Oncolytic Herpes Simplex Virus-Based Therapies for Cancer
Abstract
:1. Introduction
2. Mechanism of Oncolytic Herpes Simplex Virus-1 Antitumor Activity
2.1. Tumor-Selective Replication
2.2. Activation of Innate Immune Responses
2.3. Activation of Adaptive Immune Responses
3. oHSV Derivatives in Pre-Clinical Models
4. oHSV Route of Delivery
4.1. Systemic Versus Local Delivery
4.2. Mesenchymal Stem Cells as OV Carrier Cells
5. Updates on Recent Preclinical and Clinical oHSV Immunotherapies
5.1. Talimogene Laherparepvec (T-VEC)
5.2. Clinical Trials of oHSV
6. Limitations
7. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Ma, X.; Yu, H. Global Burden of Cancer. Yale J. Biol. Med. 2006, 79, 85–94. [Google Scholar]
- Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Vinals, F.; Capella, G. Recent Advances in Cancer Therapy: An Overview. Curr. Pharm. Des. 2010, 16, 3–10. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef]
- Mavani, H.J.; Wick, J.Y. Oncology’s Trojan Horse: Using Viruses to Battle Cancer. Consult. Pharm. 2016, 31, 676–684. [Google Scholar] [CrossRef]
- Scholl, S.M.; Balloul, J.M.; Le Goc, G.; Bizouarne, N.; Schatz, C.; Kieny, M.P.; von Mensdorff-Pouilly, S.; Vincent-Salomon, A.; Deneux, L.; Tartour, E.; et al. Recombinant Vaccinia Virus Encoding Human MUC1 and IL2 as Immunotherapy in Patients with Breast Cancer. J. Immunother. 2000, 23, 570–580. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef] [PubMed]
- Lawler, S.E.; Speranza, M.-C.; Cho, C.-F.; Chiocca, E.A. Oncolytic Viruses in Cancer Treatment: A Review. JAMA Oncol. 2017, 3, 841–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, S.J.; Mostafa, H.H.; Morrison, L.A.; Davido, D.J. Genome Sequence of Herpes Simplex Virus 1 Strain KOS. J. Virol. 2012, 86, 6371–6372. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Nemunaitis, J. Herpes Simplex Virus 1 (HSV-1) for Cancer Treatment. Cancer Gene Ther. 2006, 13, 975–992. [Google Scholar] [CrossRef] [Green Version]
- Geevarghese, S.K.; Geller, D.A.; de Haan, H.A.; Horer, M.; Knoll, A.E.; Mescheder, A.; Nemunaitis, J.; Reid, T.R.; Sze, D.Y.; Tanabe, K.K.; et al. Phase I/II Study of Oncolytic Herpes Simplex Virus NV1020 in Patients with Extensively Pretreated Refractory Colorectal Cancer Metastatic to the Liver. Hum. Gene Ther. 2010, 21, 1119–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markert, J.M.; Razdan, S.N.; Kuo, H.-C.; Cantor, A.; Knoll, A.; Karrasch, M.; Nabors, L.B.; Markiewicz, M.; Agee, B.S.; Coleman, J.M.; et al. A Phase 1 Trial of Oncolytic HSV-1, G207, given in Combination with Radiation for Recurrent GBM Demonstrates Safety and Radiographic Responses. Mol. Ther. 2014, 22, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.; Silk, A.W.; Kane, M.P.; Kaufman, H.L. Into the Clinic: Talimogene Laherparepvec (T-VEC), a First-in-Class Intratumoral Oncolytic Viral Therapy. J. Immunother. Cancer 2016, 4, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streby, K.A.; Geller, J.I.; Currier, M.A.; Warren, P.S.; Racadio, J.M.; Towbin, A.J.; Vaughan, M.R.; Triplet, M.; Ott-Napier, K.; Dishman, D.J.; et al. Intratumoral Injection of HSV1716, an Oncolytic Herpes Virus, Is Safe and Shows Evidence of Immune Response and Viral Replication in Young Cancer Patients. Clin. Cancer Res. 2017, 23, 3566–3574. [Google Scholar] [CrossRef] [Green Version]
- Toda, M.; Martuza, R.L.; Rabkin, S.D. Tumor Growth Inhibition by Intratumoral Inoculation of Defective Herpes Simplex Virus Vectors Expressing Granulocyte-Macrophage Colony-Stimulating Factor. Mol. Ther. 2000, 2, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.L.; Robinson, M.; Han, Z.-Q.; Branston, R.H.; English, C.; Reay, P.; McGrath, Y.; Thomas, S.K.; Thornton, M.; Bullock, P.; et al. ICP34.5 Deleted Herpes Simplex Virus with Enhanced Oncolytic, Immune Stimulating, and Anti-Tumour Properties. Gene Ther. 2003, 10, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, H.L.; Kim, D.W.; DeRaffele, G.; Mitcham, J.; Coffin, R.S.; Kim-Schulze, S. Local and Distant Immunity Induced by Intralesional Vaccination with an Oncolytic Herpes Virus Encoding GM-CSF in Patients with Stage IIIc and IV Melanoma. Ann. Surg. Oncol. 2010, 17, 718–730. [Google Scholar] [CrossRef]
- Hu, J.C.C.; Coffin, R.S.; Davis, C.J.; Graham, N.J.; Groves, N.; Guest, P.J.; Harrington, K.J.; James, N.D.; Love, C.A.; McNeish, I.; et al. A Phase I Study of OncoVEXGM-CSF, a Second-Generation Oncolytic Herpes Simplex Virus Expressing Granulocyte Macrophage Colony-Stimulating Factor. Clin. Cancer Res. 2006, 12, 6737–6747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conry, R.M.; Westbrook, B.; McKee, S.; Norwood, T.G. Talimogene Laherparepvec: First in Class Oncolytic Virotherapy. Hum. Vaccines Immunother. 2018, 14, 839–846. [Google Scholar] [CrossRef]
- Peters, C.; Rabkin, S.D. Designing Herpes Viruses as Oncolytics. Mol. Ther. Oncolytics 2015, 2, 15010. [Google Scholar] [CrossRef]
- Yin, J.; Markert, J.M.; Leavenworth, J.W. Modulation of the Intratumoral Immune Landscape by Oncolytic Herpes Simplex Virus Virotherapy. Front. Oncol. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Gross, M.; Roizman, B. The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 1997, 94, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Aghi, M.; Visted, T.; DePinho, R.A.; Chiocca, E.A. Oncolytic Herpes Virus with Defective ICP6 Specifically Replicates in Quiescent Cells with Homozygous Genetic Mutations in P16. Oncogene 2008, 27, 4249–4254. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.; Jugovic, P.; York, I.; Russ, G.; Bennink, J.; Yewdell, J.; Ploegh, H.; Johnson, D. Herpes Simplex Virus Turns off the TAP to Evade Host Immunity. Nature 1995, 375, 411–415. [Google Scholar] [CrossRef]
- Orr, M.T.; Edelmann, K.H.; Vieira, J.; Corey, L.; Raulet, D.H.; Wilson, C.B. Inhibition of MHC Class I Is a Virulence Factor in Herpes Simplex Virus Infection of Mice. PLoS Pathog. 2005, 1, 62–71. [Google Scholar] [CrossRef]
- Todo, T.; Martuza, R.L.; Rabkin, S.D.; Johnson, P.A. Oncolytic Herpes Simplex Virus Vector with Enhanced MHC Class I Presentation and Tumor Cell Killing. Proc. Natl. Acad. Sci. USA 2001, 98, 6396–6401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining Oncolytic Viruses with Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Front. Immunol. 2020, 11, 683. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Quintanilla, J.; Seah, I.; Chua, M.; Shah, K. Oncolytic Viruses: Overcoming Translational Challenges. J. Clin. Investig. 2019, 129, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating Oncolytic Viruses in Combination Cancer Immunotherapy. Nat. Rev. Immunol. 2018, 18, 1–16. [Google Scholar] [CrossRef]
- Takasu, A.; Masui, A.; Hamada, M.; Imai, T.; Iwai, S.; Yura, Y. Immunogenic Cell Death by Oncolytic Herpes Simplex Virus Type 1 in Squamous Cell Carcinoma Cells. Cancer Gene Ther. 2016, 23, 107–113. [Google Scholar] [CrossRef]
- Woo, S.-R.; Fuertes, M.B.; Corrales, L.; Spranger, S.; Furdyna, M.J.; Leung, M.Y.K.; Duggan, R.; Wang, Y.; Barber, G.N.; Fitzgerald, K.A.; et al. STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity 2014, 41, 830–842. [Google Scholar] [CrossRef] [Green Version]
- Joffre, O.P.; Segura, E.; Savina, A.; Amigorena, S. Cross-Presentation by Dendritic Cells. Nat. Rev. Immunol. 2012, 12, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Bevan, M.J. CD8(+) T Cells: Foot Soldiers of the Immune System. Immunity 2011, 35, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellone, M.; Calcinotto, A. Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes. Front. Oncol. 2013, 3, 231. [Google Scholar] [CrossRef] [Green Version]
- Gujar, S.A.; Lee, P.W.K. Oncolytic Virus-Mediated Reversal of Impaired Tumor Antigen Presentation. Front. Oncol. 2014, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Verweij, M.C.; Horst, D.; Griffin, B.D.; Luteijn, R.D.; Davison, A.J.; Ressing, M.E.; Wiertz, E.J.H.J. Viral Inhibition of the Transporter Associated with Antigen Processing (TAP): A Striking Example of Functional Convergent Evolution. PLoS Pathog. 2015, 11, e1004743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benencia, F.; Courrèges, M.C.; Fraser, N.W.; Coukos, G. Herpes Virus Oncolytic Therapy Reverses Tumor Immune Dysfunction and Facilitates Tumor Antigen Presentation. Cancer Biol. Ther. 2008, 7, 1194–1205. [Google Scholar] [CrossRef] [Green Version]
- Totsch, S.K.; Schlappi, C.; Kang, K.-D.; Ishizuka, A.S.; Lynn, G.M.; Fox, B.; Beierle, E.A.; Whitley, R.J.; Markert, J.M.; Gillespie, G.Y.; et al. Oncolytic Herpes Simplex Virus Immunotherapy for Brain Tumors: Current Pitfalls and Emerging Strategies to Overcome Therapeutic Resistance. Oncogene 2019, 38, 6159–6171. [Google Scholar] [CrossRef]
- Speranza, M.C.; Kasai, K.; Lawler, S.E. Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR J. 2016, 57, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Redaelli, M.; Franceschi, V.; Capocefalo, A.; Davella, D.; Denaro, L.; Cavirani, S.; Mucignat-Caretta, C.; Donofrio, G. Herpes Simplex Virus Type 1 Thymidine Kinasearmed Bovine Herpesvirus Type 4based Vector Displays Enhanced Oncolytic Properties in Immunocompetent Orthotopic Syngenic Mouse and Rat Glioma Models. Neuro-Oncology 2012, 14, 288–301. [Google Scholar] [CrossRef]
- Duebgen, M.; Martinez-Quintanilla, J.; Tamura, K.; Hingtgen, S.; Redjal, N.; Wakimoto, H.; Shah, K. Stem Cells Loaded with Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. J. Natl. Cancer Inst. 2014, 106, dju090. [Google Scholar] [CrossRef]
- Tamura, K.; Wakimoto, H.; Agarwal, A.S.; Rabkin, S.D.; Bhere, D.; Martuza, R.L.; Kuroda, T.; Kasmieh, R.; Shah, K. Multimechanistic Tumor _targeted Oncolytic Virus Overcomes Resistance in Brain Tumors. Mol. Ther. 2013, 21, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.; Chung, R.Y.; Antonio Chiocca, E. An Oncolytic Viral Mutant That Delivers the CYP2B1 Transgene and Augments Cyclophosphamide Chemotherapy. Nat. Biotechnol. 1998, 16, 444–448. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Nakamura, H.; Mullen, J.T.; Kasuya, H.; Yoon, S.S.; Chandrasekhar, S.; Chiocca, E.A.; Tanabe, K.K. Prodrug Bioactivation and Oncolysis of Diffuse Liver Metastases by a Herpes Simplex Virus 1 Mutant That Expresses the CYP2B1 Transgene. Cancer 2002, 95, 1171–1181. [Google Scholar] [CrossRef]
- Currier, M.A.; Gillespie, R.A.; Sawtell, N.M.; Mahller, Y.Y.; Stroup, G.; Collins, M.H.; Kambara, H.; Chiocca, E.A.; Cripe, T.P. Efficacy and Safety of the Oncolytic Herpes Simplex Virus RRp450 Alone and Combined with Cyclophosphamide. Mol. Ther. 2008, 16, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Kambara, H.; Okano, H.; Chiocca, E.A.; Saeki, Y. An Oncolytic HSV-1 Mutant Expressing ICP34.5 under Control of a Nestin Promoter Increases Survival of Animals Even When Symptomatic from a Brain Tumor. Cancer Res. 2005, 65, 2832–2839. [Google Scholar] [CrossRef] [Green Version]
- Mineta, T.; Rabkin, S.D.; Yazaki, T.; Hunter, W.D.; Martuza, R.L. Attenuated Multi-Mutated Herpes Simplex Virus-1 for the Treatment of Malignant Gliomas. Nat. Med. 1995, 1, 938–943. [Google Scholar] [CrossRef]
- Bradley, J.D.; Kataoka, Y.; Advani, S.; Chung, S.M.; Arani, R.B.; Gillespie, G.Y.; Whitley, R.J.; Markert, J.M.; Roizman, B.; Weichselbaum, R.R. Ionizing Radiation Improves Survival in Mice Bearing Intracranial High-Grade Gliomas Injected with Genetically Modified Herpes Simplex Virus. Clin. Cancer Res. 1999, 5, 1517–1522. [Google Scholar]
- Blank, S.V.; Rubin, S.C.; Coukos, G.; Amin, K.M.; Albelda, S.M.; Molnar-Kimber, K.L. Replication-Selective Herpes Simplex Virus Type 1 Mutant Therapy of Cervical Cancer Is Enhanced by Low-Dose Radiation. Hum. Gene Ther. 2002, 13, 627–639. [Google Scholar] [CrossRef]
- Nigim, F.; Esaki, S.I.; Hood, M.; Lelic, N.; James, M.F.; Ramesh, V.; Stemmer-Rachamimov, A.; Cahill, D.P.; Brastianos, P.K.; Rabkin, S.D.; et al. A New Patient-Derived Orthotopic Malignant Meningioma Model Treated with Oncolytic Herpes Simplex Virus. Neuro-Oncology 2016, 18, 1278–1287. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, K.; Iwai, M.; Yajima, S.; Tanaka, M.; Yanagihara, K.; Seto, Y.; Todo, T. Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. Mol. Ther. Oncolytics 2020, 17, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, L.; Zeng, W.; Hu, P.; Zeng, M.; Rabkin, S.D.; Liu, R. Treatment of Human Hepatocellular Carcinoma by the Oncolytic Herpes Simplex Virus G47delta. Cancer Cell Int. 2014, 14, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Bryan, S.M.; Mathis, J.M. Oncolytic Virotherapy for Breast Cancer Treatment. Curr. Gene Ther. 2018, 18, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.N.; Xu, L.H.; Zeng, W.G.; Hu, P.; Rabkin, S.D.; Liu, R.R. Treatment of Human Thyroid Carcinoma Cells with the G47delta Oncolytic Herpes Simplex Virus. Asian Pac. J. Cancer Prev. 2015, 16, 1241–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, S.; Fukuhara, H.; Homma, Y.; Todo, T. Current Status of Clinical Trials Assessing Oncolytic Virus Therapy for Urological Cancers. Int. J. Urol. 2017, 24, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.D.; Meza-Perez, S.; Bevis, K.S.; Randall, T.D.; Gillespie, G.Y.; Langford, C.; Alvarez, R.D. IL-12 Expressing Oncolytic Herpes Simplex Virus Promotes Anti-Tumor Activity and Immunologic Control of Metastatic Ovarian Cancer in Mice. J. Ovarian Res. 2016, 9, 70. [Google Scholar] [CrossRef]
- Ghouse, S.M.; Nguyen, H.M.; Bommareddy, P.K.; Guz-Montgomery, K.; Saha, D. Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front. Oncol. 2020, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Studebaker, A.W.; Hutzen, B.J.; Pierson, C.R.; Haworth, K.B.; Cripe, T.P.; Jackson, E.M.; Leonard, J.R. Oncolytic Herpes Virus RRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors. Mol. Ther. Oncolytics 2017, 6, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Chiocca, E.A.; Nakashima, H.; Kasai, K.; Fernandez, S.A.; Oglesbee, M. Preclinical Toxicology of RQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol. Ther. Methods Clin. Dev. 2020, 17, 871–893. [Google Scholar] [CrossRef]
- Wang, J.; Hu, P.; Zeng, M.; Rabkin, S.D.; Liu, R. Oncolytic Herpes Simplex Virus Treatment of Metastatic Breast Cancer. Int. J. Oncol. 2012, 40, 757–763. [Google Scholar] [CrossRef]
- Ma, W.; He, H.; Wang, H. Oncolytic Herpes Simplex Virus and Immunotherapy. BMC Immunol. 2018, 19, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, J.; Roy, D. Cell Carriers for Oncolytic Viruses: Current Challenges and Future Directions. Oncolytic Virother. 2013, 2, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, M.S.; Lemoine, N.R.; Wang, Y. Systemic Delivery of Oncolytic Viruses: Hopes and Hurdles. Adv. Virol. 2012, 2012, 805629. [Google Scholar] [CrossRef] [PubMed]
- Herrlinger, U.; Woiciechowski, C.; Sena-Esteves, M.; Aboody, K.S.; Jacobs, A.H.; Rainov, N.G.; Snyder, E.Y.; Breakefield, X.O. Neural Precursor Cells for Delivery of Replication-Conditional HSV-1 Vectors to Intracerebral Gliomas. Mol. Ther. 2000, 1, 347–357. [Google Scholar] [CrossRef]
- Kanzaki, A.; Kasuya, H.; Yamamura, K.; Sahin, T.T.; Nomura, N.; Shikano, T.; Shirota, T.; Tan, G.; Fukuda, S.; Misawa, M.; et al. Efficacy of Oncolytic Herpes Simplex Virus Adsorbed onto Antigen-Specific Lymphocytes. Cancer Gene Ther. 2012, 19, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Parker Kerrigan, B.C.; Shimizu, Y.; Andreeff, M.; Lang, F.F. Mesenchymal Stromal Cells for the Delivery of Oncolytic Viruses in Gliomas. Cytotherapy 2017, 19, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Sonabend, A.M.; Ulasov, I.V.; Tyler, M.A.; Rivera, A.A.; Mathis, J.M.; Lesniak, M.S. Mesenchymal Stem Cells Effectively Deliver an Oncolytic Adenovirus to Intracranial Glioma. Stem Cells 2008, 26, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Kidd, S.; Spaeth, E.; Dembinski, J.L.; Dietrich, M.; Watson, K.; Klopp, A.; Battula, V.L.; Weil, M.; Andreeff, M.; Marini, F.C. Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using in Vivo Bioluminescent Imaging. Stem Cells 2009, 27, 2614–2623. [Google Scholar] [CrossRef] [Green Version]
- Kazimirsky, G.; Jiang, W.; Slavin, S.; Ziv-Av, A.; Brodie, C. Mesenchymal Stem Cells Enhance the Oncolytic Effect of Newcastle Disease Virus in Glioma Cells and Glioma Stem Cells via the Secretion of TRAIL. Stem Cell Res. Ther. 2016, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Herberts, C.A.; Kwa, M.S.G.; Hermsen, H.P.H. Risk Factors in the Development of Stem Cell Therapy. J. Transl. Med. 2011, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Chulpanova, D.S.; Kitaeva, K.V.; Tazetdinova, L.G.; James, V.; Rizvanov, A.A.; Solovyeva, V.V. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-Tumor Treatment. Front Pharmacol. 2018, 9, 259. [Google Scholar] [CrossRef]
- Hadryś, A.; Sochanik, A.; McFadden, G.; Jazowiecka-Rakus, J. Mesenchymal Stem Cells as Carriers for Systemic Delivery of Oncolytic Viruses. Eur. J. Pharmacol. 2020, 874, 172991. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, T.; Särkioja, M.; Lehenkari, P.; Miettinen, S.; Ylikomi, T.; Suuronen, R.; Desmond, R.A.; Kanerva, A.; Hemminki, A. Human Mesenchymal Stem Cells Lack Tumor Tropism but Enhance the Antitumor Activity of Oncolytic Adenoviruses in Orthotopic Lung and Breast Tumors. Hum. Gene Ther. 2007, 18, 627–641. [Google Scholar] [CrossRef]
- Ong, H.-T.; Federspiel, M.J.; Guo, C.M.; Ooi, L.L.; Russell, S.J.; Peng, K.-W.; Hui, K.M. Systemically Delivered Measles Virus-Infected Mesenchymal Stem Cells Can Evade Host Immunity to Inhibit Liver Cancer Growth. J. Hepatol. 2013, 59, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Seah, I.; Bougazzoul, O.; Choi, G.; Meeth, K.; Bosenberg, M.W.; Wakimoto, H.; Fisher, D.; Shah, K. Stem Cell-Released Oncolytic Herpes Simplex Virus Has Therapeutic Efficacy in Brain Metastatic Melanomas. Proc. Natl. Acad. Sci. USA 2017, 114, E6157–E6165. [Google Scholar] [CrossRef] [Green Version]
- Leoni, V.; Gatta, V.; Palladini, A.; Nicoletti, G.; Ranieri, D.; Dall’Ora, M.; Grosso, V.; Rossi, M.; Alviano, F.; Bonsi, L.; et al. Systemic Delivery of HER2-Re_targeted Oncolytic-HSV By Mesenchymal Stromal Cells Protects From Lung And Brain Metastases. Onco_target 2015, 6, 34774–34787. [Google Scholar] [CrossRef] [Green Version]
- Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. Experimental Therapy of Human Glioma by Means of a Genetically Engineered Virus Mutant. Science 1991, 252, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Kanai, R.; Zaupa, C.; Sgubin, D.; Antoszczyk, S.J.; Martuza, R.L.; Wakimoto, H.; Rabkin, S.D. Effect of Γ34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. J. Virol. 2012, 86, 4420–4431. [Google Scholar] [CrossRef] [Green Version]
- Israyelyan, A.; Chouljenko, V.N.; Baghian, A.; David, A.T.; Kearney, M.T.; Kousoulas, K.G. Herpes Simplex Virus Type-1(HSV-1) Oncolytic and Highly Fusogenic Mutants Carrying the NV1020 Genomic Deletion Effectively Inhibit Primary and Metastatic Tumors in Mice. Virol. J. 2008, 5, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Jin, J.; Wu, Z.; Hu, S.; Hu, H.; Ning, Z.; Li, Y.; Dong, Y.; Zou, J.; Mao, Z.; et al. Stability and Anti-Tumor Effect of Oncolytic Herpes Simplex Virus Type 2. Onco_target 2018, 9, 24672–24683. [Google Scholar] [CrossRef] [Green Version]
- Roizman, B. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors. Proc. Natl. Acad. Sci. USA 1996, 93, 11307–11312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raman, S.S.; Hecht, J.R.; Chan, E. Talimogene Laherparepvec: Review of Its Mechanism of Action and Clinical Efficacy and Safety. Immunotherapy 2019, 11, 705–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IMLYGIC (Talimogene Laherparepvec) | FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic-talimogene-laherparepvec (accessed on 23 February 2021).
- Andtbacka, R.H.I.; Ross, M.; Puzanov, I.; Milhem, M.; Collichio, F.; Delman, K.A.; Amatruda, T.; Zager, J.S.; Cranmer, L.; Hsueh, E.; et al. Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial. Ann. Surg. Oncol. 2016, 23, 4169–4177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigg, C.; Blake, Z.; Gartrell, R.; Sacher, A.; Taback, B.; Saenger, Y. Talimogene Laherparepvec (T-Vec) for the Treatment of Melanoma and Other Cancers. Semin. Oncol. 2016, 43, 638–646. [Google Scholar] [CrossRef]
- Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef]
- Puzanov, I.; Milhem, M.M.; Minor, D.; Hamid, O.; Li, A.; Chen, L.; Chastain, M.; Gorski, K.S.; Anderson, A.; Chou, J.; et al. Talimogene Laherparepvec in Combination with Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2619–2626. [Google Scholar] [CrossRef] [Green Version]
- Andtbacka, R.H.I.; Amatruda, T.; Nemunaitis, J.; Zager, J.S.; Walker, J.; Chesney, J.A.; Liu, K.; Hsu, C.-P.; Pickett, C.A.; Mehnert, J.M. Biodistribution, Shedding, and Transmissibility of the Oncolytic Virus Talimogene Laherparepvec in Patients with Melanoma. EBioMedicine 2019, 47, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Wakimoto, H. Oncolytic Herpes Simplex Virus Therapy for Malignant Glioma: Current Approaches to Successful Clinical Application. Expert Opin. Biol. Ther. 2019, 19, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Andtbacka, R.H.I.; Collichio, F.; Harrington, K.J.; Middleton, M.R.; Downey, G.; Öhrling, K.; Kaufman, H.L. Final Analyses of OPTiM: A Randomized Phase III Trial of Talimogene Laherparepvec versus Granulocyte-Macrophage Colony-Stimulating Factor in Unresectable Stage III-IV Melanoma. J. Immunother. Cancer 2019, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Chesney, J.; Puzanov, I.; Collichio, F.; Milhem, M.M.; Hauschild, A.; Chen, L.; Sharma, A.; Garbe, C.; Singh, P.; Mehnert, J.M. Patterns of Response with Talimogene Laherparepvec in Combination with Ipilimumab or Ipilimumab Alone in Metastatic Unresectable Melanoma. Br. J. Cancer 2019, 121, 417–420. [Google Scholar] [CrossRef]
- Harrington, K.J.; Kong, A.; Mach, N.; Chesney, J.A.; Fernandez, B.C.; Rischin, D.; Cohen, E.E.W.; Radcliffe, H.-S.; Gumuscu, B.; Cheng, J.; et al. Talimogene Laherparepvec and Pembrolizumab in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (MASTERKEY-232): A Multicenter, Phase 1b Study. Clin Cancer Res. 2020, 26, 5153–5161. [Google Scholar] [CrossRef]
- Streby, K.A.; Currier, M.A.; Triplet, M.; Ott, K.; Dishman, D.J.; Vaughan, M.R.; Ranalli, M.A.; Setty, B.; Skeens, M.A.; Whiteside, S.; et al. First-in-Human Intravenous Seprehvir in Young Cancer Patients: A Phase 1 Clinical Trial. Mol. Ther. 2019, 27, 1930–1938. [Google Scholar] [CrossRef] [Green Version]
- Sze, D.Y.; Iagaru, A.H.; Gambhir, S.S.; De Haan, H.A.; Reid, T.R. Response to Intra-Arterial Oncolytic Virotherapy with the Herpes Virus NV1020 Evaluated by [18F]Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography. Hum. Gene Ther. 2012, 23, 91–97. [Google Scholar] [CrossRef]
- Koch, M.S.; Lawler, S.E.; Chiocca, E.A. HSV-1 Oncolytic Viruses from Bench to Bedside: An Overview of Current Clinical Trials. Cancers 2020, 12, 3514. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Kuncheria, L.; Roulstone, V.; Kyula, J.N.; Mansfield, D.; Bommareddy, P.K.; Smith, H.; Kaufman, H.L.; Harrington, K.J.; Coffin, R.S. Development of a New Fusion-Enhanced Oncolytic Immunotherapy Platform Based on Herpes Simplex Virus Type 1. J. Immunother. Cancer 2019, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Haines, B.B.; Denslow, A.; Grzesik, P.; Lee, J.S.; Farkaly, T.; Hewett, J.; Wambua, D.; Kong, L.; Behera, P.; Jacques, J.; et al. ONCR-177, an Oncolytic HSV-1 Designed to Potently Activate Systemic Antitumor Immunity. Cancer Immunol. Res. 2021, 9, 291–308. [Google Scholar] [CrossRef]
- Fu, X.; Tao, L.; Cai, R.; Prigge, J.; Zhang, X. A Mutant Type 2 Herpes Simplex Virus Deleted for the Protein Kinase Domain of the ICP10 Gene Is a Potent Oncolytic Virus. Mol. Ther. 2006, 13, 882–890. [Google Scholar] [CrossRef]
- Fu, X.; Tao, L.; Zhang, X. An Oncolytic Virus Derived from Type 2 Herpes Simplex Virus Has Potent Therapeutic Effect against Metastatic Ovarian Cancer. Cancer Gene Ther. 2007, 14, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Lambright, E.S.; Kang, E.H.; Force, S.; Lanuti, M.; Caparrelli, D.; Kaiser, L.R.; Albelda, S.M.; Molnar-Kimber, K.L. Effect of Preexisting Anti-Herpes Immunity on the Efficacy of Herpes Simplex Viral Therapy in a Murine Intraperitoneal Tumor Model. Mol. Ther. 2000, 2, 387–393. [Google Scholar] [CrossRef]
- Delman, K.A.; Bennett, J.J.; Zager, J.S.; Burt, B.M.; McAuliffe, P.F.; Petrowsky, H.; Kooby, D.A.; Hawkins, W.G.; Horsburgh, B.C.; Johnson, P.; et al. Effects of Preexisting Immunity on the Response to Herpes Simplex-Based Oncolytic Viral Therapy. Hum. Gene Ther. 2000, 11, 2465–2472. [Google Scholar] [CrossRef]
- Ikeda, K.; Ichikawa, T.; Wakimoto, H.; Silver, J.S.; Deisboeck, T.S.; Finkelstein, D.; Harsh, G.R., IV; Louis, D.N.; Bartus, R.T.; Hochberg, F.H.; et al. Oncolytic Virus Therapy of Multiple Tumors in the Brain Requires Suppression of Innate and Elicited Antiviral Responses. Nat. Med. 1999, 5, 881–887. [Google Scholar] [CrossRef]
- Todo, T.; Rabkin, S.D.; Chahlavi, A.; Martuza, R.L. Corticosteroid Administration Does Not Affect Viral Oncolytic Activity, but Inhibits Antitumor Immunity in Replication-Competent Herpes Simplex Virus Tumor Therapy. Hum. Gene Ther. 1999, 10, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Rabkin, S.D. Oncolytic Herpes Simplex Virus Vectors for Cancer Virotherapy. Cancer Gene Ther. 2002, 9, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Lou, E. Oncolytic Herpes Viruses as a Potential Mechanism for Cancer Therapy. Acta Oncol. 2003, 42, 660–671. [Google Scholar] [CrossRef] [Green Version]
- Eissa, I.R.; Bustos-Villalobos, I.; Ichinose, T.; Matsumura, S.; Naoe, Y.; Miyajima, N.; Morimoto, D.; Mukoyama, N.; Zhiwen, W.; Tanaka, M.; et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.; McFadden, G. Viruses for Tumor Therapy. Cell Host Microbe 2014, 15, 260–265. [Google Scholar] [CrossRef] [Green Version]
oHSV Variant | Genetic Changes | Preclinical Models |
---|---|---|
rRp450 | ICP6 deletion, insertion of CYP2B1. | Glioblasoma [42] Colon carcinoma [43] Sarcoma [44] |
rQNestin34.5v.2 | Nestin promoter drives the expression of ICP34.5. | Glioma [45] |
G207 | Diploid deletion of γ34.5, inactivation of UL39. | Glioma [46,47] Cervical cancer [48] |
G47Δ | Diploid deletion of γ34.5, inactivation of UL39, deletion of α47. | Meningioma [49] Gastic cancer [50] Liver cancer [51] Breast cancer [52] Thyroid carcinoma [53] Urological cancers [54] |
G47Δ-TRAIL | G47Δ expressing TRAIL | Glioblastoma [41] |
oHSV-IL12 | G207 expressing IL12 | Ovarian cancer [55] Breast cancer [56] |
oHSV-GM-CSF | G207 expressing GM-CSF | Advanced melanoma [18] |
Variant | Combination Therapy | Clinical Trial Number | Status | Virus | Malignant Type | Phase | Year Posted |
---|---|---|---|---|---|---|---|
T-VEC | - | NCT00289016 | Completed | HSV-1 | Stage IIIC and IV melanoma | II | 2006 |
- | NCT00289016 | Completed | HSV-1 | Stage IIIC and IV melanoma | II | 2006 | |
- | NCT00769704 | Completed [89] | HSV-1 | Melanoma | III | 2008 | |
Cisplatin + Radiation | NCT01161498 | Terminated | HSV-1 | Head and neck cancer | III | 2010 | |
GM-CSF | NCT01368276 | Completed | HSV-1 | Melanoma | III | 2011 | |
Ipilimumab | NCT01740297 | Active, not recruiting [90] | HSV-1 | Melanoma | I, II | 2012 | |
- | NCT02014441 | Completed [87] | HSV-1 | Melanoma | II | 2013 | |
Pembrolizumab | NCT02263508 | Active, not recruiting | HSV-1 | Melanoma | III | 2014 | |
- | NCT02173171 | Enrolling by invitation | HSV-1 | Any tumor type | Unspecified | 2014 | |
Resection surgery | NCT02211131 | Active, not recruiting | HSV-1 | Melanoma | II | 2014 | |
Pembrolizumab | NCT02263508 | Active, not recruiting | HSV-1 | Melanoma | III | 2014 | |
- | NCT02297529 | No longer available | HSV-1 | Stage IIIB-IVM1c melanoma | III | 2014 | |
Chemotherapy or PV-10 | NCT02288897 | Terminated | HSV-1 | Melanoma | III | 2014 | |
- | NCT02366195 | Completed | HSV-1 | Stage IIIb-IVM1c melanoma | II | 2015 | |
Radiation | NCT02453191 | Active, not recruiting | HSV-1 | Soft tissue sarcoma | I, II | 2015 | |
Pembrolizumab | NCT02626000 | Completed [91] | HSV-1 | Squamous cell carcinoma of the head and neck | I | 2015 | |
- | NCT02574260 | Completed | HSV-1 | Melanoma | II | 2015 | |
Pembrolizumab | NCT02509507 | Recruiting | HSV-1 | Liver cancer | I | 2015 | |
- | NCT02658812 | Active, not recruiting | HSV-1 | Breast cancer | II | 2016 | |
- | NCT02756845 | Recruiting | HSV-1 | Advanced non-CNS tumors | I | 2016 | |
Radiation | NCT02819843 | Recruiting | HSV-1 | Melanoma, Markel cell carcinoma, and other tumors | II | 2016 | |
Radiation | NCT02923778 | Recruiting | HSV-1 | Soft tissue sarcoma | II | 2016 | |
Nivolumab | NCT02978625 | Recruiting | HSV-1 | Melanoma, lymphoma, lung cancer, and other | II | 2016 | |
Pembrolizumab | NCT02965716 | Recruiting | HSV-1 | Stage III and IV melanoma | II | 2016 | |
Paclitaxel | NCT02779855 | Active, not recruiting | HSV-1 | Triple negative breast cancer | I, II | 2016 | |
- | NCT02658812 | Completed | HSV-1 | Breast cancer | II | 2016 | |
- | NCT02910557 | Recruiting | HSV-1 | Melanoma and herpetic infection | Unspecified | 2016 | |
TTI-621 | NCT02890368 | Terminated | HSV-1 | Solid tumors and mycosis fungoides | I | 2016 | |
- | NCT03086642 | Recruiting | HSV-1 | Pancreatic cancer | I | 2017 | |
- | NCT03064763 | Active, not recruiting | HSV-1 | Stage IIIb- IV melanoma | I | 2017 | |
Pembrolizumab | NCT03069378 | Recruiting | HSV-1 | Sarcoma | II | 2017 | |
Atezolizumab | NCT03256344 | Active, not recruiting | HSV-1 | Metastatic colorectal and breast cancers | I | 2017 | |
Chemotherapy + Radiation | NCT03300544 | Recruiting | HSV-1 | Rectal cancer | I | 2017 | |
Dabrafenib + Trametinib | NCT03088176 | Active, not recruiting | HSV-1 | Melanoma | I | 2017 | |
- | NCT03458117 | Unknown | HSV-1 | Non-melanoma skin cancer | I | 2018 | |
- | NCT03555032 | Active, not recruiting | HSV-1 | Sarcoma and melanoma | I, II | 2018 | |
- | NCT03663712 | Recruiting | HSV-1 | Stage IV peritoneal malignancy | I | 2018 | |
Autologous CD1c (BDCA-1)+ myeloid dendritic cells | NCT03747744 | Active, not Recruiting | HSV-1 | Melanoma | I | 2018 | |
Nivolumab | NCT03597009 | Recruiting | HSV-1 | Lung cancer | I, II | 2018 | |
- | NCT03430687 | Withdrawn | HSV-1 | Bladder carcinoma | I | 2018 | |
- | NCT03714828 | Recruiting | HSV-1 | Squamous cell carcinoma | II | 2018 | |
Chemotherapy or endocrine therapy | NCT03554044 | Recruiting | HSV-1 | Breast cancer | I | 2018 | |
- | NCT03921073 | Recruiting | HSV-1 | Skin angiosarcoma | II | 2019 | |
Atezolizumab | NCT03802604 | Recruiting | HSV-1 | Breast cancer | I | 2019 | |
Pembrolizumab | NCT03842943 | Recruiting | HSV-1 | Melanoma | II | 2019 | |
Dabrafenib + Trametinib | NCT03972046 | Withdrawn | HSV-1 | Melanoma | II | 2019 | |
Pembrolizumab | NCT04068181 | Recruiting | HSV-1 | Melanoma | II | 2019 | |
Panitumumab | NCT04163952 | Recruiting | HSV-1 | Squamous cell carcinoma of the skin | I | 2019 | |
Nivolumab + Trabectedin | NCT03886311 | Recruiting | HSV-1 | Sarcoma | II | 2019 | |
- | NCT04065152 | Not yet recruiting | HSV-1 | Kaposi sarcoma | II | 2019 | |
Ipilimumab + Nivolumab | NCT04185311 | Recruiting | HSV-1 | Breast cancer | I | 2019 | |
- | NCT04330430 | Recruiting | HSV-1 | Stage III and IV melanoma | II | 2020 | |
TBI-1401 | - | NCT01017185 | Completed | HSV-1 | Squamous cell carcinoma of the skin, breast carcinoma, melanoma, head and neck cancer | I | 2009 |
Ipilimumab | NCT02272855 | Completed | HSV-1 | Melanoma | II | 2014 | |
- | NCT02428036 | Completed | HSV-1 | Solid tumors | I | 2015 | |
Ipilimumab | NCT03153085 | Completed | HSV-1 | Stage III and IV melanoma | II | 2017 | |
Chemotherapy | NCT03252808 | Active, not recruiting | HSV-1 | Stage III and IV pancreatic cancer | I | 2017 | |
G207 | - | NCT00028158 | Completed | HSV-1 | Brain cancer | I, II | 2001 |
Radiation | NCT00157703 | Completed | HSV-1 | Malignant glioma | I | 2005 | |
- | NCT02457845 | Active, not recruiting | HSV-1 | Brain cancer | I | 2015 | |
- | NCT03911388 | Recruiting | HSV-1 | Brain cancers | I | 2019 | |
- | NCT04482933 | Not yet recruiting | HSV-1 | High grade glioma | II | 2020 | |
RP1 | Nivolumab | NCT03767348 | Recruiting | HSV-1 | Melanoma | I, II | 2018 |
Cemiplimab | NCT04050436 | Recruiting | HSV-1 | Melanoma | II | 2019 | |
- | NCT04349436 | Recruiting | HSV-1 | Squamous cell carcinoma | I | 2020 | |
RP2 | Nivolumab | NCT04336241 | Recruiting | HSV-1 | Non-specified | I | 2020 |
HSV-1716 | - | NCT00931931 | Completed [92] | HSV-1 | Non-CNS solid tumors | I | 2009 |
- | NCT01721018 | Completed | HSV-1 | Malignant pleural mesothelioma | I, II | 2012 | |
NV1020 | - | NCT00012155 | Completed | HSV-1 | Colorectal cancer | I | 2003 |
- | NCT00149396 | Completed [93] | HSV-1 | Liver cancer and colorectal cancer | I, II | 2005 | |
OrienX010 | - | NCT01935453 | Completed | HSV-1 | Melanoma, liver cancer, pancreatic cancer and lung cancer | I | 2013 |
- | NCT03048253 | Unknown | HSV-1 | Melanoma | I-c | 2017 | |
rRp450 | - | NCT01071941 | Recruiting | HSv-1 | Liver cancer | I | 2010 |
M032 | - | NCT02062827 | Recruiting | HSV-1 | Brain cancers | I | 2014 |
rQNestin | - | NCT03152318 | Recruiting | HSV-1 | Brain cancers | I | 2017 |
C134 | - | NCT03657576 | Active, not recruiting | HSV-1 | Malignant glioma | I | 2018 |
T3011 | NCT04370587 | Recruiting | HSV-1 | Head and neck cancer, Melanoma, Lung cancer, Soft tissue tumors and/or sarcoma, Solid tumors | I | 2020 | |
ONCR-177 | Pembrolizumab | NCT04348916 | Recruiting | HSV-1 | Various tumors | I | 2020 |
OH2 | HX008 | NCT03866525 | Recruiting | HSV-2 | Solid and GI tumors | I, II | 2019 |
Pembrolizumab | NCT04386967 | Recruiting | HSV-2 | Solid tumors | I, II | 2020 | |
- | NCT04637698 | Recruiting | HSV-2 | Pancreatic cancer | I, II | 2020 | |
HX008 | NCT04616443 | Recruiting | HSV-2 | Melanoma | I, II | 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldrak, N.; Alsaab, S.; Algethami, A.; Bhere, D.; Wakimoto, H.; Shah, K.; Alomary, M.N.; Zaidan, N. Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells 2021, 10, 1541. https://doi.org/10.3390/cells10061541
Aldrak N, Alsaab S, Algethami A, Bhere D, Wakimoto H, Shah K, Alomary MN, Zaidan N. Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells. 2021; 10(6):1541. https://doi.org/10.3390/cells10061541
Chicago/Turabian StyleAldrak, Norah, Sarah Alsaab, Aliyah Algethami, Deepak Bhere, Hiroaki Wakimoto, Khalid Shah, Mohammad N. Alomary, and Nada Zaidan. 2021. "Oncolytic Herpes Simplex Virus-Based Therapies for Cancer" Cells 10, no. 6: 1541. https://doi.org/10.3390/cells10061541
APA StyleAldrak, N., Alsaab, S., Algethami, A., Bhere, D., Wakimoto, H., Shah, K., Alomary, M. N., & Zaidan, N. (2021). Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells, 10(6), 1541. https://doi.org/10.3390/cells10061541