Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Synthesis of the Alg-EDTA
2.4. Adsorption–Desorption Experiments
3. Results and Discussion
3.1. Material Characterization
3.2. Effect of Concentrations of Alginate Sodium
3.3. Effect of pH
3.4. Effect of Adsorption Time
3.5. Effect of Environmental Temperature
3.6. Adsorption Ability and Maximum Adsorption Capacity
3.7. Adsorption Mechanism
3.8. Regeneration Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Fu, F.L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Guo, T.Y.; Cao, M.W.; Chai, B.F. Effects of heavy metals on phyllosphere and rhizosphere microbial community of bothriochloa ischaemum. Appl. Sci. 2018, 8, 1419. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Huang, Y.G.; Wang, M.; Wu, G.H.; Geng, T.M.; Zhao, Y.G.; Wu, A.G. Macroporous calcium alginate aerogel as sorbent for Pb2+ removal from water media. J. Environ. Chem. Eng. 2016, 4, 3185–3192. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Jin, P.X.; Wang, M.; Wu, G.H.; Sun, J.Y.; Zhang, Y.J.; Dong, C.; Wu, A.G. Highly efficient removal of toxic Pb2+ from wastewater by an alginate-chitosan hybrid adsorbent. J. Chem. Technol. Biotechnol. 2018, 93, 2691–2700. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wu, A.G.; Ciacchi, L.C.; Wei, G. Recent advances in nanoporous membranes for water purification. Nanomaterials 2018, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.G.; Wang, Z.Q. Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+ and Cu2+ from water. Int. J. Biol. Macromol. 2018, 107, 741–747. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Ziaei, E.; Mehdinia, A.; Jabbari, A. A novel hierarchical nanobiocomposite of graphene oxide-magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples. Anal. Chim. Acta 2014, 850, 49–56. [Google Scholar] [CrossRef]
- Kang, J.Y.; Zhang, Y.J.; Li, X.; Miao, L.J.; Wu, A.G. A rapid colorimetric sensor of clenbuterol based on cysteaminemodified gold nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 1–5. [Google Scholar] [CrossRef]
- Perez, M.R.; Pavlovic, I.; Barriga, C.; Cornejo, J.; Hermosin, M.C.; Ulibari, M.A. Uptake of Cu2+, Cd2+ and Pb2+ on Zn-Al layered double hydroxide intercalated with edta. Appl. Clay Sci. 2006, 32, 245–251. [Google Scholar] [CrossRef]
- Deze, E.G.; Papageorgiou, S.K.; Favvas, E.P.; Katsaros, F.K. Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption. Chem. Eng. J. 2012, 209, 537–546. [Google Scholar] [CrossRef]
- Pradhan, N.; Rene, E.R.; Lens, P.N.L.; Dipasquale, L.; D’Ippolito, G.; Fontana, A.; Panico, A.; Esposito, G. Adsorption behaviour of lactic acid on granular activated carbon and anionic resins: Thermodynamics, isotherms and kinetic studies. Energies 2017, 10, 665. [Google Scholar] [CrossRef]
- Xi, J.H.; He, M.C.; Lin, C.Y. Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition. Microchem. J. 2011, 97, 85–91. [Google Scholar] [CrossRef]
- Yang, X.Z.; Zhou, T.Z.; Ren, B.Z.; Hursthouse, A.; Zhang, Y.Z. Removal of Mn(II) by sodium alginate/graphene oxide composite double-network hydrogel beads from aqueous solutions. Sci. Rep. 2018, 8, 10717. [Google Scholar] [CrossRef] [PubMed]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.F.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Perez-Quintanilla, D.; del Hierro, I.; Fajardo, M.; Sierra, I. Adsorption of cadmium(II) from aqueous media onto a mesoporous silica chemically modified with 2-mercaptopyrimidine. J. Mater. Chem. 2006, 16, 1757–1764. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009, 153, 70–79. [Google Scholar] [CrossRef]
- Jha, V.K.; Matsuda, M.; Miyake, M. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 2008, 160, 148–153. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Zafar, S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and edx analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 2009, 164, 161–171. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arab. J. Chem. 2012, 5, 439–446. [Google Scholar] [CrossRef]
- Castaldi, P.; Santona, L.; Enzo, S.; Melis, P. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. J. Hazard. Mater. 2008, 156, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namiesnik, J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interfaces Sci. 2006, 304, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.X.; Wang, L.Y.; Chi, R.A.; Zhang, Y.F.; Xu, Z.G.; Guo, J. Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Appl. Surf. Sci. 2013, 268, 163–170. [Google Scholar] [CrossRef]
- Krol, M.; Matras, E.; Mozgawa, W. Sorption of Cd2+ ions onto zeolite synthesized from perlite waste. Int. J. Environ. Sci. Technol. 2016, 13, 2697–2704. [Google Scholar] [CrossRef]
- Burham, N.; Sayed, M. Adsorption behavior of Cd2+ and Zn2+ onto natural egyptian bentonitic clay. Minerals 2016, 6, 129. [Google Scholar] [CrossRef]
- Ahmad, R.; Hasan, I. L-cystein modified bentonite-cellulose nanocomposite (cellu/cys-bent) for adsorption of Cu2+, Pb2+, and Cd2+ ions from aqueous solution. Sep. Sci. Technol. 2016, 51, 381–394. [Google Scholar] [CrossRef]
- Liu, Y.; Lou, Z.M.; Sun, Y.; Zhou, X.X.; Baig, S.A.; Xu, X.H. Influence of complexing agent on the removal of Pb(II) from aqueous solutions by modified mesoporous SiO2. Microporous Mesoporous Mater. 2017, 246, 1–13. [Google Scholar] [CrossRef]
Kinetic model | Formula | Parameters | Cd2+ | Pb2+ | Cu2+ | Cr3+ | Co2+ |
---|---|---|---|---|---|---|---|
pseudo-first-order | qt = qe(1 − exp(−k1t)) | qe (mg/g) | 79.932 | 147.926 | 44.947 | 34.328 | 38.946 |
k1 (L/min) | 0.009 | 0.008 | 0.008 | 0.007 | 0.007 | ||
R2 | 0.984 | 0.979 | 0.987 | 0.992 | 0.992 | ||
pseudo-second-order | qt = qe(1 − 1/(1 + qek2t)) | qe (mg/g) | 97.141 | 181.306 | 55.578 | 43.500 | 49.693 |
k2 (L/min) | 1.006 × 10−4 | 4.712 × 10−5 | 1.530 × 10−4 | 1.651 × 10−4 | 1.365 × 10−4 | ||
R2 | 0.991 | 0.989 | 0.992 | 0.993 | 0.993 | ||
- | - | qe (experiment, mg/g) | 82.027 | 148.56 | 45.222 | 33.459 | 37.526 |
T (K) | |||
---|---|---|---|
288 | - | - | |
293 | - | - | |
298 | |||
303 | - | - |
Alg-EDTA | Initial concentration (mM) | Adsorption (%) | Adsorption capacity (mg/g) | |||
---|---|---|---|---|---|---|
In deionized water | 1.5 (Cd2+) | - | 96.3 | - | 80.8 | - |
1.5 (Pb2+) | - | 95.6 | - | 157.0 | - | |
1.5 (Cu2+) | - | 93.8 | - | 47.1 | - | |
1.5 (Zn2+) | - | 70.8 | - | 32.3 | - | |
1.5 (Co2+) | - | 84.8 | - | 37.8 | - | |
1.5 (Cr3+) | - | 85.5 | - | 33.3 | - | |
1.5 (Cd2+) | 1.5 (Co2+) | 87.0 | 69.5 | 73.0 | 30.8 | |
1.5 (Cd2+) | 1.5 (Zn2+) | 85.9 | 60.3 | 72.3 | 29.5 | |
1.5 (Cd2+) | 1.5 (Pb2+) | 90.4 | 82.5 | 76.0 | 135.5 | |
1.5 (Cd2+) | 1.5 (Cu2+) | 90.2 | 80.9 | 75.8 | 40.5 | |
1.5 (Cd2+) | 1.5 (Cr3+) | 85.1 | 74.8 | 71.3 | 29.3 | |
In tap water | 1.5 (Cd2+) | - | 93.7 | - | 78.8 | - |
1.5 (Cd2+) | 1.5 (Pb2+) | 91.1 | 85.5 | 76.5 | 140.5 | |
In pond water | 1.5 (Cd2+) | - | 91.2 | - | 76.5 | - |
1.5 (Cd2+) | 1.5 (Pb2+) | 90.1 | 84.2 | 75.8 | 138.5 | |
In river water | 1.5 (Cd2+) | - | 90.7 | - | 76.3 | - |
1.5 (Cd2+) | 1.5 (Pb2+) | 90.1 | 87.6 | 75.8 | 144.0 |
Sorbent | Maximum adsorption capacity for Cd2+ (mg/g) | Adsorption Time (min) | Reference |
---|---|---|---|
2-mercaptopyrimidine functionalized Mesoporous silica | 112.5 | 30 | [17] |
Amino functionalized MCM-41 | 18.3 | 120 | [18] |
Activated carbon-zeolite composite | 161.8 | 1440 | [19] |
Mango peel waste | 68.9 | 60 | [20] |
Nano crystallite hydroxyapatite | 142 | 120 | [21] |
Natural zeolite | 130.4 | 1440 | [22] |
Clinoptilolite | 4.22 | 2880 | [23] |
Magnetic modified sugarcane bagasse | 123.6 | 60 | [24] |
Zeolite synthesized from perlite waste | 139.0 | 1440 | [25] |
Natural Egyptian bentonitic clay | 8.2 | 60 | [26] |
L-cystein modified bentonite-cellulose nanocomposite | 16.1 | 2880 | [27] |
Alg-EDTA | 177.3 | 360 | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, Z.; Zhou, X.; Li, S. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Appl. Sci. 2019, 9, 547. https://doi.org/10.3390/app9030547
Wang M, Wang Z, Zhou X, Li S. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Applied Sciences. 2019; 9(3):547. https://doi.org/10.3390/app9030547
Chicago/Turabian StyleWang, Min, Zhuqing Wang, Xiaohong Zhou, and Shikun Li. 2019. "Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel" Applied Sciences 9, no. 3: 547. https://doi.org/10.3390/app9030547
APA StyleWang, M., Wang, Z., Zhou, X., & Li, S. (2019). Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Applied Sciences, 9(3), 547. https://doi.org/10.3390/app9030547