Dual Crop Coefficient Approach in Vitis vinifera L. cv. Loureiro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate and Soil Characterization
2.3. Experimental Design: Data Required to Apply SIMDualKc
2.4. Model Calibration and Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | DOY | CC_dens_Row | CC_dens_InterRow | CC_Height_Row (m) | CC_Height_intRow (m) |
---|---|---|---|---|---|
2019 | 80 | 0 | 0.50 | 0 | 0.05 |
91 | 0 | 0.50 | 0 | 0.08 | |
106 | 0 | 0.80 | 0 | 0.11 | |
109 | 0 | 0.90 | 0 | 0.18 | |
112 | 0 | 0.90 | 0 | 0.15 | |
127 | 0 | 0.90 | 0 | 0.20 | |
133 | 0 | 0.10 | 0 | 0.02 | |
142 | 0 | 0.80 | 0 | 0.20 | |
148 | 0 | 0.40 | 0 | 0.10 | |
154 | 0 | 0.40 | 0 | 0.20 | |
162 | 0 | 0.10 | 0 | 0.10 | |
166 | 0 | 0.70 | 0 | 0.15 | |
178 | 0 | 0.90 | 0 | 0.15 | |
186 | 0 | 0.90 | 0 | 0.25 | |
193 | 0 | 0.40 | 0 | 0.08 | |
200 | 0 | 0.50 | 0 | 0.12 | |
207 | 0 | 0.70 | 0 | 0.15 | |
214 | 0 | 0.70 | 0 | 0.15 | |
235 | 0 | 0.90 | 0 | 0.25 | |
248 | 0 | 0.10 | 0 | 0.05 | |
266 | 0 | 0.10 | 0 | 0.05 | |
2020 | 61 | 0.05 | 0.80 | 0.1 | 0.25 |
75 | 0.05 | 0.80 | 0.10 | 0.30 | |
132 | 0.05 | 0.80 | 0.05 | 0.10 | |
137 | 0.05 | 0.20 | 0.05 | 0.05 | |
143 | 0.05 | 0.50 | 0.05 | 0.10 | |
156 | 0.10 | 0.75 | 0.05 | 0.15 | |
170 | 0.15 | 0.85 | 0.05 | 0.20 | |
184 | 0.15 | 0.50 | 0.05 | 0.10 | |
198 | 0.15 | 0.65 | 0.05 | 0.15 | |
206 | 0.15 | 0.85 | 0.05 | 0.25 | |
219 | 0.10 | 0.40 | 0.05 | 0.10 | |
233 | 0.05 | 0.20 | 0.05 | 0.10 | |
241 | 0.05 | 0.40 | 0.05 | 0.10 | |
253 | 0.05 | 0.40 | 0.05 | 0.10 |
References
- Oliveira, A.F.; Mameli, M.G.; Cascio, M.L.; Sirca, C.; Satta, D. An Index for User-Friendly Proximal Detection of Water Requirements to Optimized Irrigation Management in Vineyards. Agronomy 2021, 11, 323. [Google Scholar] [CrossRef]
- Kim, S.; Meki, M.N.; Kim, S.; Kiniry, J.R. Crop modeling application to improve irrigation efficiency in year-round vegetable production in the texaswinter garden region. Agronomy 2020, 10, 1525. [Google Scholar] [CrossRef]
- Nesheim, I.; Barkved, L. The suitability of the ecosystem services framework for guiding benefit assessments in human-modified landscapes exemplified by regulated watersheds-Implications for a sustainable approach. Sustainability 2019, 11, 1821. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.M.F.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. IntechOpen 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D. Crop Evapotranspiration. Guide- lines for Computing Crop Water Requirements Paper 56. FAO Irrig. Drain. 1998, 300, D05109. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.J.; Allen, R.G. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 241, 106197. [Google Scholar] [CrossRef]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef] [Green Version]
- Paço, T.A.; Paredes, P.; Pereira, L.S.; Silvestre, J.; Santos, F.L. Crop coefficients and transpiration of a super intensive Arbequina olive orchard using the dual Kc approach and the Kcb computation with the fraction of ground cover and height. Water 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- López-Urrea, R.; Sánchez, J.M.; de la Cruz, F.; González-Piqueras, J.; Chávez, J.L. Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola. Agric. Water Manag. 2020, 239, 106260. [Google Scholar] [CrossRef]
- López-Urrea, R.; Montoro, A.; Mañas, F.; López-Fuster, P.; Fereres, E. Evapotranspiration and crop coefficients from lysimeter measurements of mature “Tempranillo” wine grapes. Agric. Water Manag. 2012, 112, 13–20. [Google Scholar] [CrossRef]
- Rallo, G.; Provenzano, G.; Castellini, M.; Sirera, À.P. Application of EMI and FDR sensors to assess the fraction of transpirable soil water over an olive grove. Water 2018, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, G.; Rallo, G.; Ghazouani, H. Assessing Field and Laboratory Calibration Protocols for the Diviner 2000 Probe in a Range of Soils with Different Textures. J. Irrig. Drain. Eng. 2016, 142, 04015040. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, S.; Feng, X.; Niu, Y. Analysis and prediction of vegetation dynamics under the background of climate change in Xinjiang, China. PeerJ 2020, 8, e8282. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.L.; Costa, J.M.; Chaves, M.M. Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Gattullo, C.E.; Mezzapesa, G.N.; Stellacci, A.M.; Ferrara, G.; Occhiogrosso, G.; Petrelli, G.; Castellini, M.; Spagnuolo, M. Cover crop for a sustainable viticulture: Effects on soil properties and table grape production. Agronomy 2020, 10, 1334. [Google Scholar] [CrossRef]
- Pou, A.; Gulías, J.; Moreno, M.; Tomás, M.; Medrano, H.; Cifre, J. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. J. Int. Des Sci. La Vigne Du Vin 2011, 45, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Sivcev, B.; Sivcev, I.; Rankovic-Vasic, Z. Plant protection products in organic grapevine growing. J. Agric. Sci. Belgrade 2010, 55, 103–122. [Google Scholar] [CrossRef]
- Fandiño, M.; Cancela, J.J.; Rey, B.J.; Martínez, E.M.; Rosa, R.G.; Pereira, L.S. Using the dual-K c approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Manag. 2012, 112, 75–87. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Raes, D. Book I: Understanding AquaCrop; FAO: Rome, Italy, 2017; ISBN 9789251093900. [Google Scholar]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Rolim, J.; Godinho, P.; Sequeira, B.; Paredes, P.; Pereira, L.S. Assessing the SIMDualKc model for irrigation scheduling simulation in Mediterranean environments. Water Sav. Mediterr. Agric. Futur. Res. Needs 2007, 1, 49–61. [Google Scholar]
- Fandiño, M.; Olmedo, J.L.; Martínez, E.M.; Valladares, J.; Paredes, P.; Rey, B.J.; Mota, M.; Cancela, J.J.; Pereira, L.S. Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus Lupulus), and relations of transpiration with hops yield and alpha-acids. Ind. Crops Prod. 2015, 77, 204–217. [Google Scholar] [CrossRef]
- Cancela, J.J.; Fandiño, M.; Rey, B.J.; Martínez, E.M. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric. Water Manag. 2015, 151, 52–63. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction Accuracy for Projectwide Evapotranspiration Using Crop Coefficients and Reference Evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Jovanovic, N. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 248, 106697. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Climate factors driving wine production in the Portuguese Minho region. Agric. For. Meteorol. 2014, 185, 26–36. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Alonso, J.; Rodrigues, A.S.; Araújo-Paredes, C.; Mendes, S.; Valín, M.I. Agro-ecological terroir units in the North West Iberian Peninsula wine regions. Appl. Geogr. 2019, 107, 51–62. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 4th ed.; University of California Press: Berkley, CA, USA, 1974; ISBN 9780520025912. [Google Scholar]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus L’académie D’agriculture Fr. 1978, 64, 1117–1126. [Google Scholar]
- Tonietto, J. Les Macroclimats Viticoles Mondiaux et L’influence du Mésoclimat sur la Typicité de la Syrah et du Muscat de Hambourg dans le Sud de la France: Méthodologie de Caráctérisation; Ecole Nationale Superieure Agronomique De Montpellier: E.N.S.A: Montpellier, France, 1999. [Google Scholar]
- Seljaninov, G.T. Agroclimatic Map of the World; Hydrometeoizdat Publishing House: Leningrad, Russia, 1966. [Google Scholar]
- Branas, J.; Bernon, G.; Levadoux, L. Eléments de Viticulture Générale; Imp. Dehan: Bordeaux, France, 1946. [Google Scholar]
- WRB World Reference Base for Soil Resources. World Soil Resources Reports 106; FAO: Rome, Italy, 2014; ISBN 9789251083697. [Google Scholar]
- Evett, S.R.; Stone, K.C.; Schwartz, R.C.; O’Shaughnessy, S.A.; Colaizzi, P.D.; Anderson, S.K.; Anderson, D.J. Resolving discrepancies between laboratory-determined field capacity values and field water content observations: Implications for irrigation management. Irrig. Sci. 2019, 37, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation. Agric. Water Manag. 2006, 84, 27–40. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Baggiolini, M.; Lorenz, H.; Bleiholder, H.; T., V.D.B.; Stauss, R.; Weber, E.; Witzenberger, A.; Hack, H.; Bleiholder, H.; Buhr, L.; et al. Stades phénologiques repères de la vigne. Arboric. Hortic. 1993, 44, 7–9. [Google Scholar]
- Paredes, P.; Rodrigues, G.J.; Petry, M.T.; Severo, P.O.; Carlesso, R.; Pereira, L.S. Evapotranspiration partition and crop coefficients of Tifton 85 bermudagrass as affected by the frequency of cuttings. Application of the FAO56 dual Kc model. Water 2018, 10, 558. [Google Scholar] [CrossRef] [Green Version]
- Cancela, J.J.; Trigo-Córdoba, E.; Martínez, E.M.; Rey, B.J.; Bouzas-Cid, Y.; Fandiño, M.; Mirás-Avalos, J.M. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manag. J. 2016, 170, 99–109. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Walker, R.R.; Guy, J.R. Partitioning of seasonal evapotranspiration from a commercial furrow-irrigated Sultana vineyard. Irrig. Sci. 1997, 18, 45–54. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Lakso, A.N.; Piccioni, R.M. Grapevine cv. “Riesling” water use in the northeastern United States. Irrig. Sci. 2009, 27, 253–262. [Google Scholar] [CrossRef]
Index and Abbreviation | Equation | Source | Results | ||
---|---|---|---|---|---|
2019 | 2020 | ||||
Winkler index (WI) | (4) | [35] | 1771 | 2124 | |
Huglin index (HI) | (5) | [36] | 2847 | 2937 | |
Cool night index (CI) | (6) | [37] | 13.22 | 13.05 | |
Seljaninov index (SI) | (7) | [38] | 0.27 | 0.29 | |
Branas index (BI) | (8) | [39] | 18,654 | 11,677 |
Crop Growth Stages | 2019 | 2020 | ||||
---|---|---|---|---|---|---|
Dates | H (m) | fc | Dates | H (m) | fc | |
Initiation | 21 March | 1.0 | 0.01 | 1 March | 1.0 | 0.01 |
Start rapid growth | 26 March | 1.4 | 0.05 | 28 March | 1.2 | 0.05 |
Start midseason | 6 June | 2.0 | 0.30 | 22 June | 2.0 | 0.30 |
Start maturity | 2 September | 2.4 | 0.40 | 20 August | 2.4 | 0.40 |
Harvesting | 23 September | 2.4 | 0.40 | 9 September | 2.4 | 0.40 |
Parameters | Standard | Source | Calibrated |
---|---|---|---|
Kcb full ini (dimensionless) | 0.20 | [29] | 0.33 |
Kcb full mid (dimensionless) | 0.80 | 0.684 | |
Kcb full end (dimensionless) | 0.60 | 0.54 | |
p ini (dimensionless) | 0.45 | [6] | 0.45 |
p mid (dimensionless) | 0.45 | 0.54 | |
p end (dimensionless) | 0.45 | 0.45 |
Crop Growth Stages | 2019 | |||||||||
Dates | Kcb gcover | Kcb crop | Kcb (gcover+crop) act | Ke | Prec. (mm) | |||||
R | DI | FI | R | DI | FI | |||||
Initial | 21 May/25 May | 0.26 | 0.00 | 0.26 | 0.26 | 0.26 | 0.93 | 0.93 | 0.93 | 0 |
Rapid growth | 26 May/5 June | 0.24 | 0.13 | 0.37 | 0.37 | 0.37 | 0.40 | 0.40 | 0.42 | 238 |
Midseason | 6 June/1 September | 0.27 | 0.21 | 0.45 | 0.47 | 0.48 | 0.22 | 0.23 | 0.27 | 131 |
End season | 2 September/23 September | 0.15 | 0.27 | 0.25 | 0.31 | 0.42 | 0.10 | 0.10 | 0.10 | 25 |
2020 | ||||||||||
Dates | Kcb gcover | Kcb crop | Kcb (gcover+crop) act | Ke | Prec. (mm) | |||||
R | DI | FI | R | DI | FI | |||||
Initial | 1 May/27 May | 0.27 | 0.00 | 0.27 | 0.27 | 0.27 | 0.83 | 0.83 | 0.83 | 122 |
Rapid growth | 28 May/21 June | 0.25 | 0.09 | 0.33 | 0.33 | 0.33 | 0.52 | 0.52 | 0.52 | 206 |
Midseason | 22 June/19 August | 0.20 | 0.15 | 0.27 | 0.32 | 0.35 | 0.04 | 0.08 | 0.10 | 28 |
End season | 20 August/9 September | 0.17 | 0.22 | 0.21 | 0.30 | 0.39 | 0.19 | 0.20 | 0.21 | 0 |
Average 2019–2020 | 0.23 | 0.13 | 0.30 | 0.38 | 0.40 | 0.40 | 0.41 | 0.42 | 375.1 |
Year | 2019 | 2020 | |||||
---|---|---|---|---|---|---|---|
Treatment | R | DI | FI | R | DI | FI | |
Linear regression | b | 0.99 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 |
r2 | 0.97 | 0.96 | 0.92 | 0.99 | 0.98 | 0.93 | |
Goodness-of-fit indicators | EF | 0.96 | 0.92 | 0.93 | 0.98 | 0.97 | 0.93 |
RMSE (mm) | 2.89 | 3.67 | 3.81 | 2.87 | 3.12 | 3.48 | |
NRMSE (%) | 2.02 | 2.46 | 1.96 | 2.01 | 2.05 | 1.78 | |
PBIAS (%) | 0.57 | 1.28 | 0.79 | −0.34 | 0.91 | 0.13 | |
dIA | 0.99 | 0.98 | 0.98 | 1.00 | 0.99 | 0.98 | |
AAE (mm) | 2.26 | 2.92 | 2.66 | 2.21 | 2.69 | 2.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.P.; Valín, M.I.; Mendes, S.; Araujo-Paredes, C.; Cancela, J.J. Dual Crop Coefficient Approach in Vitis vinifera L. cv. Loureiro. Agronomy 2021, 11, 2062. https://doi.org/10.3390/agronomy11102062
Silva SP, Valín MI, Mendes S, Araujo-Paredes C, Cancela JJ. Dual Crop Coefficient Approach in Vitis vinifera L. cv. Loureiro. Agronomy. 2021; 11(10):2062. https://doi.org/10.3390/agronomy11102062
Chicago/Turabian StyleSilva, Simão P., M. Isabel Valín, Susana Mendes, Claúdio Araujo-Paredes, and Javier J. Cancela. 2021. "Dual Crop Coefficient Approach in Vitis vinifera L. cv. Loureiro" Agronomy 11, no. 10: 2062. https://doi.org/10.3390/agronomy11102062
APA StyleSilva, S. P., Valín, M. I., Mendes, S., Araujo-Paredes, C., & Cancela, J. J. (2021). Dual Crop Coefficient Approach in Vitis vinifera L. cv. Loureiro. Agronomy, 11(10), 2062. https://doi.org/10.3390/agronomy11102062