UC | [102] |
0.066 (European) | Protective (RCV000003255.6) | Protective against psoriasis (OR = 0.63; 95% CI: 0.50–0.79). The haplotype consisting of C at rs7530511 and A at rs11209026 has a protective effect against psoriasis (OR = 0.62; 95% CI: 0.49–0.77) | [104] | |||||
0.066 (European) | Benign (RCV001516563.4) | Significant association with rheumatoid arthritis susceptibility in Caucasians (AA vs. GG: OR = 1.78, 95% CI = 1.02–3.10; AA vs. AG + GG: OR = 1.77, 95% CI = 1.02–3.08) | [105] | |||||
0.013 (African) | Protective role against HCV-related HCC in Egyptian patients (OR = 0.23; 95% CI: 0.08–0.66) | [115] | ||||||
rs11465797 | chr1:67200769 | missense variant | c.524C>A | p.T175N | 0.01 (Global) | not reported in ClinVar | No association with acquired aplastic anemia | [116] |
rs7530511 | chr1:67219704 | missense variant | c.929T>C | p.L310P | 0.872 (European) | Benign (RCV001521534.4) | Protective against psoriasis (OR = 0.78; 95% CI: 0.66–0.91). The haplotype consisting of C at rs7530511 and A at rs11209026 has a protective effect against psoriasis (OR = 0.62; 95% CI: 0.49–0.77) | [104] |
The rare genotype TT showed significant association with Graves’ disease (OR = 9.4; 95% CI: 1.07–214.4) | [117] | |||||||
rs10889677 | chr1:67259437 | intron variant | 0.308 (European) | not reported in ClinVar | A allele confers increased risk of ankylosing spondylitis (OR = 1.192; 95% CI: 1.080-1.315) | [118] | ||
0.321 (Global) | Significantly correlated with increased risk of bladder cancer in the meta-analysis overall population using over-dominant model (OR = 1.71; 95% CI: 1.34–2.19) | [119] | ||||||
rs7517847 | chr1:67215986 | intron variant | 0.423 (European) | not reported in ClinVar | Considered to be protective factors against developing UC among Caucasian populations (OR = 0.69; 95% CI: 0.52–0.92) | [120] | ||
0.167 (African) | Associated with an increased risk of HCC (OR = 1.78; 95% CI: 1.21–2.62) | [121] | ||||||
rs11209032 | chr1:67274409 | intergenic variant | 0.323 (European) | not reported in ClinVar | Associated with a greater risk for UC in Caucasian populations (OR = 1.13; 95% CI: 1.00–1.26) | [120] | ||
rs10889675 | chr1:67256533 | intron variant | 0.115 (European) | not reported in ClinVar | Associated with decreased rectal cancer risk overall (OR = 0.68; 95% CI: 0.27–1.73) and specifically with rectal tumors bearing a TP53 mutation (OR = 0.66; 95% CI: 0.46–0.94) | [122] | ||
rs7542081 | chr1:67237570 | intron variant | 0.610 (European) | not reported in ClinVar | Associated with decreased rectal cancer risk overall (OR = 0.65; 95% CI: 0.45–0.92) and specifically with rectal tumors bearing a TP53 mutation (OR = 0.60; 95% CI: 0.37–0.98) | [122] | ||
rs6682925 | chr1:67165579 | intron variant | 0.610 (Chinese) | not reported in ClinVar | Associated with increased HCC risk in a recessive genetic model (CC vs. TT/TC: OR = 1.35, 95% CI = 1.07–1.70) | [113] | ||
rs17375018 | chr1:67189464 | intron variant | 0.280 (Chinese) | not reported in ClinVar | Associated with genetic susceptibility to HCC (GG vs. AA: OR = 2.324, 95%CI = 1.335–4.045; G vs. A: OR = 1.574, 95%CI = 1.211–2.045) | [123] |
7. Cancer
7.1. Gastrointestinal Disease
7.1.1. Esophageal Cancer
7.1.2. Stomach Cancer
7.1.3. IBD and Colon Cancer
7.2. Breast Cancer
7.3. Bladder Cancer
7.4. Hepatocellular Carcinoma (HCC)
7.5. Multiple Myeloma
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liongue, C.; Sertori, R.; Ward, A.C. Evolution of Cytokine Receptor Signaling. J. Immunol. 2016, 197, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Parham, C.; Chirica, M.; Timans, J.; Vaisberg, E.; Travis, M.; Cheung, J.; Pflanz, S.; Zhang, R.; Singh, K.P.; Vega, F.; et al. A Receptor for the Heterodimeric Cytokine IL-23 Is Composed of IL-12Rbeta1 and a Novel Cytokine Receptor Subunit, IL-23R. J. Immunol. 2002, 168, 5699–5708. [Google Scholar] [CrossRef] [PubMed]
- Mezghiche, I.; Yahia-Cherbal, H.; Rogge, L.; Bianchi, E. Interleukin 23 Receptor: Expression and Regulation in Immune Cells. Eur. J. Immunol. 2024, 54, e2250348. [Google Scholar] [CrossRef]
- Tait Wojno, E.D.; Hunter, C.A.; Stumhofer, J.S. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019, 50, 851–870. [Google Scholar] [CrossRef]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23-IL-17 Immune Axis: From Mechanisms to Therapeutic Testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef]
- Pastor-Fernández, G.; Mariblanca, I.R.; Navarro, M.N. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020, 9, 2044. [Google Scholar] [CrossRef]
- El-Behi, M.; Ciric, B.; Dai, H.; Yan, Y.; Cullimore, M.; Safavi, F.; Zhang, G.-X.; Dittel, B.N.; Rostami, A. The Encephalitogenicity of T(H)17 Cells Is Dependent on IL-1- and IL-23-Induced Production of the Cytokine GM-CSF. Nat. Immunol. 2011, 12, 568–575. [Google Scholar] [CrossRef]
- Zheng, Y.; Danilenko, D.M.; Valdez, P.; Kasman, I.; Eastham-Anderson, J.; Wu, J.; Ouyang, W. Interleukin-22, a T(H)17 Cytokine, Mediates IL-23-Induced Dermal Inflammation and Acanthosis. Nature 2007, 445, 648–651. [Google Scholar] [CrossRef]
- Subhadarshani, S.; Yusuf, N.; Elmets, C.A. IL-23 and the Tumor Microenvironment. Adv. Exp. Med. Biol. 2021, 1290, 89–98. [Google Scholar] [CrossRef]
- Floss, D.M.; Moll, J.M.; Scheller, J. IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020, 9, 2184. [Google Scholar] [CrossRef]
- Kan, S.-H.; Mancini, G.; Gallagher, G. Identification and Characterization of Multiple Splice Forms of the Human Interleukin-23 Receptor Alpha Chain in Mitogen-Activated Leukocytes. Genes Immun. 2008, 9, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, D.C.; Cephus, J.Y.; Boswell, M.G.; Fahrenholz, J.M.; Langley, E.W.; Feldman, A.S.; Zhou, W.; Dulek, D.E.; Goleniewska, K.; Woodward, K.B.; et al. Estrogen and Progesterone Decrease Let-7f microRNA Expression and Increase IL-23/IL-23 Receptor Signaling and IL-17A Production in Patients with Severe Asthma. J. Allergy Clin. Immunol. 2015, 136, 1025–1034.e11. [Google Scholar] [CrossRef] [PubMed]
- Angelou, C.C.; Wells, A.C.; Vijayaraghavan, J.; Dougan, C.E.; Lawlor, R.; Iverson, E.; Lazarevic, V.; Kimura, M.Y.; Peyton, S.R.; Minter, L.M.; et al. Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Front. Immunol. 2020, 10, 3125. [Google Scholar] [CrossRef] [PubMed]
- Matis, S.; Recchia, A.G.; Colombo, M.; Cardillo, M.; Fabbi, M.; Todoerti, K.; Bossio, S.; Fabris, S.; Cancila, V.; Massara, R.; et al. MiR-146b-5p Regulates IL-23 Receptor Complex Expression in Chronic Lymphocytic Leukemia Cells. Blood Adv. 2022, 6, 5593–5612. [Google Scholar] [CrossRef]
- Wang, L.; Wang, E.; Wang, Y.; Mines, R.; Xiang, K.; Sun, Z.; Zhou, G.; Chen, K.-Y.; Rakhilin, N.; Chao, S.; et al. miR-34a Is a microRNA Safeguard for Citrobacter-Induced Inflammatory Colon Oncogenesis. eLife 2018, 7, e39479. [Google Scholar] [CrossRef]
- Oppmann, B.; Lesley, R.; Blom, B.; Timans, J.C.; Xu, Y.; Hunte, B.; Vega, F.; Yu, N.; Wang, J.; Singh, K.; et al. Novel P19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12. Immunity 2000, 13, 715–725. [Google Scholar] [CrossRef]
- Sinigaglia, F.; D’Ambrosio, D.; Panina-Bordignon, P.; Rogge, L. Regulation of the IL-12/IL-12R Axis: A Critical Step in T-Helper Cell Differentiation and Effector Function. Immunol. Rev. 1999, 170, 65–72. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12: A Proinflammatory Cytokine with Immunoregulatory Functions That Bridge Innate Resistance and Antigen-Specific Adaptive Immunity. Annu. Rev. Immunol. 1995, 13, 251–276. [Google Scholar] [CrossRef]
- Presky, D.H.; Yang, H.; Minetti, L.J.; Chua, A.O.; Nabavi, N.; Wu, C.Y.; Gately, M.K.; Gubler, U. A Functional Interleukin 12 Receptor Complex Is Composed of Two Beta-Type Cytokine Receptor Subunits. Proc. Natl. Acad. Sci. USA 1996, 93, 14002–14007. [Google Scholar] [CrossRef]
- Cua, D.J.; Sherlock, J.; Chen, Y.; Murphy, C.A.; Joyce, B.; Seymour, B.; Lucian, L.; To, W.; Kwan, S.; Churakova, T.; et al. Interleukin-23 Rather than Interleukin-12 Is the Critical Cytokine for Autoimmune Inflammation of the Brain. Nature 2003, 421, 744–748. [Google Scholar] [CrossRef]
- Chua, A.O.; Wilkinson, V.L.; Presky, D.H.; Gubler, U. Cloning and Characterization of a Mouse IL-12 Receptor-Beta Component. J. Immunol. 1995, 155, 4286–4294. [Google Scholar] [CrossRef] [PubMed]
- Bloch, Y.; Bouchareychas, L.; Merceron, R.; Składanowska, K.; Van den Bossche, L.; Detry, S.; Govindarajan, S.; Elewaut, D.; Haerynck, F.; Dullaers, M.; et al. Structural Activation of Pro-Inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rβ1. Immunity 2018, 48, 45–58.e6. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.; Moll, J.M.; Baran, P.; Grötzinger, J.; Scheller, J.; Floss, D.M. Non-Canonical Interleukin 23 Receptor Complex Assembly: P40 Protein Recruits Interleukin 12 Receptor Β1 via Site II and Induces P19/Interleukin 23 Receptor Interaction via Site III. J. Biol. Chem. 2015, 290, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Watford, W.T.; Hissong, B.D.; Bream, J.H.; Kanno, Y.; Muul, L.; O’Shea, J.J. Signaling by IL-12 and IL-23 and the Immunoregulatory Roles of STAT4. Immunol. Rev. 2004, 202, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Floss, D.M.; Klöcker, T.; Schröder, J.; Lamertz, L.; Mrotzek, S.; Strobl, B.; Hermanns, H.; Scheller, J. Defining the Functional Binding Sites of Interleukin 12 Receptor Β1 and Interleukin 23 Receptor to Janus Kinases. Mol. Biol. Cell 2016, 27, 2301–2316. [Google Scholar] [CrossRef]
- Rogge, L.; Barberis-Maino, L.; Biffi, M.; Passini, N.; Presky, D.H.; Gubler, U.; Sinigaglia, F. Selective Expression of an Interleukin-12 Receptor Component by Human T Helper 1 Cells. J. Exp. Med. 1997, 185, 825–831. [Google Scholar] [CrossRef]
- Gollob, J.A.; Murphy, E.A.; Mahajan, S.; Schnipper, C.P.; Ritz, J.; Frank, D.A. Altered Interleukin-12 Responsiveness in Th1 and Th2 Cells Is Associated with the Differential Activation of STAT5 and STAT1. Blood 1998, 91, 1341–1354. [Google Scholar] [CrossRef]
- Keles, S.; Charbonnier, L.M.; Kabaleeswaran, V.; Reisli, I.; Genel, F.; Gulez, N.; Al-Herz, W.; Ramesh, N.; Perez-Atayde, A.; Karaca, N.E.; et al. Dedicator of Cytokinesis 8 Regulates Signal Transducer and Activator of Transcription 3 Activation and Promotes TH17 Cell Differentiation. J. Allergy Clin. Immunol. 2016, 138, 1384–1394.e2. [Google Scholar] [CrossRef]
- Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The Orphan Nuclear Receptor RORgammat Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell 2006, 126, 1121–1133. [Google Scholar] [CrossRef]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 Programs T(H)-17 Cell Differentiation by Promoting Sequential Engagement of the IL-21 and IL-23 Pathways. Nat. Immunol. 2007, 8, 967–974. [Google Scholar] [CrossRef]
- Caruso, R.; Fina, D.; Paoluzi, O.A.; Del Vecchio Blanco, G.; Stolfi, C.; Rizzo, A.; Caprioli, F.; Sarra, M.; Andrei, F.; Fantini, M.C.; et al. IL-23-Mediated Regulation of IL-17 Production in Helicobacter Pylori-Infected Gastric Mucosa. Eur. J. Immunol. 2008, 38, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Duarte, J.H.; Veldhoen, M.; Hornsby, E.; Li, Y.; Cua, D.J.; Ahlfors, H.; Wilhelm, C.; Tolaini, M.; Menzel, U.; et al. Fate Mapping of IL-17-Producing T Cells in Inflammatory Responses. Nat. Immunol. 2011, 12, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.H.; Cho, M.-L.; Moon, Y.-M.; Oh, H.-J.; Park, J.-S.; Jhun, J.-Y.; Min, S.-Y.; Cho, Y.-G.; Park, K.-S.; Yoon, C.-H.; et al. IL-23 Induces Receptor Activator of NF-kappaB Ligand Expression on CD4+ T Cells and Promotes Osteoclastogenesis in an Autoimmune Arthritis Model. J. Immunol. 2008, 181, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kim, K.-W.; Cho, M.-L.; Ju, J.-H.; Kang, C.-M.; Oh, H.-J.; Min, J.-K.; Lee, S.-H.; Park, S.-H.; Kim, H.-Y. IL-23 Induces Receptor Activator of NF-kappaB Ligand Expression in Fibroblast-like Synoviocytes via STAT3 and NF-kappaB Signal Pathways. Immunol. Lett. 2010, 127, 100–107. [Google Scholar] [CrossRef]
- Cho, M.-L.; Kang, J.-W.; Moon, Y.-M.; Nam, H.-J.; Jhun, J.-Y.; Heo, S.-B.; Jin, H.-T.; Min, S.-Y.; Ju, J.-H.; Park, K.-S.; et al. STAT3 and NF-kappaB Signal Pathway Is Required for IL-23-Mediated IL-17 Production in Spontaneous Arthritis Animal Model IL-1 Receptor Antagonist-Deficient Mice. J. Immunol. 2006, 176, 5652–5661. [Google Scholar] [CrossRef]
- Jain, R.; Chen, Y.; Kanno, Y.; Joyce-Shaikh, B.; Vahedi, G.; Hirahara, K.; Blumenschein, W.M.; Sukumar, S.; Haines, C.J.; Sadekova, S.; et al. Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. Immunity 2016, 44, 131–142. [Google Scholar] [CrossRef]
- Heinemann, C.; Heink, S.; Petermann, F.; Vasanthakumar, A.; Rothhammer, V.; Doorduijn, E.; Mitsdoerffer, M.; Sie, C.; Prazeres da Costa, O.; Buch, T.; et al. IL-27 and IL-12 Oppose pro-Inflammatory IL-23 in CD4+ T Cells by Inducing Blimp1. Nat. Commun. 2014, 5, 3770. [Google Scholar] [CrossRef]
- Alvarez, J.D.; Yasui, D.H.; Niida, H.; Joh, T.; Loh, D.Y.; Kohwi-Shigematsu, T. The MAR-Binding Protein SATB1 Orchestrates Temporal and Spatial Expression of Multiple Genes during T-Cell Development. Genes Dev. 2000, 14, 521–535. [Google Scholar] [CrossRef]
- Liu, W.; Chang, C.; Hu, H.; Yang, H. Interleukin-23: A New Atherosclerosis _target. J. Interferon Cytokine Res. 2018, 38, 440–444. [Google Scholar] [CrossRef]
- Aggarwal, S.; Ghilardi, N.; Xie, M.-H.; de Sauvage, F.J.; Gurney, A.L. Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17. J. Biol. Chem. 2003, 278, 1910–1914. [Google Scholar] [CrossRef]
- Li, H.; Hsu, H.-C.; Wu, Q.; Yang, P.; Li, J.; Luo, B.; Oukka, M.; Steele, C.H.; Cua, D.J.; Grizzle, W.E.; et al. IL-23 Promotes TCR-Mediated Negative Selection of Thymocytes through the Upregulation of IL-23 Receptor and RORγt. Nat. Commun. 2014, 5, 4259. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tato, C.M.; Muul, L.; Laurence, A.; O’Shea, J.J. Distinct Regulation of Interleukin-17 in Human T Helper Lymphocytes. Arthritis Rheum. 2007, 56, 2936–2946. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, M.; DeTomaso, D.; Schnell, A.; Meyer Zu Horste, G.; Lee, Y.; Nyman, J.; Dionne, D.; Regan, B.M.L.; Singh, V.; Delorey, T.; et al. Induction of a Colitogenic Phenotype in Th1-like Cells Depends on Interleukin-23 Receptor Signaling. Immunity 2022, 55, 1663–1679.e6. [Google Scholar] [CrossRef]
- Lee, Y.; Awasthi, A.; Yosef, N.; Quintana, F.J.; Xiao, S.; Peters, A.; Wu, C.; Kleinewietfeld, M.; Kunder, S.; Hafler, D.A.; et al. Induction and Molecular Signature of Pathogenic TH17 Cells. Nat. Immunol. 2012, 13, 991–999. [Google Scholar] [CrossRef]
- Wines, B.D.; Yap, M.L.; Powell, M.S.; Tan, P.-S.; Ko, K.K.; Orlowski, E.; Hogarth, P.M. Distinctive Expression of Interleukin-23 Receptor Subunits on Human Th17 and Γδ T Cells. Immunol. Cell Biol. 2017, 95, 272–279. [Google Scholar] [CrossRef]
- Lang, F.; Cohen, P. Regulation and Physiological Roles of Serum- and Glucocorticoid-Induced Protein Kinase Isoforms. Sci. STKE Signal Transduct. Knowl. Environ. 2001, 2001, re17. [Google Scholar] [CrossRef]
- Sigaux, J.; Semerano, L.; Favre, G.; Bessis, N.; Boissier, M.-C. Salt, Inflammatory Joint Disease, and Autoimmunity. Jt. Bone Spine 2018, 85, 411–416. [Google Scholar] [CrossRef]
- Wu, C.; Yosef, N.; Thalhamer, T.; Zhu, C.; Xiao, S.; Kishi, Y.; Regev, A.; Kuchroo, V.K. Induction of Pathogenic TH17 Cells by Inducible Salt-Sensing Kinase SGK1. Nature 2013, 496, 513–517. [Google Scholar] [CrossRef]
- Abbruzzese, C.; Catalogna, G.; Gallo, E.; di Martino, S.; Mileo, A.M.; Carosi, M.; Dattilo, V.; Schenone, S.; Musumeci, F.; Lavia, P.; et al. The Small Molecule SI113 Synergizes with Mitotic Spindle Poisons in Arresting the Growth of Human Glioblastoma Multiforme. Onco_target 2017, 8, 110743–110755. [Google Scholar] [CrossRef]
- Abbruzzese, C.; Matteoni, S.; Persico, M.; Ascione, B.; Schenone, S.; Musumeci, F.; Amato, R.; Perrotti, N.; Matarrese, P.; Paggi, M.G. The Small Molecule SI113 Hinders Epithelial-to-Mesenchymal Transition and Subverts Cytoskeletal Organization in Human Cancer Cells. J. Cell. Physiol. 2019, 234, 22529–22542. [Google Scholar] [CrossRef]
- Brescia, C.; Dattilo, V.; D’Antona, L.; Chiarella, E.; Tallerico, R.; Audia, S.; Rocca, V.; Iuliano, R.; Trapasso, F.; Perrotti, N.; et al. RANBP1, a Member of the Nuclear-Cytoplasmic Trafficking-Regulator Complex, Is the Terminal-Striking Point of the SGK1-Dependent Th17+ Pathological Differentiation. Front. Immunol. 2023, 14, 1213805. [Google Scholar] [CrossRef] [PubMed]
- Brescia, C.; Audia, S.; Pugliano, A.; Scaglione, F.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Chiarella, E.; Amato, R. Metabolic Drives Affecting Th17/Treg Gene Expression Changes and Differentiation: Impact on Immune-Microenvironment Regulation. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2024. [Google Scholar] [CrossRef] [PubMed]
- Torchia, N.; Brescia, C.; Chiarella, E.; Audia, S.; Trapasso, F.; Amato, R. Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities. Immuno 2024, 4, 521–548. [Google Scholar] [CrossRef]
- Delgoffe, G.M.; Kole, T.P.; Zheng, Y.; Zarek, P.E.; Matthews, K.L.; Xiao, B.; Worley, P.F.; Kozma, S.C.; Powell, J.D. The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment. Immunity 2009, 30, 832–844. [Google Scholar] [CrossRef]
- Dattilo, V.; D’Antona, L.; Talarico, C.; Capula, M.; Catalogna, G.; Iuliano, R.; Schenone, S.; Roperto, S.; Bianco, C.; Perrotti, N.; et al. SGK1 Affects RAN/RANBP1/RANGAP1 via SP1 to Play a Critical Role in Pre-miRNA Nuclear Export: A New Route of Epigenomic Regulation. Sci. Rep. 2017, 7, 45361. [Google Scholar] [CrossRef]
- Amato, R.; Scumaci, D.; D’Antona, L.; Iuliano, R.; Menniti, M.; Di Sanzo, M.; Faniello, M.C.; Colao, E.; Malatesta, P.; Zingone, A.; et al. Sgk1 Enhances RANBP1 Transcript Levels and Decreases Taxol Sensitivity in RKO Colon Carcinoma Cells. Oncogene 2013, 32, 4572–4578. [Google Scholar] [CrossRef]
- Audia, S.; Brescia, C.; Dattilo, V.; D’Antona, L.; Calvano, P.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Amato, R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers 2023, 15, 486. [Google Scholar] [CrossRef]
- Lainé, A.; Martin, B.; Luka, M.; Mir, L.; Auffray, C.; Lucas, B.; Bismuth, G.; Charvet, C. Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program. J. Immunol. 2015, 195, 1791–1803. [Google Scholar] [CrossRef]
- Amato, R.; Dattilo, V.; Brescia, C.; D’Antona, L.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Costa, D.; Ielapi, N.; Aiello, F.; et al. Th17-Gene Expression Profile in Patients with Chronic Venous Disease and Venous Ulcers: Genetic Modulations and Preliminary Clinical Evidence. Biomolecules 2022, 12, 902. [Google Scholar] [CrossRef]
- Kleinewietfeld, M.; Manzel, A.; Titze, J.; Kvakan, H.; Yosef, N.; Linker, R.A.; Muller, D.N.; Hafler, D.A. Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic TH17 Cells. Nature 2013, 496, 518–522. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Z.; Xiao, S.; Thalhamer, T.; Madi, A.; Han, T.; Kuchroo, V. SGK1 Governs the Reciprocal Development of Th17 and Regulatory T Cells. Cell Rep. 2018, 22, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, L.E.A.; Cebinelli, G.C.M.; Fernandes, M.F.; Nascimento, D.C.; Públio, G.A.; Vinolo, M.A.R.; Oliveira, S.C.; Sparwasser, T.; Cunha, T.M.; Cunha, F.Q.; et al. STING Is an Intrinsic Checkpoint Inhibitor That Restrains the TH17 Cell Pathogenic Program. Cell Rep. 2022, 39, 110838. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-H.; Hagemann, S.; Mamareli, P.; Lauer, U.; Hoffmann, U.; Beckstette, M.; Föhse, L.; Prinz, I.; Pezoldt, J.; Suerbaum, S.; et al. Foxp3(+) T Cells Expressing RORγt Represent a Stable Regulatory T-Cell Effector Lineage with Enhanced Suppressive Capacity during Intestinal Inflammation. Mucosal Immunol. 2016, 9, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Jacobse, J.; Brown, R.E.; Li, J.; Pilat, J.M.; Pham, L.; Short, S.P.; Peek, C.T.; Rolong, A.; Washington, M.K.; Martinez-Barricarte, R.; et al. Interleukin-23 Receptor Signaling Impairs the Stability and Function of Colonic Regulatory T Cells. Cell Rep. 2023, 42, 112128. [Google Scholar] [CrossRef]
- Izcue, A.; Hue, S.; Buonocore, S.; Arancibia-Cárcamo, C.V.; Ahern, P.P.; Iwakura, Y.; Maloy, K.J.; Powrie, F. Interleukin-23 Restrains Regulatory T Cell Activity to Drive T Cell-Dependent Colitis. Immunity 2008, 28, 559–570. [Google Scholar] [CrossRef]
- Kannan, A.K.; Su, Z.; Gauvin, D.M.; Paulsboe, S.E.; Duggan, R.; Lasko, L.M.; Honore, P.; Kort, M.E.; McGaraughty, S.P.; Scott, V.E.; et al. IL-23 Induces Regulatory T Cell Plasticity with Implications for Inflammatory Skin Diseases. Sci. Rep. 2019, 9, 17675. [Google Scholar] [CrossRef]
- Li, W.; An, N.; Wang, M.; Liu, X.; Mei, Z. Interleukin-23 Receptor Defines T Helper 1-like Regulatory T Cells in Oral Squamous Cell Carcinoma. Immun. Inflamm. Dis. 2022, 10, e746. [Google Scholar] [CrossRef]
- Dong, S.; Maiella, S.; Xhaard, A.; Pang, Y.; Wenandy, L.; Larghero, J.; Becavin, C.; Benecke, A.; Bianchi, E.; Socié, G.; et al. Multiparameter Single-Cell Profiling of Human CD4+FOXP3+ Regulatory T-Cell Populations in Homeostatic Conditions and during Graft-versus-Host Disease. Blood 2013, 122, 1802–1812. [Google Scholar] [CrossRef]
- Alfen, J.S.; Larghi, P.; Facciotti, F.; Gagliani, N.; Bosotti, R.; Paroni, M.; Maglie, S.; Gruarin, P.; Vasco, C.M.; Ranzani, V.; et al. Intestinal IFN-γ-Producing Type 1 Regulatory T Cells Coexpress CCR5 and Programmed Cell Death Protein 1 and Downregulate IL-10 in the Inflamed Guts of Patients with Inflammatory Bowel Disease. J. Allergy Clin. Immunol. 2018, 142, 1537–1547.e8. [Google Scholar] [CrossRef]
- Curtis, M.M.; Way, S.S.; Wilson, C.B. IL-23 Promotes the Production of IL-17 by Antigen-Specific CD8 T Cells in the Absence of IL-12 and Type-I Interferons. J. Immunol. 2009, 183, 381–387. [Google Scholar] [CrossRef]
- Gray, E.H.; Srenathan, U.; Durham, L.E.; Lalnunhlimi, S.; Steel, K.J.A.; Catrina, A.; Kirkham, B.W.; Taams, L.S. Human in Vitro-Induced IL-17A+ CD8+ T-Cells Exert pro-Inflammatory Effects on Synovial Fibroblasts. Clin. Exp. Immunol. 2023, 214, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Steel, K.J.A.; Srenathan, U.; Ridley, M.; Durham, L.E.; Wu, S.-Y.; Ryan, S.E.; Hughes, C.D.; Chan, E.; Kirkham, B.W.; Taams, L.S. Polyfunctional, Proinflammatory, Tissue-Resident Memory Phenotype and Function of Synovial Interleukin-17A+CD8+ T Cells in Psoriatic Arthritis. Arthritis Rheumatol. Hoboken NJ 2020, 72, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.A.; Clear, A.; Aries, J.; Charrot, S.; Besley, C.; Mee, M.; Stagg, A.; Lindsay, J.O.; Cavenagh, J.; Calaminci, M.; et al. Retinoic Acid-Responsive CD8 Effector T Cells Are Selectively Increased in IL-23-Rich Tissue in Gastrointestinal GVHD. Blood 2021, 137, 702–717. [Google Scholar] [CrossRef] [PubMed]
- Ribot, J.C.; Lopes, N.; Silva-Santos, B. Γδ T Cells in Tissue Physiology and Surveillance. Nat. Rev. Immunol. 2021, 21, 221–232. [Google Scholar] [CrossRef]
- Petermann, F.; Rothhammer, V.; Claussen, M.C.; Haas, J.D.; Blanco, L.R.; Heink, S.; Prinz, I.; Hemmer, B.; Kuchroo, V.K.; Oukka, M.; et al. Γδ T Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism. Immunity 2010, 33, 351–363. [Google Scholar] [CrossRef]
- Sutton, C.E.; Lalor, S.J.; Sweeney, C.M.; Brereton, C.F.; Lavelle, E.C.; Mills, K.H.G. Interleukin-1 and IL-23 Induce Innate IL-17 Production from Gammadelta T Cells, Amplifying Th17 Responses and Autoimmunity. Immunity 2009, 31, 331–341. [Google Scholar] [CrossRef]
- Venken, K.; Jacques, P.; Mortier, C.; Labadia, M.E.; Decruy, T.; Coudenys, J.; Hoyt, K.; Wayne, A.L.; Hughes, R.; Turner, M.; et al. RORγt Inhibition Selectively _targets IL-17 Producing iNKT and Γδ-T Cells Enriched in Spondyloarthritis Patients. Nat. Commun. 2019, 10, 9. [Google Scholar] [CrossRef]
- Lee, J.S.; Tato, C.M.; Joyce-Shaikh, B.; Gulen, M.F.; Cayatte, C.; Chen, Y.; Blumenschein, W.M.; Judo, M.; Ayanoglu, G.; McClanahan, T.K.; et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity 2015, 43, 727–738. [Google Scholar] [CrossRef]
- Spits, H.; Cupedo, T. Innate Lymphoid Cells: Emerging Insights in Development, Lineage Relationships, and Function. Annu. Rev. Immunol. 2012, 30, 647–675. [Google Scholar] [CrossRef]
- Spits, H.; Artis, D.; Colonna, M.; Diefenbach, A.; Di Santo, J.P.; Eberl, G.; Koyasu, S.; Locksley, R.M.; McKenzie, A.N.J.; Mebius, R.E.; et al. Innate Lymphoid Cells—A Proposal for Uniform Nomenclature. Nat. Rev. Immunol. 2013, 13, 145–149. [Google Scholar] [CrossRef]
- Blijdorp, I.C.J.; Menegatti, S.; van Mens, L.J.J.; van de Sande, M.G.H.; Chen, S.; Hreggvidsdottir, H.S.; Noordenbos, T.; Latuhihin, T.E.; Bernink, J.H.; Spits, H.; et al. Expansion of Interleukin-22- and Granulocyte-Macrophage Colony-Stimulating Factor-Expressing, but Not Interleukin-17A-Expressing, Group 3 Innate Lymphoid Cells in the Inflamed Joints of Patients with Spondyloarthritis. Arthritis Rheumatol. 2019, 71, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Beckstette, M.; Lu, C.-W.; Herppich, S.; Diem, E.C.; Ntalli, A.; Ochel, A.; Kruse, F.; Pietzsch, B.; Neumann, K.; Huehn, J.; et al. Profiling of Epigenetic Marker Regions in Murine ILCs under Homeostatic and Inflammatory Conditions. J. Exp. Med. 2022, 219, e20210663. [Google Scholar] [CrossRef]
- Chen, L.; He, Z.; Slinger, E.; Bongers, G.; Lapenda, T.L.S.; Pacer, M.E.; Jiao, J.; Beltrao, M.F.; Soto, A.J.; Harpaz, N.; et al. IL-23 Activates Innate Lymphoid Cells to Promote Neonatal Intestinal Pathology. Mucosal Immunol. 2015, 8, 390–402. [Google Scholar] [CrossRef]
- Konya, V.; Czarnewski, P.; Forkel, M.; Rao, A.; Kokkinou, E.; Villablanca, E.J.; Almer, S.; Lindforss, U.; Friberg, D.; Höög, C.; et al. Vitamin D Downregulates the IL-23 Receptor Pathway in Human Mucosal Group 3 Innate Lymphoid Cells. J. Allergy Clin. Immunol. 2018, 141, 279–292. [Google Scholar] [CrossRef]
- Gao, X.; Shen, X.; Liu, K.; Lu, C.; Fan, Y.; Xu, Q.; Meng, X.; Hong, S.; Huang, Z.; Liu, X.; et al. The Transcription Factor ThPOK Regulates ILC3 Lineage Homeostasis and Function During Intestinal Infection. Front. Immunol. 2022, 13, 939033. [Google Scholar] [CrossRef]
- Croft, C.A.; Thaller, A.; Marie, S.; Doisne, J.-M.; Surace, L.; Yang, R.; Puel, A.; Bustamante, J.; Casanova, J.-L.; Di Santo, J.P. Notch, RORC and IL-23 Signals Cooperate to Promote Multi-Lineage Human Innate Lymphoid Cell Differentiation. Nat. Commun. 2022, 13, 4344. [Google Scholar] [CrossRef]
- Uddin, M.J.; Thompson, B.; Leslie, J.L.; Fishman, C.; Sol-Church, K.; Kumar, P.; Petri, W.A. Investigating the Impact of Antibiotic-Induced Dysbiosis on Protection from Clostridium Difficile Colitis by Mouse Colonic Innate Lymphoid Cells. mBio 2024, 15, e0333823. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L.; Chu, Z.; Yang, T.; Sun, H.-X.; Yang, F.; Wang, W.; Hou, Y.; Wang, P.; Zhao, Q.; et al. Characterization and Biological Significance of IL-23-Induced Neutrophil Polarization. Cell. Mol. Immunol. 2018, 15, 518–530. [Google Scholar] [CrossRef]
- Yadav, B.; Specht, C.A.; Lee, C.K.; Pokrovskii, M.; Huh, J.R.; Littman, D.R.; Levitz, S.M. Lung Eosinophils Elicited during Allergic and Acute Aspergillosis Express RORγt and IL-23R but Do Not Require IL-23 for IL-17 Production. PLoS Pathog. 2021, 17, e1009891. [Google Scholar] [CrossRef]
- Belladonna, M.L.; Renauld, J.-C.; Bianchi, R.; Vacca, C.; Fallarino, F.; Orabona, C.; Fioretti, M.C.; Grohmann, U.; Puccetti, P. IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells. J. Immunol. 2002, 168, 5448–5454. [Google Scholar] [CrossRef]
- Sun, R.; Abraham, C. IL23 Promotes Antimicrobial Pathways in Human Macrophages, Which Are Reduced With the IBD-Protective IL23R R381Q Variant. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 673–697. [Google Scholar] [CrossRef] [PubMed]
- Leitner, M.; Heck, S.; Nguyen, K.; Nguyen, P.Q.; Harfoush, S.; Rosenkranz, E.; Bals, R.; Dinh, Q.T. Allergic Airway Inflammation Induces Upregulation of the Expression of IL-23R by Macrophages and Not in CD3 + T Cells and CD11c+F4/80- Dendritic Cells of the Lung. Cell Tissue Res. 2022, 389, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Zheng, J.; Li, N.; Huang, C.; Chen, M.; Cheng, Q.; Li, Q.; Lu, Q.; Zhu, M.; Ling, Q.; et al. Role of Interleukin-23 in Monocyte-Derived Dendritic Cells of HBV-Related Acute-on-Chronic Liver Failure and Its Correlation with the Severity of Liver Damage. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 147–155. [Google Scholar] [CrossRef]
- Hill, G.R.; Koyama, M. Cytokines and Costimulation in Acute Graft-versus-Host Disease. Blood 2020, 136, 418–428. [Google Scholar] [CrossRef]
- Cocco, C.; Canale, S.; Frasson, C.; Di Carlo, E.; Ognio, E.; Ribatti, D.; Prigione, I.; Basso, G.; Airoldi, I. Interleukin-23 Acts as Antitumor Agent on Childhood B-Acute Lymphoblastic Leukemia Cells. Blood 2010, 116, 3887–3898. [Google Scholar] [CrossRef]
- Cutrona, G.; Tripodo, C.; Matis, S.; Recchia, A.G.; Massucco, C.; Fabbi, M.; Colombo, M.; Emionite, L.; Sangaletti, S.; Gulino, A.; et al. Microenvironmental Regulation of the IL-23R/IL-23 Axis Overrides Chronic Lymphocytic Leukemia Indolence. Sci. Transl. Med. 2018, 10, eaal1571. [Google Scholar] [CrossRef]
- Floss, D.M.; Schröder, J.; Franke, M.; Scheller, J. Insights into IL-23 Biology: From Structure to Function. Cytokine Growth Factor Rev. 2015, 26, 569–578. [Google Scholar] [CrossRef]
- Sivanesan, D.; Beauchamp, C.; Quinou, C.; Lee, J.; Lesage, S.; Chemtob, S.; Rioux, J.D.; Michnick, S.W. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function Due to Impaired Protein Stability and Intracellular Trafficking. J. Biol. Chem. 2016, 291, 8673–8685. [Google Scholar] [CrossRef]
- Pidasheva, S.; Trifari, S.; Phillips, A.; Hackney, J.A.; Ma, Y.; Smith, A.; Sohn, S.J.; Spits, H.; Little, R.D.; Behrens, T.W.; et al. Functional Studies on the IBD Susceptibility Gene IL23R Implicate Reduced Receptor Function in the Protective Genetic Variant R381Q. PLoS ONE 2011, 6, e25038. [Google Scholar] [CrossRef]
- Di Meglio, P.; Di Cesare, A.; Laggner, U.; Chu, C.-C.; Napolitano, L.; Villanova, F.; Tosi, I.; Capon, F.; Trembath, R.C.; Peris, K.; et al. The IL23R R381Q Gene Variant Protects against Immune-Mediated Diseases by Impairing IL-23-Induced Th17 Effector Response in Humans. PLoS ONE 2011, 6, e17160. [Google Scholar] [CrossRef]
- Sarin, R.; Wu, X.; Abraham, C. Inflammatory Disease Protective R381Q IL23 Receptor Polymorphism Results in Decreased Primary CD4+ and CD8+ Human T-Cell Functional Responses. Proc. Natl. Acad. Sci. USA 2011, 108, 9560–9565. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, H.; Chen, Z.; Lu, B.; Li, J.; Shen, X. Genetic Association between IL23R Rs11209026 and Rs10889677 Polymorphisms and Risk of Crohn’s Disease and Ulcerative Colitis: Evidence from 41 Studies. Inflamm. Res. 2020, 69, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wang, W.; Song, H. Complex Role of IL-23R Polymorphisms on Ankylosing Spondylitis: A Meta-Analysis. Expert Rev. Clin. Immunol. 2018, 14, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Cargill, M.; Schrodi, S.J.; Chang, M.; Garcia, V.E.; Brandon, R.; Callis, K.P.; Matsunami, N.; Ardlie, K.G.; Civello, D.; Catanese, J.J.; et al. A Large-Scale Genetic Association Study Confirms IL12B and Leads to the Identification of IL23R as Psoriasis-Risk Genes. Am. J. Hum. Genet. 2007, 80, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, X.; Tan, G.; Liang, Z.; Zhang, Z.; Yu, H. The Association between Genetic Polymorphisms of Interleukin 23 Receptor Gene and the Risk of Rheumatoid Arthritis: An Updated Meta-Analysis. Clin. Immunol. Orlando Fla 2020, 210, 108250. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Zhang, H.; Ding, Y.; Ren, C.; Hua, Z.; Zhou, Y.; Deng, B.; Jin, G.; Hu, Z.; et al. A Nonsynonymous Polymorphism in IL23R Gene Is Associated with Risk of Gastric Cancer in a Chinese Population. Mol. Carcinog. 2010, 49, 862–868. [Google Scholar] [CrossRef]
- Chu, H.; Cao, W.; Chen, W.; Pan, S.; Xiao, Y.; Liu, Y.; Gu, H.; Guo, W.; Xu, L.; Hu, Z.; et al. Potentially Functional Polymorphisms in IL-23 Receptor and Risk of Esophageal Cancer in a Chinese Population. Int. J. Cancer 2012, 130, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Safrany, E.; Szabo, M.; Szell, M.; Kemeny, L.; Sumegi, K.; Melegh, B.I.; Magyari, L.; Matyas, P.; Figler, M.; Weber, A.; et al. Difference of Interleukin-23 Receptor Gene Haplotype Variants in Ulcerative Colitis Compared to Crohn’s Disease and Psoriasis. Inflamm. Res. 2013, 62, 195–200. [Google Scholar] [CrossRef]
- Momozawa, Y.; Mni, M.; Nakamura, K.; Coppieters, W.; Almer, S.; Amininejad, L.; Cleynen, I.; Colombel, J.-F.; de Rijk, P.; Dewit, O.; et al. Resequencing of Positional Candidates Identifies Low Frequency IL23R Coding Variants Protecting against Inflammatory Bowel Disease. Nat. Genet. 2011, 43, 43–47. [Google Scholar] [CrossRef]
- De Paus, R.A.; van de Wetering, D.; van Dissel, J.T.; van de Vosse, E. IL-23 and IL-12 Responses in Activated Human T Cells Retrovirally Transduced with IL-23 Receptor Variants. Mol. Immunol. 2008, 45, 3889–3895. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Jiang, W.; Lin, J.; Jiang, Y.; Li, B.; Pang, D. A miRNA Binding Site Single-Nucleotide Polymorphism in the 3’-UTR Region of the IL23R Gene Is Associated with Breast Cancer. PLoS ONE 2012, 7, e49823. [Google Scholar] [CrossRef]
- Peng, Q.; Qin, Y.; Chen, Z.; Deng, Y.; Xu, J.; Li, S.; Qin, X. Correlation between Interleukin-23 Receptor Gene Polymorphisms and Risk of Hepatitis B Virus Infection in Patients. Mol. Med. Rep. 2013, 8, 613–620. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Pan, S.; Liu, L.; Liu, J.; Zhai, X.; Shen, H.; Hu, Z. IL-23R Polymorphisms, HBV Infection, and Risk of Hepatocellular Carcinoma in a High-Risk Chinese Population. J. Gastroenterol. 2013, 48, 125–131. [Google Scholar] [CrossRef]
- Kasamatsu, T.; Kimoto, M.; Takahashi, N.; Minato, Y.; Gotoh, N.; Takizawa, M.; Matsumoto, M.; Sawamura, M.; Yokohama, A.; Handa, H.; et al. IL17A and IL23R Gene Polymorphisms Affect the Clinical Features and Prognosis of Patients with Multiple Myeloma. Hematol. Oncol. 2018, 36, 196–201. [Google Scholar] [CrossRef]
- Labib, H.A.; Ahmed, H.S.; Shalaby, S.M.; Wahab, E.A.; Hamed, E.F. Genetic Polymorphism of IL-23R Influences Susceptibility to HCV-Related Hepatocellular Carcinoma. Cell. Immunol. 2015, 294, 21–24. [Google Scholar] [CrossRef]
- Takaku, T.; Calado, R.T.; Kajigaya, S.; Young, N.S. Interleukin-23 Receptor (IL-23R) Gene Polymorphisms in Acquired Aplastic Anemia. Ann. Hematol. 2009, 88, 653–657. [Google Scholar] [CrossRef]
- Huber, A.K.; Jacobson, E.M.; Jazdzewski, K.; Concepcion, E.S.; Tomer, Y. Interleukin (IL)-23 Receptor Is a Major Susceptibility Gene for Graves’ Ophthalmopathy: The IL-23/T-Helper 17 Axis Extends to Thyroid Autoimmunity. J. Clin. Endocrinol. Metab. 2008, 93, 1077–1081. [Google Scholar] [CrossRef]
- Han, R.; Xia, Q.; Xu, S.; Fan, D.; Pan, F. Interleukin-23 Receptor Polymorphism (Rs10889677 A/C) in Ankylosing Spondylitis: Meta-Analysis in Caucasian and Asian Populations. Clin. Chim. Acta Int. J. Clin. Chem. 2018, 477, 53–59. [Google Scholar] [CrossRef]
- El-Gedamy, M.; El-Khayat, Z.; Abol-Enein, H.; El-Said, A.; El-Nahrery, E. Rs-1884444 G/T Variant in IL-23 Receptor Is Likely to Modify Risk of Bladder Urothelial Carcinoma by Regulating IL-23/IL-17 Inflammatory Pathway. Cytokine 2021, 138, 155355. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, W.; Wang, J.; Zhang, J.; Guo, X.; Wang, J.; Song, J.; Dong, W. Interleukin-23 Receptor Genetic Polymorphisms and Ulcerative Colitis Susceptibility: A Meta-Analysis. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 516–525. [Google Scholar] [CrossRef]
- Amer, T.; El-Baz, R.; Mokhtar, A.-R.; El-Shaer, S.; Elshazli, R.; Settin, A. Genetic Polymorphisms of IL-23R (Rs7517847) and LEP (Rs7799039) among Egyptian Patients with Hepatocellular Carcinoma. Arch. Physiol. Biochem. 2017, 123, 279–285. [Google Scholar] [CrossRef]
- Poole, E.M.; Curtin, K.; Hsu, L.; Duggan, D.J.; Makar, K.W.; Xiao, L.; Carlson, C.S.; Caan, B.J.; Potter, J.D.; Slattery, M.L.; et al. Genetic Variability in IL23R and Risk of Colorectal Adenoma and Colorectal Cancer. Cancer Epidemiol. 2012, 36, e104–e110. [Google Scholar] [CrossRef]
- Pan, X.; Wang, G. Correlations of IL-23R Gene Polymorphism with Clinicopathological Characteristics and Prognosis of Hepatocellular Carcinoma Patients after Interventional Therapy. Genomics 2019, 111, 930–935. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, L.; Zhang, L.; Yang, L.; Deng, J.; You, Y.; Li, N.; Wu, H.; Li, W.; Lu, J.; et al. Functional Genetic Variations in the IL-23 Receptor Gene Are Associated with Risk of Breast, Lung and Nasopharyngeal Cancer in Chinese Populations. Carcinogenesis 2012, 33, 2409–2416. [Google Scholar] [CrossRef]
- Langowski, J.L.; Zhang, X.; Wu, L.; Mattson, J.D.; Chen, T.; Smith, K.; Basham, B.; McClanahan, T.; Kastelein, R.A.; Oft, M. IL-23 Promotes Tumour Incidence and Growth. Nature 2006, 442, 461–465. [Google Scholar] [CrossRef]
- Wertheimer, T.; Zwicky, P.; Rindlisbacher, L.; Sparano, C.; Vermeer, M.; de Melo, B.M.S.; Haftmann, C.; Rückert, T.; Sethi, A.; Schärli, S.; et al. IL-23 Stabilizes an Effector Treg Cell Program in the Tumor Microenvironment. Nat. Immunol. 2024, 25, 512–524. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, Y.; Zhu, H.; Wang, X.; Li, X.; Dai, C.; Xu, C.; Zheng, T.; Mao, C.; Chen, D. Interleukin-23 Receptor Signaling Mediates Cancer Dormancy and Radioresistance in Human Esophageal Squamous Carcinoma Cells via the Wnt/Notch Pathway. J. Mol. Med. Berl. Ger. 2019, 97, 177–188. [Google Scholar] [CrossRef]
- Ni, B.; Chen, S.; Xie, H.; Ma, H. Functional Polymorphisms in Interleukin-23 Receptor and Susceptibility to Esophageal Squamous Cell Carcinoma in Chinese Population. PLoS ONE 2014, 9, e89111. [Google Scholar] [CrossRef]
- Peng, D.; Guo, Y.; Chen, H.; Zhao, S.; Washington, K.; Hu, T.; Shyr, Y.; El-Rifai, W. Integrated Molecular Analysis Reveals Complex Interactions between Genomic and Epigenomic Alterations in Esophageal Adenocarcinomas. Sci. Rep. 2017, 7, 40729. [Google Scholar] [CrossRef]
- Khatoon, J.; Prasad, K.N.; Rai, R.P.; Shukla, S.K.; Krishnani, N.; Ghoshal, U.C. Expression Levels of A Disintegrin and Metalloproteases (ADAMs), and Th17-Related Cytokines and Their Association with Helicobacter Pylori Infection in Patients with Gastroduodenal Diseases. Pathog. Dis. 2018, 76, fty078. [Google Scholar] [CrossRef]
- Shirzad, H.; Bagheri, N.; Azadegan-Dehkordi, F.; Zamanzad, B.; Izadpanah, E.; Abdi, M.; Ramazani, G.; Sanei, M.H.; Ayoubian, H.; Ahmadi, A.; et al. New Insight to IL-23/IL-17 Axis in Iranian Infected Adult Patients with Gastritis: Effects of Genes Polymorphisms on Expression of Cytokines. Acta Gastro-Enterol. Belg. 2015, 78, 212–218. [Google Scholar]
- Azadegan-Dehkordi, F.; Abbasi, A.; Abadi, A.T.B.; Minooie, K.; Aslani, P.; Hosseini, R.S.; Zandi, F. From Genes Polymorphisms to Mucosal Expression of Cytokines: Evaluating IL-23/IL-17 Axis in Adult Patients with Gastritis. Afr. Health Sci. 2020, 20, 1452–1462. [Google Scholar] [CrossRef]
- He, B.; Pan, B.; Pan, Y.; Wang, X.; Zhou, L.; Sun, H.; Xu, T.; Xu, X.; Liu, X.; Wang, S. Polymorphisms of IL-23R Predict Survival of Gastric Cancer Patients in a Chinese Population. Cytokine 2019, 117, 79–83. [Google Scholar] [CrossRef]
- Xu, X.; Yang, C.; Chen, J.; Liu, J.; Li, P.; Shi, Y.; Yu, P. Interleukin-23 Promotes the Migration and Invasion of Gastric Cancer Cells by Inducing Epithelial-to-Mesenchymal Transition via the STAT3 Pathway. Biochem. Biophys. Res. Commun. 2018, 499, 273–278. [Google Scholar] [CrossRef]
- Neurath, M.F. IL-23 in Inflammatory Bowel Diseases and Colon Cancer. Cytokine Growth Factor Rev. 2019, 45, 1–8. [Google Scholar] [CrossRef]
- Kobayashi, T.; Okamoto, S.; Hisamatsu, T.; Kamada, N.; Chinen, H.; Saito, R.; Kitazume, M.T.; Nakazawa, A.; Sugita, A.; Koganei, K.; et al. IL23 Differentially Regulates the Th1/Th17 Balance in Ulcerative Colitis and Crohn’s Disease. Gut 2008, 57, 1682–1689. [Google Scholar] [CrossRef]
- Liu, Z.; Yadav, P.K.; Xu, X.; Su, J.; Chen, C.; Tang, M.; Lin, H.; Yu, J.; Qian, J.; Yang, P.-C.; et al. The Increased Expression of IL-23 in Inflammatory Bowel Disease Promotes Intraepithelial and Lamina Propria Lymphocyte Inflammatory Responses and Cytotoxicity. J. Leukoc. Biol. 2011, 89, 597–606. [Google Scholar] [CrossRef]
- Spagnuolo, R.; Dattilo, V.; D’Antona, L.; Cosco, C.; Tallerico, R.; Ventura, V.; Conforti, F.; Camastra, C.; Mancina, R.M.; Catalogna, G.; et al. Deregulation of SGK1 in Ulcerative Colitis: A Paradoxical Relationship Between Immune Cells and Colonic Epithelial Cells. Inflamm. Bowel Dis. 2018, 24, 1967–1977. [Google Scholar] [CrossRef]
- Schmitt, H.; Billmeier, U.; Dieterich, W.; Rath, T.; Sonnewald, S.; Reid, S.; Hirschmann, S.; Hildner, K.; Waldner, M.J.; Mudter, J.; et al. Expansion of IL-23 Receptor Bearing TNFR2+ T Cells Is Associated with Molecular Resistance to Anti-TNF Therapy in Crohn’s Disease. Gut 2019, 68, 814–828. [Google Scholar] [CrossRef]
- Punkenburg, E.; Vogler, T.; Büttner, M.; Amann, K.; Waldner, M.; Atreya, R.; Abendroth, B.; Mudter, J.; Merkel, S.; Gallmeier, E.; et al. Batf-Dependent Th17 Cells Critically Regulate IL-23 Driven Colitis-Associated Colon Cancer. Gut 2016, 65, 1139–1150. [Google Scholar] [CrossRef]
- Duerr, R.H.; Taylor, K.D.; Brant, S.R.; Rioux, J.D.; Silverberg, M.S.; Daly, M.J.; Steinhart, A.H.; Abraham, C.; Regueiro, M.; Griffiths, A.; et al. A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science 2006, 314, 1461–1463. [Google Scholar] [CrossRef]
- Newman, W.G.; Zhang, Q.; Liu, X.; Amos, C.I.; Siminovitch, K.A. Genetic Variants in IL-23R and ATG16L1 Independently Predispose to Increased Susceptibility to Crohn’s Disease in a Canadian Population. J. Clin. Gastroenterol. 2009, 43, 444–447. [Google Scholar] [CrossRef]
- Turpin, W.; Goethel, A.; Bedrani, L.; Croitoru Mdcm, K. Determinants of IBD Heritability: Genes, Bugs, and More. Inflamm. Bowel Dis. 2018, 24, 1133–1148. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, E.S.; Moon, C.M.; Park, J.J.; Kim, T.I.; Kim, W.H.; Cheon, J.H. Genetic Polymorphisms of IL-23R and IL-17A and Novel Insights into Their Associations with Inflammatory Bowel Disease. Gut 2011, 60, 1527–1536. [Google Scholar] [CrossRef]
- Dubinsky, M.C.; Wang, D.; Picornell, Y.; Wrobel, I.; Katzir, L.; Quiros, A.; Dutridge, D.; Wahbeh, G.; Silber, G.; Bahar, R.; et al. IL-23 Receptor (IL-23R) Gene Protects against Pediatric Crohn’s Disease. Inflamm. Bowel Dis. 2007, 13, 511–515. [Google Scholar] [CrossRef]
- Hayatbakhsh, M.M.; Zahedi, M.J.; Shafiepour, M.; Nikpoor, A.R.; Mohammadi, M. IL-23 Receptor Gene Rs7517847 and Rs1004819 SNPs in Ulcerative Colitis. Iran. J. Immunol. 2012, 9, 128–135. [Google Scholar]
- Razali, N.N.; Raja Ali, R.A.; Muhammad Nawawi, K.N.; Yahaya, A.; Mokhtar, N.M. _targeted Sequencing of Cytokine-Induced PI3K-Related Genes in Ulcerative Colitis, Colorectal Cancer and Colitis-Associated Cancer. Int. J. Mol. Sci. 2022, 23, 11472. [Google Scholar] [CrossRef]
- Razali, N.N.; Raja Ali, R.A.; Muhammad Nawawi, K.N.; Yahaya, A.; Mohd Rathi, N.D.; Mokhtar, N.M. Roles of Phosphatidylinositol-3-Kinases Signaling Pathway in Inflammation-Related Cancer: Impact of Rs10889677 Variant and Buparlisib in Colitis-Associated Cancer. World J. Gastroenterol. 2023, 29, 5543–5556. [Google Scholar] [CrossRef]
- Cui, Y.; David, M.; Bouchareychas, L.; Rouquier, S.; Sajuthi, S.; Ayrault, M.; Navarin, C.; Lara, G.; Lafon, A.; Saviane, G.; et al. IL23R-Specific CAR Tregs for the Treatment of Crohn’s Disease. J. Crohns Colitis 2024, 18, jjae135. [Google Scholar] [CrossRef]
- Jacobse, J.; Pilat, J.M.; Li, J.; Brown, R.E.; Kwag, A.; Buendia, M.A.; Choksi, Y.A.; Washington, M.K.; Williams, C.S.; Markham, N.O.; et al. Distinct Roles for Interleukin-23 Receptor Signaling in Regulatory T Cells in Sporadic and Inflammation-Associated Carcinogenesis. Front. Oncol. 2023, 13, 1276743. [Google Scholar] [CrossRef]
- Sheng, S.; Zhang, J.; Ai, J.; Hao, X.; Luan, R. Aberrant Expression of IL-23/IL-23R in Patients with Breast Cancer and Its Clinical Significance. Mol. Med. Rep. 2018, 17, 4639–4644. [Google Scholar] [CrossRef]
- Tang, T.; Xue, H.; Cui, S.; Gong, Z.; Fei, Z.; Cheng, S.; Gui, C. Association of Interleukin-23 Receptor Gene Polymorphisms with Risk of Bladder Cancer in Chinese. Fam. Cancer 2014, 13, 619–623. [Google Scholar] [CrossRef]
- El-Gedamy, M.; El-Khayat, Z.; Abol-Enein, H.; El-Said, A.; El-Nahrery, E. Rs-10889677 Variant in Interleukin-23 Receptor May Contribute to Creating an Inflammatory Milieu More Susceptible to Bladder Tumourigenesis: Report and Meta-Analysis. Immunogenetics 2021, 73, 207–226. [Google Scholar] [CrossRef]
- Krajewski, W.; Karabon, L.; Partyka, A.; Tomkiewicz, A.; Poletajew, S.; Tukiendorf, A.; Kołodziej, A.; Zdrojowy, R. Polymorphisms of Genes Encoding Cytokines Predict the Risk of High-Grade Bladder Cancer and Outcomes of BCG Immunotherapy. Cent.-Eur. J. Immunol. 2020, 45, 37–47. [Google Scholar] [CrossRef]
- Heredia, J.E.; Sorenson, C.; Flanagan, S.; Nunez, V.; Jones, C.; Martzall, A.; Leong, L.; Martinez, A.P.; Scherl, A.; Brightbill, H.D.; et al. IL-23 Signaling Is Not an Important Driver of Liver Inflammation and Fibrosis in Murine Non-Alcoholic Steatohepatitis Models. PLoS ONE 2022, 17, e0274582. [Google Scholar] [CrossRef]
- Giuliani, N.; Airoldi, I. Novel Insights into the Role of Interleukin-27 and Interleukin-23 in Human Malignant and Normal Plasma Cells. Clin. Cancer Res. 2011, 17, 6963–6970. [Google Scholar] [CrossRef]
- Desmet, J.; Verstraete, K.; Bloch, Y.; Lorent, E.; Wen, Y.; Devreese, B.; Vandenbroucke, K.; Loverix, S.; Hettmann, T.; Deroo, S.; et al. Structural Basis of IL-23 Antagonism by an Alphabody Protein Scaffold. Nat. Commun. 2014, 5, 5237. [Google Scholar] [CrossRef]
- Quiniou, C.; Domínguez-Punaro, M.; Cloutier, F.; Erfani, A.; Ennaciri, J.; Sivanesan, D.; Sanchez, M.; Chognard, G.; Hou, X.; Rivera, J.C.; et al. Specific _targeting of the IL-23 Receptor, Using a Novel Small Peptide Noncompetitive Antagonist, Decreases the Inflammatory Response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1216–R1230. [Google Scholar] [CrossRef]
- Wight, A.E.; Sido, J.M.; Degryse, S.; Ao, L.; Nakagawa, H.; Qiu Vivian, Y.; Shen, X.; Oseghali, O.; Kim, H.-J.; Cantor, H. Antibody-Mediated Blockade of the IL23 Receptor Destabilizes Intratumoral Regulatory T Cells and Enhances Immunotherapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2200757119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Audia, S.; Brescia, C.; Dattilo, V.; Torchia, N.; Trapasso, F.; Amato, R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers 2025, 17, 55. https://doi.org/10.3390/cancers17010055
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers. 2025; 17(1):55. https://doi.org/10.3390/cancers17010055
Chicago/Turabian StyleAudia, Salvatore, Carolina Brescia, Vincenzo Dattilo, Naomi Torchia, Francesco Trapasso, and Rosario Amato. 2025. "The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development" Cancers 17, no. 1: 55. https://doi.org/10.3390/cancers17010055
APA StyleAudia, S., Brescia, C., Dattilo, V., Torchia, N., Trapasso, F., & Amato, R. (2025). The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers, 17(1), 55. https://doi.org/10.3390/cancers17010055