Quaternion and Biquaternion Representations of Proper and Improper Transformations in Non-Cartesian Reference Systems
Abstract
:1. Introduction
2. Discussion
2.1. Basic Algebra and Definitions
j2 = −j∙j = −|j||j| = −|j|2 = −b2
k2 = −k∙k = −|k||k| = −|k|2 = −c2
jk = −bc cos α + j × k, kj = −bc cos α − j × k
ki = −ca cos β + k × i, ik = −ca cos β − k × i
2.2. Symmetry Operations in Hexagonal Lattice
2.3. Non-Symmetric Transformations
2.4. Trigonal System in Hexagonal Setting
2.5. Hexagonal System
2.6. Biquaternion for General Application of the Point Symmetry
wimproper = h·cos(φ/2) + n·h·sin(φ/2)
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. On Deriving the General Quaternion Multiplication Rules
References
- Rodrigues, O. Des lois géometriques qui regissent les déplacements d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire. J. Math. Pures Appl. 1840, 5, 380–440. [Google Scholar]
- Hamilton, W.R. Lectures on Quaternions; Hodges and Smith: Dublin, Ireland, 1853. [Google Scholar]
- Altmann, S.L. Rotations, Quaternions, and Double Groups; Clarendon Press: Oxford, UK, 1986; ISBN 0198553722. [Google Scholar]
- Hanson, A. Visualizing Quaternions; Morgan-Kaufmann: New York, NY, USA; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780080474779. [Google Scholar]
- Yang, Q.; Qu, W.; Gao, J.; Wang, Y.; Song, X.; Guo, Y.; Ke, Y. Quaternion-based placement orientation trajectory smoothing method under the Domain of Admissible Orientation. Int. J. Adv. Manuf. Technol. 2023, 128, 491–510. [Google Scholar] [CrossRef]
- Barr, A.H.; Currin, B.; Gabriel, S.; Hughes, J.F. Smooth Interpolation of Orientations with Angular Velocity Constraints using Quaternions. Comput. Graph. 1992, 26, 313–320. [Google Scholar] [CrossRef]
- Thomas, D.J. Modern equations of diffractometry. Goniometry. Acta Cryst. A 1990, 46, 321–343. [Google Scholar] [CrossRef]
- White, K.I.; Bugris, V.; McCarthy, A.; Ravelli, R.B.G.; Csankó, K.; Cassettaf, A.; Brockhauser, S. Calibration of rotation axes for multi-axis goniometers in macromolecular crystallography. J. Appl. Cryst. 2018, 51, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Clegg, W. Orientation matrix refinement during four-circle diffractometer data collection. Acta Cryst. A 1984, 40, 703–704. [Google Scholar] [CrossRef]
- Busing, W.R.; Levy, H.A. Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Cryst. A 1967, 22, 457–464. [Google Scholar] [CrossRef]
- Paciorek, W.A.; Meyer, M.; Chapuis, G. On the geometry of a modern imaging diffractometer. Acta Cryst. A 1999, 55, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Dera, P.; Katrusiak, A. Towards general diffractometry. III. Beyond the normal-beam geometry. J. Appl. Cryst. 2001, 34, 27–32. [Google Scholar] [CrossRef]
- Grimmer, H. Disorientations and coincidence rotations for cubic lattices. Acta Cryst. A 1974, 30, 685–688. [Google Scholar] [CrossRef]
- Bonnet, R. Disorientation between any two lattices. Acta Cryst. A 1980, 36, 116–122. [Google Scholar] [CrossRef]
- Mackay, A.L. Quaternion transformation of molecular orientation. Acta Cryst. A 1984, 40, 165–166. [Google Scholar] [CrossRef]
- Diamond, R. A note on the rotational superposition problem. Acta Cryst. A 1988, 44, 211–216. [Google Scholar] [CrossRef]
- Theobald, D.L. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Cryst. A 2005, 61, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.J. The quaternion-based spatial-coordinate and orientation-frame alignment problems. Acta Cryst. A 2020, 76, 432–457. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.D. The Analytic Theory of Point Systems. 1923. Unpublished Monograph. Available online: https://www.iucr.org/__data/assets/pdf_file/0008/25559/Bernal_monograph.pdf (accessed on 30 May 2024).
- Fritzer, H.P. Molecular symmetry with quaternions. Spectrochim. Acta A 2001, 57, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Katrusiak, A.; Llenga, S. Crystallographic quaternions. Symmetry 2024, 16, 818. [Google Scholar] [CrossRef]
- Hamilton, W.R. On Geometrical Interpretation of Some Results Obtained by Calculation with Biquaternions. In Proceedings of the Royal Irish Academy (1836–1869); JSTOR: New York, NY, USA, 1850; Volume 5, pp. 388–390. Available online: https://www.jstor.org/stable/20489781?seq=1 (accessed on 23 June 2023).
- Rollett, J.S. Computing Methods in Crystallography; Pergamon Press: London, UK, 1965; pp. 22–23. [Google Scholar]
Symmetry Element | Quaternion (q) | Quaternion Action |
---|---|---|
1 | 1 | qr |
1 | qr | |
2[100] | i | qrq* |
2[010] | j | qrq* |
2[110] | i + j | qrq* |
3[001] | qrq* | |
−qrq* | ||
m[100] | i | qrq |
m[010] | j | qrq |
m[110] | i + j | qrq |
Symmetry Operation | Quaternion (q) | Quaternion Action |
---|---|---|
1 | 1 | qr |
1 | qr | |
qrq* | ||
qrq* | ||
qrq* | ||
qrq* | ||
qrq* | ||
qrq* | ||
qrq* | ||
qrq* | ||
qrq | ||
qrq | ||
qrq | ||
qrq | ||
qrq | ||
qrq | ||
qrq |
1 | 1 | h |
h | −1 |
mm2 | 1 | 2 | mx | my |
---|---|---|---|---|
1 | 1 | k | hi | hj |
2 | k | −1 | −hj | hi |
mx | hi | hj | 1 | k |
my | hj | −hi | −k | 1 |
mm2 | 1 | 2 | mx | my |
---|---|---|---|---|
1 | 1 | 2 | mx | my |
2 | 2 | 1 | my | mx |
mx | mx | my | 1 | 2 |
my | my | mx | 2 | 1 |
1 | ||||||
1 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katrusiak, A.; Le, H.Q. Quaternion and Biquaternion Representations of Proper and Improper Transformations in Non-Cartesian Reference Systems. Symmetry 2024, 16, 1366. https://doi.org/10.3390/sym16101366
Katrusiak A, Le HQ. Quaternion and Biquaternion Representations of Proper and Improper Transformations in Non-Cartesian Reference Systems. Symmetry. 2024; 16(10):1366. https://doi.org/10.3390/sym16101366
Chicago/Turabian StyleKatrusiak, Andrzej, and Hien Quy Le. 2024. "Quaternion and Biquaternion Representations of Proper and Improper Transformations in Non-Cartesian Reference Systems" Symmetry 16, no. 10: 1366. https://doi.org/10.3390/sym16101366
APA StyleKatrusiak, A., & Le, H. Q. (2024). Quaternion and Biquaternion Representations of Proper and Improper Transformations in Non-Cartesian Reference Systems. Symmetry, 16(10), 1366. https://doi.org/10.3390/sym16101366