Multilevel Diffractive Lenses: Recent Advances and Applications
Abstract
:1. Introduction
2. Principles
2.1. Optical Path Difference
2.2. Cylindrical FDTD
2.3. Efficiency Depends on Phase Levels
2.4. Inverse Design
2.5. MDLs with Sub-Wavelength Structure
- Design approach: MDLs can be designed through inverse design techniques using cylindrical FDTD simulations, which offer high efficiency and accuracy. Conversely, metalenses are typically crafted by calculating meta-structures with the application of periodic boundary conditions, a process that might introduce minor inaccuracies when aligning the meta-structures.
- Material: MDLs have the flexibility to be manufactured from various materials utilizing dielectric materials with a high refractive index. In contrast, metalenses may incorporate metals along with materials of high refractive index to facilitate the required phase changes.
- Fabrication: MDLs are generally less complex and less costly to fabricate than metalenses, especially for large apertures. In comparison, the fabrication of metalenses tends to be more complex and expensive, owing to the fine precision needed to create their nanostructures.
- Polarization sensitivity: MDLs typically exhibit polarization insensitivity, maintaining consistent performance irrespective of the polarization of the incident light. In contrast, metalenses can be engineered to respond variably to different polarization states, a feature that may be advantageous or disadvantageous depending on the specific application requirements.
2.6. Achromatic MDLs
3. Fabrication
3.1. Electron Beam Lithography
3.2. Grayscale Lithography
3.3. Nanoimprint Lithography
3.4. Direct Laser Ablation
3.5. Fused Deposition Modeling
3.6. Two-Photon Polymerization
4. Application
4.1. Integration
4.2. Imaging
4.3. 3D Display
4.4. Functional Devices in Optical Systems
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DE | Differential Evolution |
DLA | Direct Laser Ablation |
EBL | Electron Beam Lithography |
FDM | Fused Deposition Modeling |
FDTD | Finite-Difference Time-Domain |
FOV | Field of View |
FZP | Fresnel Zone Plate |
GA | Genetic Algorithms |
GSL | Grayscale Lithography |
LWIR | Long-Wavelength Infrared |
MDL | Multilevel Diffractive Lens |
NA | Numerical Aperture |
NIL | Nanoimprint Lithography |
OAM | Orbital Angular Momentum |
PSO | Particle Swarm Optimization |
RIE | Reactive Ion Etching |
SGD | Stochastic Gradient Descent |
TPP | Two-Photon Polymerization |
References
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Siemion, A. Terahertz Diffractive Optics—Smart Control over Radiation. J. Infrared Millim. Terahertz Waves 2019, 40, 477–499. [Google Scholar] [CrossRef]
- Siemion, A. The Magic of Optics—An Overview of Recent Advanced Terahertz Diffractive Optical Elements. Sensors 2020, 21, 100. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Qin, F.; Liu, H.; Ye, H.; Qiu, C.W.; Hong, M.; Luk’yanchuk, B.; Teng, J. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications. Adv. Mater. 2018, 30, 1704556. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, L.; Shi, H.; Gao, G.; Li, J.; Bian, J.; Fan, B.; Du, J. The Design of Multi-Wavelength Confocal Diffractive Optical Element Based on Set Operation. Optik 2023, 277, 170667. [Google Scholar] [CrossRef]
- Waldman, G.S. Variations on the Fresnel Zone Plate. J. Opt. Soc. Am. 1966, 56, 215–218. [Google Scholar] [CrossRef]
- Arsenault, H. Diffraction Theory of Fresnel Zone Plates. J. Opt. Soc. Am. 1968, 58, 1536. [Google Scholar] [CrossRef]
- Simpson, M.; Michette, A. Imaging Properties of Modified Fresnel Zone Plates. Opt. Acta Int. J. Opt. 1984, 31, 403–413. [Google Scholar] [CrossRef]
- Swanson, G.J. Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements; Massachusetts Institute of Technology, Lincoln Laboratory: Lexington, MA, USA, 1989; Volume 854. [Google Scholar]
- Zhang, Z.; Guo, C.; Wang, R.; Hu, H.; Zhou, X.; Liu, T.; Xue, D.; Zhang, X.; Zhang, F.; Zhang, X. Hybrid-Level Fresnel Zone Plate for Diffraction Efficiency Enhancement. Opt. Express 2017, 25, 33676–33687. [Google Scholar] [CrossRef]
- Hayward, T.M.; Qadri, S.N.; Brimhall, N.; Santiago, F.; Christophersen, M.; Dunay, C.; Espinola, R.L.; Martin, H.; Menon, R. Multilevel Diffractive Lens in the MWIR with Extended Depth-of-Focus and Wide Field-of-View. Opt. Express 2023, 31, 15384–15391. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, F.; Pu, M.; Li, X.; Ma, X.; Guo, Y.; Luo, X. Dual-Wavelength Multilevel Diffractive Lenses for near-Infrared Imaging. J. Phys. D Appl. Phys. 2021, 54, 175109. [Google Scholar] [CrossRef]
- Menon, R.; Brimhall, N. Perspectives on Imaging with Diffractive Flat Optics. ACS Photonics 2023, 10, 1046–1052. [Google Scholar] [CrossRef]
- Hua, J.; Qiao, W.; Chen, L. Recent Advances in Planar Optics-Based Glasses-Free 3D Displays. Front. Nanotechnol. 2022, 4, 829011. [Google Scholar] [CrossRef]
- Di Fabrizio, E.; Romanato, F.; Gentili, M.; Cabrini, S.; Kaulich, B.; Susini, J.; Barrett, R. High-Efficiency Multilevel Zone Plates for keV X-rays. Nature 1999, 401, 895–898. [Google Scholar] [CrossRef]
- Banerji, S.; Sensale-Rodriguez, B. Inverse Designed Achromatic Flat Lens Operating in the Ultraviolet. OSA Contin. 2020, 3, 1917–1929. [Google Scholar] [CrossRef]
- Swanson, G.J.; Veldkamp, W.B. Diffractive Optical Elements for Use in Infrared Systems. Opt. Eng. 1989, 28, 605–608. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Liu, Q.; Chen, S.; Zhao, W.; Wu, X.; Cheng, J.; Chang, S. Inverse Design on Terahertz Multilevel Diffractive Lens Based on 3D Printing. Chin. Opt. Lett. 2023, 22, 110006. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction-limited Focusing and Subwavelength Resolution Imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Chen, M.K.; Wu, Y.; Feng, L.; Fan, Q.; Lu, M.; Xu, T.; Tsai, D.P. Principles, Functions, and Applications of Optical Meta-Lens. Adv. Opt. Mater. 2021, 9, 2001414. [Google Scholar] [CrossRef]
- Pan, M.; Fu, Y.; Zheng, M.; Chen, H.; Zang, Y.; Duan, H.; Li, Q.; Qiu, M.; Hu, Y. Dielectric Metalens for Miniaturized Imaging Systems: Progress and Challenges. Light Sci. Appl. 2022, 11, 195. [Google Scholar] [CrossRef]
- Xu, Y.; Gu, J.; Gao, Y.; Yang, Q.; Liu, W.; Yao, Z.; Xu, Q.; Han, J.; Zhang, W. Broadband Achromatic Terahertz Metalens Constituted by Si–SiO2–Si Hybrid Meta-Atoms. Adv. Funct. Mater. 2023, 33, 2302821. [Google Scholar] [CrossRef]
- Engelberg, J.; Levy, U. The Advantages of Metalenses over Diffractive Lenses. Nat. Commun. 2020, 11, 1991. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Sensale-Rodriguez, B. Inconsistencies of Metalens Performance and Comparison with Conventional Diffractive Optics. Nat. Photon. 2023, 17, 923–924. [Google Scholar] [CrossRef]
- Shi, S.; Tao, X.; Yang, L.; Prather, D.W. Analysis of Diffractive Optical Elements Using a Nonuniform Finite-Difference Time-Domain Method. Opt. Eng. 2001, 40, 503–510. [Google Scholar] [CrossRef]
- Prather, D.W.; Shi, S. Formulation and Application of the Finite-Difference Time-Domain Method for the Analysis of Axially Symmetric Diffractive Optical Elements. J. Opt. Soc. Am. A 1999, 16, 1131–1142. [Google Scholar] [CrossRef]
- Levy, U.; Mendlovic, D.; Marom, E. Efficiency Analysis of Diffractive Lenses. J. Opt. Soc. Am. A 2001, 18, 86–93. [Google Scholar] [CrossRef]
- Glytsis, E.N.; Harrigan, M.E.; Hirayama, K.; Gaylord, T.K. Collimating Cylindrical Diffractive Lenses: Rigorous Electromagnetic Analysis and Scalar Approximation. Appl. Opt. 1998, 37, 34–43. [Google Scholar] [CrossRef]
- Prather, D.W.; Pustai, D.; Shi, S. Performance of Multilevel Diffractive Lenses as a Function of F-Number. Appl. Opt. 2001, 40, 207–210. [Google Scholar] [CrossRef]
- Yamada, K.; Watanabe, W.; Li, Y.; Itoh, K.; Nishii, J. Multilevel Phase-Type Diffractive Lenses in Silica Glass Induced by Filamentation of Femtosecond Laser Pulses. Opt. Lett. 2004, 29, 1846–1848. [Google Scholar] [CrossRef]
- Dou, W.B.; Wan, C. An Analysis of Diffractive Lenses at Millimeter Wavelengths. Microw. Opt. Technol. Lett. 2001, 31, 396–401. [Google Scholar] [CrossRef]
- Cao, Q.; Jahns, J. Apodized Multilevel Diffractive Lenses That Produce Desired Diffraction-Limited Focal Spots. J. Opt. Soc. Am. A 2006, 23, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Rueda, E.; Muñetón, D.; Gómez, J.A.; Lencina, A. High-Quality Optical Vortex-Beam Generation by Using a Multilevel Vortex-Producing Lens. Opt. Lett. 2013, 38, 3941–3944. [Google Scholar] [CrossRef]
- Mohapi, L.; Geiger, L.M.; Korvink, J.G.; Dudley, A.; Forbes, A. Simulating Multilevel Diffractive Optical Elements on a Spatial Light Modulator. Appl. Opt. 2022, 61, 7625–7631. [Google Scholar] [CrossRef] [PubMed]
- Ayyagari, S.R.; Indrišiūnas, S.; Kašalynas, I. Hybrid Multi-Phase Fresnel Lenses on Silicon Wafers for Terahertz Frequencies. IEEE Trans. Terahertz Sci. Technol. 2023, 13, 231–236. [Google Scholar] [CrossRef]
- Banerji, S.; Sensale-Rodriguez, B. A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements. Sci. Rep. 2019, 9, 5801. [Google Scholar] [CrossRef]
- Banerji, S.; Meem, M.; Majumder, A.; Garcia, J.C.; Hon, P.; Pies, C.; Oberbiermann, T.; Menon, R.; Rodriguez, B.S. Inverse Designed Flat Optics with Multilevel Diffractive Lenses. In Proceedings of the Current Developments in Lens Design and Optical Engineering XXI, SPIE, Online Conference, 24 August–4 September 2020; Volume 11482, pp. 95–101. [Google Scholar] [CrossRef]
- Yildirim, B.K.; Bor, E.; Kurt, H.; Turduev, M. Zones Optimized Multilevel Diffractive Lens for Polarization-Insensitive Light Focusing. J. Phys. D Appl. Phys. 2020, 53, 495109. [Google Scholar] [CrossRef]
- Jia, W.; Lin, D.; Menon, R.; Sensale-Rodriguez, B. Machine Learning Enables the Design of a Bidirectional Focusing Diffractive Lens. Opt. Lett. 2023, 48, 2425–2428. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Menon, R.; Sensale-Rodriguez, B. Reconfigurable and Programmable Optical Devices with Phase Change Materials Sb2S3 and Sb2Se3. In Proceedings of the Active Photonic Platforms 2022, SPIE, San Diego, CA, USA, 21–26 August 2022; Volume 12196, pp. 12–18. [Google Scholar] [CrossRef]
- Yang, F.; An, S.; Shalaginov, M.Y.; Zhang, H.; Rivero-Baleine, C.; Hu, J.; Gu, T. Design of Broadband and Wide-Field-of-View Metalenses. Opt. Lett. 2021, 46, 5735–5738. [Google Scholar] [CrossRef]
- Meem, M.; Majumder, A.; Menon, R. Multi-Plane, Multi-Band Image Projection via Broadband Diffractive Optics. Appl. Opt. 2020, 59, 38–44. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Planar Lens Antennas of Subwavelength Thickness: Collimating Leaky-Waves With Metasurfaces. IEEE Trans. Antennas Propag. 2015, 63, 3248–3253. [Google Scholar] [CrossRef]
- Banerji, S.; Meem, M.; Majumder, A.; Vasquez, F.G.; Sensale-Rodriguez, B.; Menon, R. Imaging with Flat Optics: Metalenses or Diffractive Lenses? Optica 2019, 6, 805–810. [Google Scholar] [CrossRef]
- Mohammad, N.; Meem, M.; Shen, B.; Wang, P.; Menon, R. Broadband Imaging with One Planar Diffractive Lens. Sci. Rep. 2018, 8, 2799. [Google Scholar] [CrossRef] [PubMed]
- Engelberg, J.; Levy, U. Generalized Metric for Broadband Flat Lens Performance Comparison. Nanophotonics 2022, 11, 3559–3574. [Google Scholar] [CrossRef]
- Doskolovich, L.L.; Skidanov, R.V.; Bezus, E.A.; Ganchevskaya, S.V.; Bykov, D.A.; Kazanskiy, N.L. Design of Diffractive Lenses Operating at Several Wavelengths. Opt. Express 2020, 28, 11705–11720. [Google Scholar] [CrossRef]
- Wang, P.; Mohammad, N.; Menon, R. Chromatic-Aberration-Corrected Diffractive Lenses for Ultra-Broadband Focusing. Sci. Rep. 2016, 6, 21545. [Google Scholar] [CrossRef]
- Yildırım, B.K.; Kurt, H.; Turduev, M. Ultra-Compact, High-Numerical-Aperture Achromatic Multilevel Diffractive Lens via Metaheuristic Approach. Photonics Res. 2021, 9, 2095–2103. [Google Scholar] [CrossRef]
- Ferstl, M.; Kuhlow, B.; Pawlowski, E. Effect of Fabrication Errors on Multilevel Fresnel Zone Lenses. Opt. Eng. 1994, 33, 1229–1235. [Google Scholar] [CrossRef]
- Glytsis, E.N.; Harrigan, M.E.; Gaylord, T.K.; Hirayama, K. Effects of Fabrication Errors on the Performance of Cylindrical Diffractive Lenses: Rigorous Boundary-Element Method and Scalar Approximation. Appl. Opt. 1998, 37, 6591–6602. [Google Scholar] [CrossRef]
- Britten, J.A.; Dixit, S.N.; DeBruyckere, M.; Steadfast, D.; Hackett, J.; Farmer, B.; Poe, G.; Patrick, B.; Atcheson, P.D.; Domber, J.L.; et al. Large-Aperture Fast Multilevel Fresnel Zone Lenses in Glass and Ultrathin Polymer Films for Visible and near-Infrared Imaging Applications. Appl. Opt. 2014, 53, 2312–2316. [Google Scholar] [CrossRef]
- Banerji, S.; Cooke, J.; Sensale-Rodriguez, B. Role of Fabrication Errors and Refractive Index on Multilevel Diffractive Lens Performance. Sci. Rep. 2020, 10, 14608. [Google Scholar] [CrossRef]
- Pitchumani, M.; Hockel, H.; Mohammed, W.; Johnson, E.G. Additive Lithography for Fabrication of Diffractive Optics. Appl. Opt. 2002, 41, 6176–6181. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, E.; Engel, H. Multilevel Diffractive Optical Elements Fabricated with a Single Amplitude-Phase Mask. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1997, 6, 655. [Google Scholar] [CrossRef]
- Walsby, E.D.; Wang, S.; Xu, J.; Yuan, T.; Blaikie, R.; Durbin, S.M.; Zhang, X.C.; Cumming, D.R.S. Multilevel Silicon Diffractive Optics for Terahertz Waves. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2002, 20, 2780–2783. [Google Scholar] [CrossRef]
- Agafonov, A.N.; Volodkin, B.O.; Kaveev, A.K.; Knyazev, B.A.; Kropotov, G.I.; Pavel’ev, V.S.; Soifer, V.A.; Tukmakov, K.N.; Tsygankova, E.V.; Choporova, Y. Silicon Diffractive Optical Elements for High-Power Monochromatic Terahertz Radiation. Optoelectron. Instrum. Data Proc. 2013, 49, 189–195. [Google Scholar] [CrossRef]
- Amata, H.; Fu, Q.; Heidrich, W. Additive Fabrication of SiO2-Based Micro-Optics with Lag-Free Depth and Reduced Roughness. Opt. Express 2023, 31, 41533–41545. [Google Scholar] [CrossRef]
- Woo, D.K.; Hane, K.; Lee, C.B.; Lee, S.K. Fabrication of a Multi-Level Lens Using Independent-Exposure Lithography and FAB Plasma Etching. In Proceedings of the 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, Hualien, Taiwan, 12–16 August 2007; pp. 151–152. [Google Scholar] [CrossRef]
- Li, W.; He, P.; Yuan, W.; Yu, Y. Efficiency-Enhanced and Sidelobe-Suppressed Super-Oscillatory Lenses for Sub-Diffraction-Limit Fluorescence Imaging with Ultralong Working Distance. Nanoscale 2020, 12, 7063–7071. [Google Scholar] [CrossRef]
- Jeong, K.H.; Ghalichechian, N. 3D-printed 4-Zone Ka-band Fresnel Lens: Design, Fabrication, and Measurement. IET Microw. Antennas Propag. 2020, 14, 28–35. [Google Scholar] [CrossRef]
- Fluder, G.; Kowalik, A.; Rojek, A.; Sobczyk, A.; Choromański, Z.; Krężel, J.; Józwik, M. Analysis of the Influence of Antireflective Coatings on the Diffraction Efficiency of Diffractive Optical Elements. Opt. Express 2021, 29, 13025–13032. [Google Scholar] [CrossRef] [PubMed]
- Motogaito, A.; Iguchi, Y.; Kato, S.; Hiramatsu, K. Fabrication and Characterization of a Binary Diffractive Lens for Controlling Focal Distribution. Appl. Opt. 2020, 59, 742–747. [Google Scholar] [CrossRef]
- Britton, W.; Chen, Y.; Sgrignuoli, F.; Negro, L. Compact Dual-Band Multi-Focal Diffractive Lenses. Laser Photon. Rev. 2021, 15, 2000207. [Google Scholar] [CrossRef]
- Aguiam, D.E.; Santos, J.D.; Silva, C.; Gentile, F.; Ferreira, C.; Garcia, I.S.; Cunha, J.; Gaspar, J. Fabrication and Optical Characterization of Large Aperture Diffractive Lenses Using Greyscale Lithography. Micro. Nano. Eng. 2022, 14, 100111. [Google Scholar] [CrossRef]
- Osipov, V.P.; Doskolovich, L.L.; Bezus, E.A.; Drew, T.E.; Zhou, K.; Sawalha, K.; Swadener, G.; Wolffsohn, J.S.W. Application of Nanoimprinting Technique for Fabrication of Trifocal Diffractive Lens with Sine-like Radial Profile. J. Biomed. Opt. 2015, 20, 025008. [Google Scholar] [CrossRef] [PubMed]
- Minkevičius, L.; Indrišiūnas, S.; Šniaukas, R.; Voisiat, B.; Janonis, V.; Tamošiūnas, V.; Kašalynas, I.; Račiukaitis, G.; Valušis, G. Terahertz Multilevel Phase Fresnel Lenses Fabricated by Laser Patterning of Silicon. Opt. Lett. 2017, 42, 1875–1878. [Google Scholar] [CrossRef] [PubMed]
- Däschner, W.; Long, P.; Stein, R.; Wu, C.; Lee, S.H. Cost-Effective Mass Fabrication of Multilevel Diffractive Optical Elements by Use of a Single Optical Exposure with a Gray-Scale Mask on High-Energy Beam-Sensitive Glass. Appl. Opt. 1997, 36, 4675–4680. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.R.; Su, H. Multilevel Diffractive Microlens Fabrication by One-Step Laser-Assisted Chemical Etching upon High-Energy-Beam Sensitive Glass. Opt. Lett. 1998, 23, 876–878. [Google Scholar] [CrossRef]
- Banerji, S.; Meem, M.; Majumder, A.; Guevara-Vasquez, F.; Menon, R.; Sensale-Rodriguez, B. Multi-Level Diffractive Lenses for Real-Time Long-Wave IR Imaging. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; p. 1. [Google Scholar] [CrossRef]
- Li, J.; Ge, S.; Liu, W. High-Efficiency and High-Precision Replication Manufacturing of Large-Aperture Multi-Level Diffractive Lenses. In Proceedings of the AOPC 2023: Optical Sensing, Imaging, and Display Technology and Applications; and Biomedical Optics, Beijing, China, 25–27 July 2023; Volume 12963, pp. 433–442. [Google Scholar] [CrossRef]
- Wang, X.; Leger, J.R.; Rediker, R.H. Rapid Fabrication of Diffractive Optical Elements by Use of Image-Based Excimer Laser Ablation. Appl. Opt. 1997, 36, 4660–4665. [Google Scholar] [CrossRef]
- Julian, M.N.; MacDonnell, D.G.; Gupta, M.C. High-Efficiency Flexible Multilevel Photon Sieves by Single-Step Laser-Based Fabrication and Optical Analysis. Appl. Opt. 2019, 58, 109–114. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Volodkin, B.O.; Knyazev, B.A.; Kononenko, V.V.; Kononenko, T.V.; Konov, V.I.; Pavelyev, V.S.; Soifer, V.A.; Tukmakov, K.N.; Choporova, Y.Y. Fabrication of a Multilevel THz Fresnel Lens by Femtosecond Laser Ablation. Quantum Electron. 2015, 45, 933. [Google Scholar] [CrossRef]
- Ivaškevičiūtė-Povilauskienė, R.; Kizevičius, P.; Nacius, E.; Jokubauskis, D.; Ikamas, K.; Lisauskas, A.; Alexeeva, N.; Matulaitienė, I.; Jukna, V.; Orlov, S. Terahertz Structured Light: Nonparaxial Airy Imaging Using Silicon Diffractive Optics. Light Sci. Appl. 2022, 11, 326. [Google Scholar] [CrossRef]
- Furlan, W.D.; Ferrando, V.; Monsoriu, J.A.; Zagrajek, P.; Czerwińska, E.; Szustakowski, M. 3D Printed Diffractive Terahertz Lenses. Opt. Lett. 2016, 41, 1748–1751. [Google Scholar] [CrossRef]
- Yildirim, B.K.; Bor, E.; Kurt, H.; Turduev, M. A Broadband Polarization-Insensitive Diffractive Lens Design for Subwavelength Focusing of Light. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Hadibrata, W.; Wei, H.; Krishnaswamy, S.; Aydin, K. Inverse Design and 3D Printing of a Metalens on an Optical Fiber Tip for Direct Laser Lithography. Nano Lett. 2021, 21, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, M.; Hu, X.; Li, Z.; Jiang, M.; Wang, S.; Cao, Y.; Li, X.; Qin, F. Aberration-Compensated Supercritical Lens for Sub-Diffractive Focusing within 20∘ Field of View. Opt. Lett. 2023, 48, 2523–2526. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Niu, L.G.; Chen, Q.D.; Wang, R.; Sun, H.B. High Efficiency Multilevel Phase-Type Fractal Zone Plates. Opt. Lett. 2008, 33, 2913–2915. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, Y.; Guo, L.; Wu, S.; Chen, C.; Niu, L.; Li, A.; Yang, H. High Efficiency Multilevel Phase-Type Fresnel Zone Plates Produced by Two-Photon Polymerization of SU-8. J. Opt. 2010, 12, 035203. [Google Scholar] [CrossRef]
- Wang, H.; Pan, C.F.; Li, C.; Menghrajani, K.S.; Schmidt, M.A.; Li, A.; Fan, F.; Zhou, Y.; Zhang, W.; Wang, H.; et al. Two-Photon Polymerization Lithography for Imaging Optics. Int. J. Extreme Manuf. 2024, 6, 042002. [Google Scholar] [CrossRef]
- Vanmol, K.; Thienpont, H.; Ferranti, F.; Van Erps, J. Fabrication of Multilevel Metalenses Using Multiphoton Lithography: From Design to Evaluation. Opt. Express 2024, 32, 10190–10203. [Google Scholar] [CrossRef]
- Hao, C.; Gao, S.; Ruan, Q.; Feng, Y.; Li, Y.; Yang, J.; Li, Z.; Qiu, C. Single-Layer Aberration-Compensated Flat Lens for Robust Wide-Angle Imaging. Laser Photon. Rev. 2020, 14, 2000017. [Google Scholar] [CrossRef]
- Pan, C.F.; Wang, H.; Wang, H.; S, P.N.; Ruan, Q.; Wredh, S.; Ke, Y.; Chan, J.Y.E.; Zhang, W.; Qiu, C.W.; et al. 3D-printed Multilayer Structures for High–Numerical Aperture Achromatic Metalenses. Sci. Adv. 2023, 9, eadj9262. [Google Scholar] [CrossRef]
- Ivliev, N.; Evdokimova, V.; Podlipnov, V.; Petrov, M.; Ganchevskaya, S.; Tkachenko, I.; Abrameshin, D.; Yuzifovich, Y.; Nikonorov, A.; Skidanov, R. First Earth-Imaging CubeSat with Harmonic Diffractive Lens. Remote Sens. 2022, 14, 2230. [Google Scholar] [CrossRef]
- Piccirillo, F.; Giaquinto, M.; Ricciardi, A.; Cusano, A. Miniaturized Lenses Integrated on Optical Fibers: Towards a New Milestone along the Lab-on-Fiber Technology Roadmap. Results Opt. 2022, 6, 100203. [Google Scholar] [CrossRef]
- Jia, W.; Lin, D.; Menon, R.; Sensale-Rodriguez, B. Multifocal Multilevel Diffractive Lens by Wavelength Multiplexing. Appl. Opt. 2023, 62, 6931–6938. [Google Scholar] [CrossRef] [PubMed]
- Werdehausen, D.; Burger, S.; Staude, I.; Pertsch, T.; Decker, M. Flat Optics in High Numerical Aperture Broadband Imaging Systems. J. Opt. 2020, 22, 065607. [Google Scholar] [CrossRef]
- Katkovnik, V.; Ponomarenko, M.; Egiazarian, K. Lensless Broadband Diffractive Imaging with Improved Depth of Focus: Wavefront Modulation by Multilevel Phase Masks. J. Mod. Opt. 2019, 66, 335–352. [Google Scholar] [CrossRef]
- Rostami, S.R.; Katkovnik, V.; Egiazarian, K. Extended DoF and Achromatic Inverse Imaging for Lens and Lensless MPM Camera Based on Wiener Filtering of Defocused OTFs. Opt. Eng. 2021, 60, 051204. [Google Scholar] [CrossRef]
- MiriRostami, S.; Pinilla, S.; Shevkunov, I.; Katkovnik, V.; Egiazarian, K. Hybrid Diffractive Optics (DOE & Refractive Lens) for Broadband EDoF Imaging. Electron. Imaging 2023, 35, 1–14. [Google Scholar] [CrossRef]
- Banerji, S.; Meem, M.; Majumder, A.; Sensale-Rodriguez, B.; Menon, R. Extreme-Depth-of-Focus Imaging with a Flat Lens. Optica 2020, 7, 214–217. [Google Scholar] [CrossRef]
- Lin, D.; Hayward, T.M.; Jia, W.; Majumder, A.; Sensale-Rodriguez, B.; Menon, R. Inverse-Designed Multi-Level Diffractive Doublet for Wide Field-of-View Imaging. ACS Photonics 2023, 10, 2661–2669. [Google Scholar] [CrossRef]
- Reda, F.; Salvatore, M.; Borbone, F.; Maddalena, P.; Ambrosio, A.; Oscurato, S.L. Varifocal Diffractive Lenses for Multi-Depth Microscope Imaging. Opt. Express 2022, 30, 12695–12711. [Google Scholar] [CrossRef]
- Minkevičius, L.; Indrišiūnas, S.; Šniaukas, R.; Račiukaitis, G.; Janonis, V.; Tamošiūnas, V.; Kašalynas, I.; Valušis, G. Compact Diffractive Optics for THz Imaging. Lith. J. Phys. 2018, 58. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, F.; Chen, Y.; Hua, J.; Qiao, W.; Chen, L. Vector Light Field Display Based on an Intertwined Flat Lens with Large Depth of Focus. Optica 2022, 9, 288–294. [Google Scholar] [CrossRef]
- Shi, J.; Qiao, W.; Zhou, F.; Yang, M.; Chen, L. A See-through Combiner Based on Pixelated Intertwined Flat Lens for Full-Color Glasses-Free Augmented Reality. Opt. Lasers Eng. 2024, 177, 108147. [Google Scholar] [CrossRef]
- Zarschizky, H.; Stemmer, A.; Mayerhofer, F.; Lefranc, G.; Gramann, W. Binary and Multilevel Diffractive Lenses with Submicrometer Feature Sizes. Opt. Eng. 1994, 33, 3527–3536. [Google Scholar] [CrossRef]
- Ünal, A. Laser Seeker Design with Multi-Focal Diffractive Lens. Eng. Res. Express 2023, 5, 045014. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Rosales-Guzmán, C.; Rai, M.R.; Rosen, J.; Minin, O.V.; Minin, I.V.; Forbes, A. Generation of Structured Light by Multilevel Orbital Angular Momentum Holograms. Opt. Express 2019, 27, 6459–6470. [Google Scholar] [CrossRef]
- Komlenok, M.S.; Kononenko, T.V.; Konov, V.I.; Choporova, Y.Y.; Osintseva, N.D.; Knyazev, B.A.; Pavelyev, V.S.; Tukmakov, K.N.; Soifer, V.A. Silicon Diffractive Optical Element with Piecewise Continuous Profile to Focus High-Power Terahertz Radiation into a Square Area. J. Opt. Soc. Am. B 2021, 38, B9–B13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Zhao, W.; Chen, S.; Li, W. Multilevel Diffractive Lenses: Recent Advances and Applications. Symmetry 2024, 16, 1377. https://doi.org/10.3390/sym16101377
Shi C, Zhao W, Chen S, Li W. Multilevel Diffractive Lenses: Recent Advances and Applications. Symmetry. 2024; 16(10):1377. https://doi.org/10.3390/sym16101377
Chicago/Turabian StyleShi, Chenyu, Weipeng Zhao, Sai Chen, and Wenli Li. 2024. "Multilevel Diffractive Lenses: Recent Advances and Applications" Symmetry 16, no. 10: 1377. https://doi.org/10.3390/sym16101377
APA StyleShi, C., Zhao, W., Chen, S., & Li, W. (2024). Multilevel Diffractive Lenses: Recent Advances and Applications. Symmetry, 16(10), 1377. https://doi.org/10.3390/sym16101377