Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antimicrobial Susceptibility Assessment
2.3. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance
3.2. Antimicrobial Resistance Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammerum, A.M. Enterococci of Animal Origin and Their Significance for Public Health. Clin. Microbiol. Infect. 2012, 18, 619–625. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J.F. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile Genetic Elements and Their Contribution to the Emergence of Antimicrobial Resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Comerlato, C.B.; de Resende, M.C.C.; Caierão, J.; d’Azevedo, P.A. Presence of Virulence Factors in Enterococcus faecalis and Enterococcus faecium Susceptible and Resistant to Vancomycin. Mem. Inst. Oswaldo Cruz 2013, 108, 590–595. [Google Scholar] [CrossRef]
- Buma, R.; Maeda, T.; Kamei, M.; Kourai, H. Pathogenic Bacteria Carried by Companion Animals and Their Susceptibility to Antibacterial Agents. Biocontrol Sci. 2006, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.R.; Fedorka-Cray, P.J.; Davis, J.A.; Barrett, J.B.; Brousse, J.H.; Gustafson, J.; Kucher, M. Mechanisms of Antimicrobial Resistance and Genetic Relatedness among Enterococci Isolated from Dogs and Cats in the United States. J. Appl. Microbiol. 2010, 108, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Dowd, S.E.; Zurek, L. Dogs Leaving the ICU Carry a Very Large Multi-Drug Resistant Enterococcal Population with Capacity for Biofilm Formation and Horizontal Gene Transfer. PLoS ONE 2011, 6, e22451. [Google Scholar] [CrossRef]
- Smoglica, C.; Evangelisti, G.; Fani, C.; Marsilio, F.; Trotta, M.; Messina, F.; Di Francesco, C.E. Antimicrobial Resistance Profile of Bacterial Isolates from Urinary Tract Infections in Companion Animals in Central Italy. Antibiotics 2022, 11, 1363. [Google Scholar] [CrossRef]
- Rumi, M.V.; Nuske, E.; Mas, J.; Argüello, A.; Gutkind, G.; Di Conza, J. Antimicrobial Resistance in Bacterial Isolates from Companion Animals in Buenos Aires, Argentina: 2011–2017 Retrospective Study. Zoonoses Public Health 2021, 68, 516–526. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated from Cats and Dogs from the Iberian Peninsula. Front. Microbiol. 2021, 11, 621597. [Google Scholar] [CrossRef]
- Pillay, S.; Zishiri, O.T.; Adeleke, M.A. Prevalence of Virulence Genes in Enterococcus Species Isolated from Companion Animals and Livestock. Onderstepoort J. Vet. Res. 2018, 85, 1–8. [Google Scholar] [CrossRef]
- Oguttu, J.W.; Qekwana, D.N.; Odoi, A. Prevalence and Predictors of Antimicrobial Resistance among Enterococcus spp. from Dogs Presented at a Veterinary Teaching Hospital, South Africa. Front. Vet. Sci. 2021, 7, 589439. [Google Scholar] [CrossRef]
- Kwon, J.; Ko, H.J.; Yang, M.H.; Park, C.; Park, S.C. Antibiotic Resistance and Species Profile of Enterococcus Species in Dogs with Chronic Otitis Externa. Vet. Sci. 2022, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Kwon, K.H.; Shin, S.; Kim, J.H.; Park, Y.H.; Yoon, J.W. Characterization of Veterinary Hospital-Associated Isolates of Enterococcus Species in Korea. J. Microbiol. Biotechnol. 2014, 24, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Bang, K.; An, J.-U.; Kim, W.; Dong, H.-J.; Kim, J.; Cho, S. Antibiotic Resistance Patterns and Genetic Relatedness of Enterococcus faecalis and Enterococcus faecium Isolated from Military Working Dogs in Korea. J. Vet. Sci. 2017, 18, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.H.; Hwang, S.Y.; Moon, B.Y.; Park, Y.K.; Shin, S.; Hwang, C.-Y.; Park, Y.H. Occurrence of Antimicrobial Resistance and Virulence Genes, and Distribution of Enterococcal Clonal Complex 17 from Animals and Human Beings in Korea. J. Vet. Diagn. Investig. 2012, 24, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Shin, S.; Park, Y.K.; Noh, S.M.; Shin, S.R.; Yoo, H.S.; Park, S.C.; Park, Y.H.; Park, K.T. Distribution and Antimicrobial Resistance Profiles of Bacterial Species in Stray Dogs, Hospital-Admitted Dogs, and Veterinary Staff in South Korea. Prev. Vet. Med. 2020, 184, 105151. [Google Scholar] [CrossRef]
- Jung, W.K.; Shin, S.; Park, Y.K.; Lim, S.-K.; Moon, D.-C.; Park, K.T.; Park, Y.H. Distribution and Antimicrobial Resistance Profiles of Bacterial Species in Stray Cats, Hospital-Admitted Cats, and Veterinary Staff in South Korea. BMC Vet. Res. 2020, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Moon, D.C.; Kim, S.-J.; Mechesso, A.F.; Song, H.-J.; Kang, H.Y.; Choi, J.-H.; Yoon, S.-S.; Lim, S.-K. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms 2021, 9, 925. [Google Scholar] [CrossRef]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of Glycopeptide Resistance Genotypes and Identification to the Species Level of Clinically Relevant Enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty Seventh Informational Supplement, M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- National Antimicrobial Resistance Monitoring System. NARMS Integrated Report: The National Antimicrobial Resistance Monitoring System: Enteric Bacteria; U.S. Food and Drug Administration: Rockville, MD, USA, 2020.
- Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Foods, and Humans in Denmark; National Food Institute, Technical University of Denmark: Kemitorvet, Danmark, 2020; ISSN 1600-2032. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Butaye, P.; Devriese, L.A.; Haesebrouck, F. Differences in Antibiotic Resistance Patterns of Enterococcus faecalis and Enterococcus faecium Strains Isolated from Farm and Pet Animals. Antimicrob. Agents Chemother. 2001, 45, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet Animals as Reservoirs of Antimicrobial-Resistant Bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Liang, B.; Jiang, B.; Sun, S.; Zhou, Y.; Zhu, L.; Liu, J.; Guo, X.; Ji, X.; Sun, Y. Virulence Genes and Antimicrobial Resistance in Enterococcus Strains Isolated from Dogs and Cats in Northeast China. J. Vet. Med. Sci. 2023, 85, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Boyar, Y.; Aslantaş, Ö.; Türkyilmaz, S. Antimicrobial Resistance and Virulence Characteristics in Enterococcus Isolates from Dogs. Kafkas Üniv. Vet. Fak. Derg. 2017, 23, 655–660. [Google Scholar] [CrossRef]
- De Leener, E.; Decostere, A.; De Graef, E.M.; Moyaert, H.; Haesebrouck, F. Presence and Mechanism of Antimicrobial Resistance among Enterococci from Cats and Dogs. Microb. Drug Resist. 2005, 11, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Salvadori, C.; Lotti, G.; Cerri, D.; Ebani, V.V. Antimicrobial Resistance in Enterococcus Strains Isolated from Healthy Domestic Dogs. Acta Microbiol. Immunol. Hung. 2017, 64, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Altier, C.; Cazer, C. Antimicrobial Resistance among Canine Enterococci in the Northeastern United States, 2007–2020. Front. Microbiol. 2023, 13, 1025242. [Google Scholar] [CrossRef]
- Damborg, P.; Sørensen, A.H.; Guardabassi, L. Monitoring of Antimicrobial Resistance in Healthy Dogs: First Report of Canine Ampicillin-Resistant Enterococcus faecium Clonal Complex 17. Vet. Microbiol. 2008, 132, 190–196. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Davis, J.A.; Barrett, J.B.; Frye, J.G. Prevalence, Species Distribution and Antimicrobial Resistance of Enterococci Isolated from Dogs and Cats in the United States. J. Appl. Microbiol. 2009, 107, 1269–1278. [Google Scholar] [CrossRef]
- Poeta, P.; Costa, D.; Rodrigues, J.; Torres, C. Antimicrobial Resistance and the Mechanisms Implicated in Faecal Enterococci from Healthy Humans, Poultry and Pets in Portugal. Int. J. Antimicrob. Agents 2006, 27, 131–137. [Google Scholar] [CrossRef] [PubMed]
- De Graef, E.M.; Decostere, A.; Devriese, L.A.; Haesebrouck, F. Antibiotic Resistance among Fecal Indicator Bacteria from Healthy Individually Owned and Kennel Dogs. Microb. Drug Resist. 2004, 10, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xie, W.; Lin, X.; Baloch, A.R.; Zhang, X. Antimicrobial Resistance in Enterococci Isolates from Pet Dogs in Xi’an, China. Pak. Vet. J. 2012, 32, 462–464. [Google Scholar]
- Delgado, M.; Neto, I.; Correia, J.H.D.; Pomba, C. Antimicrobial Resistance and Evaluation of Susceptibility Testing among Pathogenic Enterococci Isolated from Dogs and Cats. Int. J. Antimicrob. Agents 2007, 1, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Iseppi, R.; Messi, P.; Anacarso, I.; Bondi, M.; Sabia, C.; Condò, C.; de Niederhausern, S. Antimicrobial Resistance and Virulence Traits in Enterococcus Strains Isolated from Dogs and Cats. New Microbiol. 2015, 38, 369–378. [Google Scholar] [PubMed]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus Spp. of Animal Origin. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; Wiley: Hoboken, NJ, USA, 2018; pp. 185–227. ISBN 9781683670520. [Google Scholar]
- Aslanta, Ö. Investigation of Faecal Carriage of High-Level Gentamicin Resistant Enterococci in Dogs and Cats. Isr. J. Vet. Med. 2022, 77, 27–37. [Google Scholar]
- Garneau-Tsodikova, S.; Labby, K.J. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. Medchemcomm 2016, 7, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and Acquired Resistance Mechanisms in Enterococcus. Virulence 2012, 3, 421–433. [Google Scholar] [CrossRef]
- Damborg, P.; Top, J.; Hendrickx, A.P.A.; Dawson, S.; Willems, R.J.L.; Guardabassi, L. Dogs Are a Reservoir of Ampicillin-Resistant Enterococcus faecium Lineages Associated with Human Infections. Appl. Environ. Microbiol. 2009, 75, 2360–2365. [Google Scholar] [CrossRef]
- Abdel-Moein, K.A.; El-Hariri, M.D.; Wasfy, M.O.; Samir, A. Occurrence of Ampicillin-Resistant Enterococcus faecium Carrying Esp Gene in Pet Animals: An Upcoming Threat for Pet Lovers. J. Glob. Antimicrob. Resist. 2017, 9, 115–117. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M. Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. In Virulence Mechanisms of Bacterial Pathogens; Wiley: Hoboken, NJ, USA, 2016; pp. 481–511. [Google Scholar]
- Gawryszewska, I.; Hryniewicz, W.; Sadowy, E. Penicillin Resistance in Enterococcus faecalis: Molecular Determinants and Epidemiology. Polish J. Microbiol. 2012, 61, 153. [Google Scholar] [CrossRef]
- Rice, L.B.; Desbonnet, C.; Tait-Kamradt, A.; Garcia-Solache, M.; Lonks, J.; Moon, T.M.; D’Andréa, É.D.; Page, R.; Peti, W. Structural and Regulatory Changes in PBP4 Trigger Decreased β-Lactam Susceptibility in Enterococcus faecalis. mBio 2018, 9, 10–1128. [Google Scholar] [CrossRef]
- Marks, S.L.; Rankin, S.C.; Byrne, B.A.; Weese, J.S. Enteropathogenic Bacteria in Dogs and Cats: Diagnosis, Epidemiology, Treatment, and Control. J. Vet. Intern. Med. 2011, 25, 1195–1208. [Google Scholar] [CrossRef]
- Min, Y.-H.; Jeong, J.-H.; Choi, Y.-J.; Yun, H.-J.; Lee, K.; Shim, M.-J.; Kwak, J.-H.; Choi, E.-C. Heterogeneity of Macrolide-Lincosamide-Streptogramin B Resistance Phenotypes in Enterococci. Antimicrob. Agents Chemother. 2003, 47, 3415–3420. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Bertelloni, F.; Dec, M.; Cagnoli, G.; Pietras-Ożga, D.; Urban-Chmiel, R.; Ebani, V.V. Characterization and Comparison of Enterococcus Spp. Isolates from Feces of Healthy Dogs and Urine of Dogs with UTIs. Animals 2021, 11, 2845. [Google Scholar] [CrossRef]
- Ghosh, A.; KuKanich, K.; Brown, C.E.; Zurek, L. Resident Cats in Small Animal Veterinary Hospitals Carry Multi-Drug Resistant Enterococci and Are Likely Involved in Cross-Contamination of the Hospital Environment. Front. Microbiol. 2012, 3, 19232. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M. Antimicrobial Resistance in Bacteria of Animal Origin. Emerg. Infect. Dis. 2006, 12, 1180. [Google Scholar]
- Ma, S.; Chen, S.; Lyu, Y.; Huang, W.; Liu, Y.; Dang, X.; An, Q.; Song, Y.; Jiao, Y.; Gong, X. China Antimicrobial Resistance Surveillance Network for Pets (CARPet), 2018 to 2021. One Health Adv. 2023, 1, 7. [Google Scholar] [CrossRef]
- Talaga-Ćwiertnia, K.; Bulanda, M. Drug resistance in the genus–current problem in humans and animals. Postęp. Mikrobiol. Microbiol. 2018, 57, 244–250. [Google Scholar] [CrossRef]
- Palmer, K.L.; Daniel, A.; Hardy, C.; Silverman, J.; Gilmore, M.S. Genetic Basis for Daptomycin Resistance in Enterococci. Antimicrob. Agents Chemother. 2011, 55, 3345–3356. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Kim, J.-H. Efficacy of Tigecycline and Linezolid Against Pan-Drug-Resistant Bacteria Isolated from Companion Dogs in South Korea. Front. Vet. Sci. 2021, 8, 693506. [Google Scholar] [CrossRef] [PubMed]
- Gaire, T.N.; Scott, H.M.; Sellers, L.; Nagaraja, T.G.; Volkova, V. V Age Dependence of Antimicrobial Resistance among Fecal Bacteria in Animals: A Scoping Review. Front. Vet. Sci. 2021, 7, 622495. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, C.H.; Hill, K.E.; Gibson, I.R.; Bridges, J.P.; Benschop, J. Antimicrobial Resistance Patterns of Bacteria Isolated from Canine Urinary Samples Submitted to a New Zealand Veterinary Diagnostic Laboratory between 2005–2012. N. Z. Vet. J. 2017, 65, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Silva, V.; Igrejas, G.; Poeta, P. Impact of European Pet Antibiotic Use on Enterococci and Staphylococci Antimicrobial Resistance and Human Health. Future Microbiol. 2021, 16, 185–203. [Google Scholar] [CrossRef]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal Gene Transfer and the Genomics of Enterococcal Antibiotic Resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef]
- Scarafile, G. Antibiotic Resistance: Current Issues and Future Strategies. Rev. Health Care 2016, 7, 3–16. [Google Scholar] [CrossRef]
Antimicrobials | Resistance Rate % (No. of Isolates) | |||||||
---|---|---|---|---|---|---|---|---|
E. faecium | E. faecalis | |||||||
Dogs (n = 298) | Cats (n = 54) | p Value | Subtotal (n = 352) | Dogs (n = 448) | Cats (n = 125) | p Value | Subtotal (n = 573) | |
Ampicillin | 17.8 (53) | 14.8 (8) | 0.6301 | 17.3 (61) | 0 (0) | 0 (0) | ND | 0 (0) |
Chloramphenicol | 2.3 (7) | 0 (0) | 0.1552 | 2.0 (7) | 16.7 (75) | 31.2 (39) | 0.0469 | 19.9 (114) |
Ciprofloxacin | 41.3 (123) | 44.4 (24) | 0.7105 | 41.8 (147) | 3.1 (14) | 5.6 (7) | 0.5234 | 3.7 (21) |
Daptomycin | 1.7 (5) | 3.7 (2) | 0.47 | 2.0 (7) | 0 (0) | 0 (0) | ND | 0 (0) |
Erythromycin | 40.3 (120) | 35.2 (19) | 0.5296 | 39.5 (139) | 39.5 (177) | 49.6 (62) | 0.2621 | 41.7 (239) |
Florfenicol | 1.3 (4) | 0 (0) | 0.2929 | 1.1 (4) | 3.1 (14) | 8.0 (10) | 0.2616 | 4.2 (24) |
Gentamicin | 7.4 (22) | 9.3 (5) | 0.685 | 7.7 27) | 17.9 (80) | 28.0 (35) | 0.1912 | 20.1 (115) |
Kanamycin | 12.1 (36) | 16.7 (9) | 0.4368 | 12.8 (45) | 31.5 (141) | 36.0 (45) | 0.602 | 32.5 (186) |
Linezolid | 0 (0) | 0 (0) | ND | 0 (0) | 0 (0) | 0 (0) | ND | 0 (0) |
Quinupristin/dalfopristin | 7.4 (22) | 9.3 (5) | 0.685 | 7.7 (27) | ND | ND | ND | ND |
Salinomycin | 0 (0) | 0 (0) | ND | 0 (0) | 0 (0) | 0 (0) | ND | 0 (0) |
Streptomycin | 15.1 (45) | 11.1 (6) | 0.4718 | 14.5 (51) | 18.8 (84) | 24.0 (30) | 0.4837 | 19.9 (114) |
Tetracycline | 35.6 (106) | 31.5 (17) | 0.6097 | 34.9 (123) | 65.2 (292) | 75.2 (94) | 0.2227 | 67.4 (386) |
Tigecycline | 0 (0) | 0 (0) | ND | 0 (0) | 0 (0) | 0 (0) | ND | 0 (0) |
Tylosin | 14.4 (43) | 14.8 (8) | 0.9522 | 14.5 (51) | 39.5 (177) | 48.0 (60) | 0.3479 | 41.4 (237) |
Vancomycin | 0 (0) | 0 (0) | ND | 0 (0) | 0 (0) | 0 (0) | ND | 0 (0) |
MDR | 20.5 (61/298) | 24.1 (13/54) | 0.5999 | 21.0 (74/352) | 33.9 (152/448) | 44.0 (55/125) | 0.2543 | 36.1 (207/573) |
Antimicrobials | Resistance Rate % (No. of Isolates) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dogs (n = 298) | Cats (n = 54) | ||||||||
1 Year: Puppy and Juvenile (n = 66) | 2–5 Years: Mature Adult (n = 88) | 6–10 Years: Senior (n = 102) | ≥11 Years: Geriatric (n = 42) | Subtotal | ≤1 Year: Kitten (n = 28) | 2–6 Years: Junior and Adults (n = 22) | 7–10 Years: Mature (n = 4) | Subtotal | |
Ampicillin | 16.7 (11) | 9.1 (8) | 22.5 (23) | 26.2 (11) | 17.8 (53) | 10.7 (3) | 18.2 (4) | 25.0 (1) | 14.8 (8) |
Chloramphenicol | 3.0 (2) | 3.4 (3) | 1.0 (1) | 2.4 (1) | 2.3 (7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Ciprofloxacin | 48.5 (32) | 35.2 (31) | 38.2 (39) | 50.0 (21) | 41.3 (123) | 35.7 (10) | 54.5 (12) | 50.0 (2) | 44.4 (24) |
Daptomycin | 0 (0) | 1.1 (1) | 2.9 (3) | 2.4 (1) | 1.7 (5) | 3.6 (1) | 4.5 (1) | 0 (0) | 3.7 (2) |
Erythromycin | 43.9 (29) | 33 (29) | 41.2 (42) | 47.6 (20) | 40.3 (120) | 35.7 (10) | 31.8 (7) | 50.0 (2) Δ | 35.2 (19) |
Florfenicol | 3.0 (2) | 1.1 (1) | 0 (0) | 2.4 (1) | 1.3 (4) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Gentamicin | 10.6 (7) | 2.3 (2) | 6.9 (7) | 14.3 (6) | 7.4 (22) | 7.1 (2) | 9.1 (2) | 25.0 (1) Δ | 9.3 (5) |
Kanamycin | 18.2 (12) | 2.3 (2) * | 10.8 (11) | 26.2 (11) # | 12.1 (36) | 14.3 (4) | 18.2 (4) | 25.0 (1) | 16.7 (9) |
Linezolid | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Quinupristin/dalfopristin | 7.6 (5) | 5.7 (5) | 6.9 (7) | 11.9 (5) | 7.4 (22) | 14.3 (4) | 0 (0) † | 25.0 (1) Δ | 9.3 (5) |
Salinomycin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Streptomycin | 15.2 (10) | 8.0 (7) | 15.7 (16) | 28.6 (12) # | 15.1 (45) | 10.7 (3) | 9.1 (2) | 25.0 (1) Δ | 11.1 (6) |
Tetracycline | 36.4 (24) | 27.3 (24) | 39.2 (40) | 42.9 (18) | 35.6 (106) | 28.6 (8) | 31.8 (7) | 50.0 (2) Δ | 31.5 (17) |
Tigecycline | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Tylosin | 18.2 (12) | 9.1 (8) | 11.8 (12) | 26.2 (11) # | 14.4 (43) | 14.3 (4) | 13.6 (3) | 25.0 (1) | 14.8 (8) |
Vancomycin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
MDR | 24.2 (16) | 13.6 (12) | 18.6 (19) | 33.3 (14) # | 20.5 (61/298) | 21.4 (6) | 27.3 (6) | 25.0 (1) | 24.1 (13/54) |
Antimicrobials | Resistance Rate % (No. of Isolates) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dogs (n = 448) | Cats (n = 125) | |||||||||||
1 Year: Puppy and Juvenile (n = 92) | 2–5 Years: Mature Adult (n = 148) | 6–10 Years: Senior (n = 147) | ≥11 Years: Geriatric (n = 59) | Unkn-own (n = 2) | Subtotal | ≤1 Year: Kitten (n = 53) | 2–6 Years: Junior and Adults (n = 45) | 7–10 Years: Mature (n = 20) | ≥11 Years: Senior (n = 6) | Unkn-own (n = 1) | Subtotal | |
Ampicillin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Chloramphenicol | 17.4 (16) | 16.2 (24) | 17.7 (26) | 15.3 (9) | 0 (0) | 16.7 (75) | 32.1 (17) | 26.7 (12) | 30.0 (6) | 66.7 (4) † | 0 (0) | 31.2 (39) |
Ciprofloxacin | 4.3 (4) | 2.7 (4) | 2.0 (3) | 5.1 (3) | 0 (0) | 3.1 (14) | 11.3 (6) | 0 (0) * | 5 (1) | 0 (0) † | 0 (0) | 5.6 (7) |
Daptomycin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Erythromycin | 41.3 (38) | 38.5 (57) | 40.1 (59) | 39.0 (23) | 0 (0) | 39.5 (177) | 43.4 (23) | 55.6 (25) | 45.0 (9) | 66.7 (4) † | 100.0 (1) | 49.6 (62) |
Florfenicol | 4.3 (4) | 1.4 (2) | 4.1 (6) | 3.4 (2) | 0 (0) | 3.1 (14) | 15.1 (8) | 2.2 (1) | 5.0 (1) | 0 (0) † | 0 (0) | 8.0 (10) |
Gentamicin | 20.7 (19) | 17.6 (26) | 15.6 (23) | 20.3 (12) | 0 (0) | 17.9 (80) | 32.1 (17) | 24.4 (11) | 20.0 (4) | 50.0 (3) † | 0 (0) | 28.0 (35) |
Kanamycin | 38 (35) | 31.1 (46) | 27.9 (41) | 32.2 (19) | 0 (0) | 31.5 (141) | 39.6 (21) | 35.6 (16) | 20.0 (4) # | 66.7 (4) † | 0 (0) | 36.0 (45) |
Linezolid | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Quinupristin/dalfopristin | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Salinomycin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Streptomycin | 19.6 (18) | 20.9 (31) | 15.6 (23) | 20.3 (12) | 0 (0) | 18.8 (84) | 30.2 (16) | 20.0 (9) | 20.0 (4) | 16.7 (1) | 0 (0) | 24.0 (30) |
Tetracycline | 68.5 (63) | 67.6 (100) | 63.3 (93) | 59.3 (35) | 50.0 (1) | 65.2 (292) | 66.0 (35) | 80.0 (36) | 85.0 (17) | 100.0 (6) † | 0 (0) | 75.2 (94) |
Tigecycline | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) † | 0 (0) | 0 (0) |
Tylosin | 42.4 (39) | 37.2 (55) | 40.8 (60) | 39.0 (23) | 0 (0) | 39.5 (177) | 43.4 (23) | 53.3 (24) | 45.0 (9) | 66.7 (4) † | 0 (0) | 48.0 (60) |
Vancomycin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
MDR | 38.0 (35) | 32.4 (48) | 34.0 (50) | 32.2 (19) | 0 (0) | 33.9 (152/448) | 45.3 (24) | 42.2 (19) | 40.0 (8) | 66.7 (4) † | 0 (0) | 44.0 (55/125) |
No. of Antimicrobials | Dog Isolates (n = 298) | Cat Isolates (n = 54) | ||
---|---|---|---|---|
No. of Isolates (%) | Most Common Pattern (No. of Isolates, %) | No. of Isolates (%) | Most Common Pattern (No. of Isolates, %) | |
0 | 68 (22.8) | – | 15 (27.8) | – |
1 | 114 (38.3) | ERY (n = 61, 20.5%) | 19 (35.2) | CIP (n = 7, 13.0%) |
2 | 54 (18.1) | CIP TET (n = 31, 10.4%) | 7 (13.0) | CIP TET (n = 4, 7.4%) |
3 | 13 (4.4) | CIP ERY TET (n = 4, 1.3%) | 3 (5.6) | AMP STR TET (n = 1, 1.9%), CIP ERY SYN (n = 1, 1.9%), CIP ERY TET (n = 1, 1.9%) |
4 | 9 (3.0) | AMP CIP STR TET (n = 3, 1.0%) | 2 (3.7) | AMP CIP GEN KAN (n = 1, 1.9%), AMP CIP ERY TYL (n = 1, 1.9%) |
5 | 7 (2.3) | AMP CIP ERY TET TYL (n = 2, 0.7%) CHL CIP ERY TET TYL (n = 2, 0.7%) CIP ERY STR TET TYL (n = 2, 0.7%) | 2 (3.7) | AMP CIP GEN KAN TET (n = 1, 1.9%), CIP ERY KAN TET TYL (n = 1, 1.9%) |
6 | 8 (2.7) | CIP ERY KAN STR TET TYL (n = 3, 1.0%) | 3 (5.6) | AMP CIP ERY STR TET TYL (n = 1, 1.9%), CIP ERY KAN STR TET TYL (n = 1, 1.9%), ERY GEN KAN STR TET TYL (n = 1, 1.9%) |
7 | 10 (3.4) | AMP CIP ERY KAN STR TET TYL (n = 4, 1.3%) | 1 (1.9) | AMP CIP ERY KAN SYN TET TYL (n = 1, 1.9%) |
8 | 5 (1.7) | AMP CIP ERY GEN KAN STR TET TYL (n = 2, 0.7%) | – | – |
9 | 7 (2.3) | AMP CIP ERY GEN KAN SYN STR TET TYL (n = 4, 1.3%) | 2 (3.7) | AMP CIP ERY GEN KAN SYN STR TET TYL (n = 2, 3.7%) |
10 | 2 (0.7) | AMP CIP DAP ERY GEN KAN SYN STR TET TYL (n = 2, 0.7%) | – | – |
11 | 1 (0.3) | AMP CHL CIP ERY FLR GEN KAN SYN STR TET TYL (n = 1, 0.3%) | – | – |
No. of Antimicrobials | Dog Isolates (n = 448) | Cat Isolates (n = 125) | ||
---|---|---|---|---|
No. of Isolates (%) | Most Common Pattern (No. of Isolates, %) | No. of Isolates (%) | Most Common Pattern (No. of Isolates, %) | |
0 | 147 (32.8) | – | 26 (20.8) | – |
1 | 101 (22.5) | TET (n = 101, 22.5%) | 33 (26.4) | TET (n = 31, 24.8%) |
2 | 22 (4.9) | CHL TET (n = 11, 2.5%) | 3 (2.4) | CHL TET (n = 1, 0.8%), CIP TET (n = 1, 0.8%), ERY TET (n = 1, 0.8%) |
3 | 25 (5.6) | ERY TET TYL (n = 20, 4.5%) | 8 (6.4) | ERY TET TYL (n = 6, 4.8%) |
4 | 31 (6.9) | ERY KAN TET TYL (n = 11, 2.5%) | 11 (8.8) | CHL ERY TET TYL (n = 8, 6.4%) |
5 | 56 (12.5) | ERY KAN STR TET TYL (n = 27, 6.0%) | 10 (8.0) | ERY GEN KAN TET TYL (n = 3, 2.4%), ERY KAN STR TET TYL (n = 3, 2.4%) |
6 | 40 (8.9) | ERY GEN KAN STR TET TYL (n = 18, 4.0%) | 21 (16.8) | CHL ERY GEN KAN TET TYL (n = 8, 6.4%) ERY GEN KAN STR TET TYL (n = 8, 6.4% |
7 | 20 (4.5) | CHL ERY GEN KAN STR TET TYL (n = 16, 3.6%) | 6 (4.8) | CHL ERY GEN KAN STR TET TYL (n = 6, 4.8%) |
8 | 4 (0.9) | CHL CIP ERY FLR GEN KAN TET TYL (n = 3, 0.7%) | 6 (4.8) | CHL ERY FLR GEN KAN STR TET TYL (n = 4, 3.2%) |
9 | 2 (0.4) | CHL CIP ERY FLR GEN KAN STR TET TYL (n = 2, 0.4%) | 1 (0.8) | CHL CIP ERY FLR GEN KAN STR TET TYL (n = 1, 0.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, B.-Y.; Ali, M.S.; Choi, J.-H.; Heo, Y.-E.; Lee, Y.-H.; Kang, H.-S.; Kim, T.-S.; Yoon, S.-S.; Moon, D.-C.; Lim, S.-K. Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea. Microorganisms 2023, 11, 2991. https://doi.org/10.3390/microorganisms11122991
Moon B-Y, Ali MS, Choi J-H, Heo Y-E, Lee Y-H, Kang H-S, Kim T-S, Yoon S-S, Moon D-C, Lim S-K. Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea. Microorganisms. 2023; 11(12):2991. https://doi.org/10.3390/microorganisms11122991
Chicago/Turabian StyleMoon, Bo-Youn, Md. Sekendar Ali, Ji-Hyun Choi, Ye-Eun Heo, Yeon-Hee Lee, Hee-Seung Kang, Tae-Sun Kim, Soon-Seek Yoon, Dong-Chan Moon, and Suk-Kyung Lim. 2023. "Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea" Microorganisms 11, no. 12: 2991. https://doi.org/10.3390/microorganisms11122991
APA StyleMoon, B.-Y., Ali, M. S., Choi, J.-H., Heo, Y.-E., Lee, Y.-H., Kang, H.-S., Kim, T.-S., Yoon, S.-S., Moon, D.-C., & Lim, S.-K. (2023). Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Dogs and Cats in South Korea. Microorganisms, 11(12), 2991. https://doi.org/10.3390/microorganisms11122991