Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine
Abstract
:1. Introduction
2. Pathogenesis
- a.
- Etiology
- -
- Genetic components: The importance of type I interferon has been recognized in the pathogenesis of SS. In pSS, labial salivary gland and peripheral blood gene expression microarray studies, have demonstrated dysregulation of type I interferon-inducible genes [8]. The Genome-Wide Association studies (GWS) reported a strong association in SS within the HLA region at 6p21 (OR = 3.5) and with IRF5 (transcription factor mediating type I interferon responses in monocytes, dendritic cells, and B cells that induces the transcription of interferon-alfa genes and the production of pro-inflammatory cytokines upon viral infection), STAT4, IL12A and TNIP1 loci [9]; although genetic factors determine the baseline disease susceptibility and disease phenotype, these factors contribute modestly to the clinical condition [10].
- -
- Epigenetic mechanisms: Different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs, are important factors for modulating gene expression and generating an important link between the genome and phenotypic manifestations [11].
- -
- Biological factors: several different types of infections can increase the risk of SS, triggering a proinflammatory microenvironment that promotes autoimmunity. As it was mentioned above, the GWS reported a strong association with the presence of IRF5 loci and the transcription of interferon-alfa genes, and the production of pro-inflammatory cytokines upon viral infection [9]. Both type I IFN and virus TLR ligands can stimulate the production of BAFF (B cell-activating factor of the tumor necrosis factor family) in cultured salivary glands epithelial cells, suggesting that viral infection could be responsible for the increase in BAFF production by ductal epithelial cells in pSS [12]. Different viruses have also been implicated in SS pathogenesis, such as Epstein–Barr virus (EBV), cytomegalovirus, hepatitis C, human T-lymphocyte virus type I, and hepatitis B [13]. Especially reactivation of latent EBV in genetically and hormonally susceptible individuals could play a role in the initiation and perpetuation of the chronic inflammatory autoimmune response in the glands [14]. Current evidence supports the fact that viral infections are factors that largely increase the risk of SS [10]. To this respect, it is important to clarify that epidemiologic studies only confirm association but do not prove causation.
- -
- Organic chemical factors: smoking, alcohol, solvents (prevalence studies with poor evidence) [15].
- -
- Inorganic chemical factors: silicone breast implants and silica. In recent years, clinicians have become aware of the existence of autoimmune/inflammatory syndrome induced by adjuvants (ASIA) associated with previous agents such as vaccines and silicone implants [16]; the authors described that such implants may lead to heterogeneous symptoms such as body aches, abnormal fatigue, depression, dry eyes, dry mouth, and chronic fatigue syndrome, among others. In a meta-analysis conducted to determine long-term health outcomes in women with silicone gel breast implants (Oxford level of evidence III), the authors found an association between silicone implants and the risk of SS, but they highlighted the presence of information bias because the data were from studies on patients with the self-reported disease [17]. Thus, although the evidence is weak to date, the existence of an approach based on a theoretical model of Shoenfelds et al., which shows that silicone can enhance antigen-specific immune response, should be recognized. It is necessary to conduct validation studies in larger cohorts of patients as well as randomized trials.
- b.
- Immune response pathways
- -
- Adaptative immunity: The involvement of this immunity in SS pathogenesis is evident through observations of autoreactive T and B cells, with pronounced B-cell hyperactivity, which appears to be the cornerstone of the disease process. Signs of this condition are well documented in the literature, as clinical findings in different tissues of the body and the observations in serological and histopathological markers (salivary glands, saliva, tears, serum, peripheral blood B cells, intrinsic B cell abnormalities, and the presence of germinal center-like structures, elevated levels of B cell-associated cytokines and chemokines, presence of anti-SSA/SSB autoantibodies, hypergammaglobulinemia, elevated levels of soluble CD27, amongst others) [19]. In spite of the recognized role of the B cells in the pathogenesis of SS, its exact contribution is partly understood, most data have been obtained from mouse models and some authors have shown the presence of a coordinated and integrated stimulation of B-cell receptor B, CD40 and Toll-like receptors (TLRs) with different cytokines during the process [20].
- -
- Innate immunity: In most pSS, type I interferon (IFN) and type I IFN-induced genes and proteins are overexpressed, resulting in the so-called type I IFN signature of pSS; aberrancies have been described in the type I IFN system in salivary glands of pSS [21] as well as abnormalities in type I IFN-alfa in labial biopsies [22]; the effect of type I IFN is not only local on the salivary glands but is also systemic because of its up-regulation activity which could explain the main extraglandular manifestations of the disease [23].
- c.
- Ectopic Lymphoid-Like Structures (ELSs)
- Early activation of ELSs refers to the triggering process and depends on initiating factors.
- Regulation and maintenance of ELSs depend on propagating factors that regulate progression towards organized ELSs as well as their maintenance.
- Acquisition of the characteristics of a germinal center depends on functional factors.
- Survival maintenance of germinal centers by other factors; in this setting, it is important to highlight the presence of IL-27, which has a negative regulatory role and acts as an inhibitor of ELS development [26].
- -
- the difficulty of early and accurate diagnosis, which is crucial to avoid major complications;
- -
- a means of evaluating the efficacy of therapy.
- -
- for diagnostic purposes: ACR-EULAR criteria [40],
- -
- for calculating systemic disease activity: ESSDAI (Eular Sjögren Syndrome Disease Activity Index) [41],
- -
- for patient-reported symptoms: ESSPRI (EULAR Sjogren Patient-Reported Symptoms) [41] and
- -
- for evaluating response to different therapies: CRESS (Composite of Relevant Endpoints for Sjögren’s Syndrome) [42].
3. Role of New Molecular Image Strategies in Sjogren’s Syndrome
- a.
- Somatostatin Receptor Imaging
- b.
- B-lymphocyte Imaging in SS
- c.
- T-lymphocyte Imaging in SS
- d.
- Other PET Radiopharmaceuticals Used in SS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mariette, X.; Criswell, L.A. Primary Sjögren’s Syndrome. N. Engl. J. Med. 2018, 378, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J.-M.; Restrepo-Jiménez, P.; Rodríguez, Y.; Rodríguez-Jiménez, M.; Acosta-Ampudia, Y.; Monsalve, D.M.; Pacheco, Y.; Ramírez-Santana, C.; Molano-González, N.; Mantilla, R.D. Sjögren’s Syndrome and Autoimmune Thyroid Disease: Two Sides of the Same Coin. Clin. Rev. Allergy Immunol. 2019, 56, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Brito-Zerón, P.; Kostov, B.; Solans, R.; Fraile, G.; Suárez-Cuervo, C.; Casanovas, A.; Rascón, F.J.; Qanneta, R.; Pérez-Alvarez, R.; Ripoll, M.; et al. Systemic Activity and Mortality in Primary Sjögren Syndrome: Predicting Survival Using the EULAR-SS Disease Activity Index (ESSDAI) in 1045 Patients. Ann. Rheum. Dis. 2016, 75, 348–355. [Google Scholar] [CrossRef]
- Kassan, S.S. Increased Risk of Lymphoma in Sicca Syndrome. Ann. Intern. Med. 1978, 89, 888. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A.; Vassiliou, V.A.; Moutsopoulos, H.M. Long-Term Risk of Mortality and Lymphoproliferative Disease and Predictive Classification of Primary Sjögren’s Syndrome: Classification of Sjögren’s Syndrome. Arthritis Rheum. 2002, 46, 741–747. [Google Scholar] [CrossRef]
- Kapsogeorgou, E.K.; Voulgarelis, M.; Tzioufas, A.G. Predictive Markers of Lymphomagenesis in Sjögren’s Syndrome: From Clinical Data to Molecular Stratification. J. Autoimmun. 2019, 104, 102316. [Google Scholar] [CrossRef] [PubMed]
- Goules, A.V.; Tzioufas, A.G. Lymphomagenesis in Sjögren’s Syndrome: Predictive Biomarkers towards Precision Medicine. Autoimmun. Rev. 2019, 18, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Hjelmervik, T.O.R.; Petersen, K.; Jonassen, I.; Jonsson, R.; Bolstad, A.I. Gene Expression Profiling of Minor Salivary Glands Clearly Distinguishes Primary Sjögren’s Syndrome Patients from Healthy Control Subjects. Arthritis Rheum. 2005, 52, 1534–1544. [Google Scholar] [CrossRef]
- Lessard, C.J.; Registry, F.U.P.S.S.; Li, H.; Adrianto, I.; Ice, J.A.; Rasmussen, A.; Grundahl, K.M.; Kelly, J.; Dozmorov, M.; Miceli-Richard, C.; et al. Variants at Multiple Loci Implicated in Both Innate and Adaptive Immune Responses Are Associated with Sjögren’s Syndrome. Nat. Genet. 2013, 45, 1284–1292. [Google Scholar] [CrossRef]
- Björk, A.; Mofors, J.; Wahren-Herlenius, M. Environmental Factors in the Pathogenesis of Primary Sjögren’s Syndrome. J. Intern. Med. 2020, 287, 475–492. [Google Scholar] [CrossRef]
- Imgenberg-Kreuz, J.; Rasmussen, A.; Sivils, K.; Nordmark, G. Genetics and Epigenetics in Primary Sjögren’s Syndrome. Rheumatology 2021, 60, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Ittah, M.; Miceli-Richard, C.; Eric Gottenberg, J.-; Lavie, F.; Lazure, T.; Ba, N.; Sellam, J.; Lepajolec, C.; Mariette, X. B Cell-Activating Factor of the Tumor Necrosis Factor Family (BAFF) Is Expressed under Stimulation by Interferon in Salivary Gland Epithelial Cells in Primary Sjögren’s Syndrome. Arthritis Res. Ther. 2006, 8, R51. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, E.; Alunno, A.; Gerli, R. The Dark Side of Sjögren’s Syndrome: The Possible Pathogenic Role of Infections. Curr. Opin. Rheumatol. 2019, 31, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Mishima, K.; Yamamoto-Yoshida, S.; Ushikoshi-Nakayama, R.; Nakagawa, Y.; Yamamoto, K.; Ryo, K.; Ide, F.; Saito, I. Aryl Hydrocarbon Receptor-Mediated Induction of EBV Reactivation as a Risk Factor for Sjögren’s Syndrome. J. Immunol. Baltim. 2012, 188, 4654–4662. [Google Scholar] [CrossRef]
- Olsson, P.; Turesson, C.; Mandl, T.; Jacobsson, L.; Theander, E. Cigarette Smoking and the Risk of Primary Sjögren’s Syndrome: A Nested Case Control Study. Arthritis Res. Ther. 2017, 19, 50. [Google Scholar] [CrossRef]
- Watad, A.; Quaresma, M.; Brown, S.; Cohen Tervaert, J.W.; Rodríguez-Pint, I.; Cervera, R.; Perricone, C.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvants (Shoenfeld’s Syndrome)—An Update. Lupus 2017, 26, 675–681. [Google Scholar] [CrossRef]
- Balk, E.M.; Earley, A.; Avendano, E.A.; Raman, G. Long-Term Health Outcomes in Women With Silicone Gel Breast Implants: A Systematic Review. Ann. Intern. Med. 2016, 164, 164–175. [Google Scholar] [CrossRef]
- Cobb, B.L.; Lessard, C.J.; Harley, J.B.; Moser, K.L. Genes and Sjögren’s Syndrome. Rheum. Dis. Clin. N. Am. 2008, 34, 847–868. [Google Scholar] [CrossRef]
- Kroese, F.G.M.; Abdulahad, W.H.; Haacke, E.; Bos, N.A.; Vissink, A.; Bootsma, H. B-Cell Hyperactivity in Primary Sjögren’s Syndrome. Expert Rev. Clin. Immunol. 2014, 10, 483–499. [Google Scholar] [CrossRef]
- Rawlings, D.J.; Schwartz, M.A.; Jackson, S.W.; Meyer-Bahlburg, A. Integration of B Cell Responses through Toll-like Receptors and Antigen Receptors. Nat. Rev. Immunol. 2012, 12, 282–294. [Google Scholar] [CrossRef]
- Wildenberg, M.E.; van Helden-Meeuwsen, C.G.; van de Merwe, J.P.; Drexhage, H.A.; Versnel, M.A. Systemic Increase in Type I Interferon Activity in Sjögren’s Syndrome: A Putative Role for Plasmacytoid Dendritic Cells. Eur. J. Immunol. 2008, 38, 2024–2033. [Google Scholar] [CrossRef] [PubMed]
- Båve, U.; Nordmark, G.; Lövgren, T.; Rönnelid, J.; Cajander, S.; Eloranta, M.-L.; Alm, G.V.; Rönnblom, L. Activation of the Type I Interferon System in Primary Sjögren’s Syndrome: A Possible Etiopathogenic Mechanism. Arthritis Rheum. 2005, 52, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Bodewes, I.L.A.; Al-Ali, S.; van Helden-Meeuwsen, C.G.; Maria, N.I.; Tarn, J.; Lendrem, D.W.; Schreurs, M.W.J.; Steenwijk, E.C.; van Daele, P.L.A.; Both, T.; et al. Systemic Interferon Type I and Type II Signatures in Primary Sjögren’s Syndrome Reveal Differences in Biological Disease Activity. Rheumatol. Oxf. Engl. 2018, 57, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Bombardieri, M.; Lewis, M.; Pitzalis, C. Ectopic Lymphoid Neogenesis in Rheumatic Autoimmune Diseases. Nat. Rev. Rheumatol. 2017, 13, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Barone, F.; Bombardieri, M.; Manzo, A.; Blades, M.C.; Morgan, P.R.; Challacombe, S.J.; Valesini, G.; Pitzalis, C. Association of CXCL13 and CCL21 Expression with the Progressive Organization of Lymphoid-like Structures in Sjögren’s Syndrome. Arthritis Rheum. 2005, 52, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.W.; Bombardieri, M.; Greenhill, C.J.; McLeod, L.; Nerviani, A.; Rocher-Ros, V.; Cardus, A.; Williams, A.S.; Pitzalis, C.; Jenkins, B.J.; et al. Interleukin-27 Inhibits Ectopic Lymphoid-like Structure Development in Early Inflammatory Arthritis. J. Exp. Med. 2015, 212, 1793–1802. [Google Scholar] [CrossRef]
- Mebius, R.E. Organogenesis of Lymphoid Tissues. Nat. Rev. Immunol. 2003, 3, 292–303. [Google Scholar] [CrossRef]
- Salomonsson, S.; Jonsson, M.V.; Skarstein, K.; Brokstad, K.A.; Hjelmström, P.; Wahren-Herlenius, M.; Jonsson, R. Cellular Basis of Ectopic Germinal Center Formation and Autoantibody Production in the _target Organ of Patients with Sjögren’s Syndrome: Ectopic Germinal Center Formation in Sjögren’s Syndrome. Arthritis Rheum. 2003, 48, 3187–3201. [Google Scholar] [CrossRef]
- Xanthou, G.; Polihronis, M.; Tzioufas, A.G.; Paikos, S.; Sideras, P.; Moutsopoulos, H.M. “Lymphoid” Chemokine Messenger RNA Expression by Epithelial Cells in the Chronic Inflammatory Lesion of the Salivary Glands of Sjögren’s Syndrome Patients: Possible Participation in Lymphoid Structure Formation. Arthritis Rheum. 2001, 44, 408–418. [Google Scholar] [CrossRef]
- Shulman, Z.; Gitlin, A.D.; Weinstein, J.S.; Lainez, B.; Esplugues, E.; Flavell, R.A.; Craft, J.E.; Nussenzweig, M.C. Dynamic Signaling by T Follicular Helper Cells during Germinal Center B Cell Selection. Science 2014, 345, 1058–1062. [Google Scholar] [CrossRef] [Green Version]
- Karnell, J.L.; Ettinger, R. The Interplay of IL-21 and BAFF in the Formation and Maintenance of Human B Cell Memory. Front. Immunol. 2012, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.-K.; Cho, M.-L.; Park, M.-K.; Oh, H.-J.; Park, J.-S.; Her, Y.-M.; Lee, S.-Y.; Youn, J.; Ju, J.H.; Park, K.S.; et al. Interleukin-21 Promotes Osteoclastogenesis in Humans with Rheumatoid Arthritis and in Mice with Collagen-Induced Arthritis. Arthritis Rheum. 2012, 64, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, G.; Gong, L.; Zhang, Y.; Jiang, G. Local Suppression of IL-21 in Submandibular Glands Retards the Development of Sjögren’s Syndrome in Non-Obese Diabetic Mice. J. Oral Pathol. Med. 2012, 41, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.-Z.; Nititham, J.; Taylor, K.; Miceli-Richard, C.; Sordet, C.; Wachsmann, D.; Bahram, S.; Georgel, P.; Criswell, L.A.; Sibilia, J.; et al. Differentiation of Follicular Helper T Cells by Salivary Gland Epithelial Cells in Primary Sjögren’s Syndrome. J. Autoimmun. 2014, 51, 57–66. [Google Scholar] [CrossRef]
- Pitzalis, C.; Jones, G.W.; Bombardieri, M.; Jones, S.A. Ectopic Lymphoid-like Structures in Infection, Cancer and Autoimmunity. Nat. Rev. Immunol. 2014, 14, 447–462. [Google Scholar] [CrossRef]
- Risselada, A.P.; Looije, M.F.; Kruize, A.A.; Bijlsma, J.W.J.; van Roon, J.A.G. The Role of Ectopic Germinal Centers in the Immunopathology of Primary Sjögren’s Syndrome: A Systematic Review. Semin. Arthritis Rheum. 2013, 42, 368–376. [Google Scholar] [CrossRef]
- Nutt, S.L.; Hodgkin, P.D.; Tarlinton, D.M.; Corcoran, L.M. The Generation of Antibody-Secreting Plasma Cells. Nat. Rev. Immunol. 2015, 15, 160–171. [Google Scholar] [CrossRef]
- Szyszko, E.A.; Brokstad, K.A.; Oijordsbakken, G.; Jonsson, M.V.; Jonsson, R.; Skarstein, K. Salivary Glands of Primary Sjögren’s Syndrome Patients Express Factors Vital for Plasma Cell Survival. Arthritis Res. Ther. 2011, 13, R2. [Google Scholar] [CrossRef]
- Theander, E.; Vasaitis, L.; Baecklund, E.; Nordmark, G.; Warfvinge, G.; Liedholm, R.; Brokstad, K.; Jonsson, R.; Jonsson, M.V. Lymphoid Organisation in Labial Salivary Gland Biopsies Is a Possible Predictor for the Development of Malignant Lymphoma in Primary Sjögren’s Syndrome. Ann. Rheum. Dis. 2011, 70, 1363–1368. [Google Scholar] [CrossRef]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 ACR-EULAR Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol 2017, 69, 35–45. [Google Scholar] [CrossRef]
- Seror, R.; Bootsma, H.; Saraux, A.; Bowman, S.J.; Theander, E.; Brun, J.G.; Baron, G.; Le Guern, V.; Devauchelle-Pensec, V.; Ramos-Casals, M.; et al. Defining Disease Activity States and Clinically Meaningful Improvement in Primary Sjögren’s Syndrome with EULAR Primary Sjögren’s Syndrome Disease Activity (ESSDAI) and Patient-Reported Indexes (ESSPRI). Ann. Rheum. Dis. 2016, 75, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Arends, S.; de Wolff, L.; van Nimwegen, J.F.; Verstappen, G.M.P.J.; Vehof, J.; Bombardieri, M.; Bowman, S.J.; Pontarini, E.; Baer, A.N.; Nys, M.; et al. Composite of Relevant Endpoints for Sjögren’s Syndrome (CRESS): Development and Validation of a Novel Outcome Measure. Lancet Rheumatol. 2021, 3, e553–e562. [Google Scholar] [CrossRef]
- Zandonella Callegher, S.; Giovannini, I.; Zenz, S.; Manfrè, V.; Stradner, M.H.; Hocevar, A.; Gutierrez, M.; Quartuccio, L.; De Vita, S.; Zabotti, A. Sjögren Syndrome: Looking Forward to the Future. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221100295. [Google Scholar] [CrossRef]
- Van Ginkel, M.S.; Glaudemans, A.W.J.M.; van der Vegt, B.; Mossel, E.; Kroese, F.G.M.; Bootsma, H.; Vissink, A. Imaging in Primary Sjögren’s Syndrome. J. Clin. Med. 2020, 9, 2492. [Google Scholar] [CrossRef] [PubMed]
- Jousse-Joulin, S.; Gatineau, F.; Baldini, C.; Baer, A.; Barone, F.; Bootsma, H.; Bowman, S.; Brito-Zerón, P.; Cornec, D.; Dorner, T.; et al. Weight of Salivary Gland Ultrasonography Compared to Other Items of the 2016 ACR/EULAR Classification Criteria for Primary Sjögren’s Syndrome. J. Intern. Med. 2020, 287, 180–188. [Google Scholar] [CrossRef]
- Kroese, F.G.M.; Haacke, E.A.; Bombardieri, M. The Role of Salivary Gland Histopathology in Primary Sjögren’s Syndrome: Promises and Pitfalls. Clin. Exp. Rheumatol. 2018, 36 (Suppl. 112), 222–233. [Google Scholar]
- Zabotti, A.; Callegher, S.Z.; Tullio, A.; Vukicevic, A.; Hocevar, A.; Milic, V.; Cafaro, G.; Carotti, M.; Delli, K.; De Lucia, O.; et al. Salivary Gland Ultrasonography in Sjögren’s Syndrome: A European Multicenter Reliability Exercise for the HarmonicSS Project. Front. Med. 2020, 7, 581248. [Google Scholar] [CrossRef]
- Manfrè, V.; Cafaro, G.; Riccucci, I.; Zabotti, A.; Perricone, C.; Bootsma, H.; De Vita, S.; Bartoloni, E. One Year in Review 2020: Comorbidities, Diagnosis and Treatment of Primary Sjögren’s Syndrome. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 126), 10–22. [Google Scholar]
- Baldini, C.; Ferro, F.; Izzetti, R.; Vitali, S.; Fonzetti, S.; Governato, G.; Aringhieri, G.; Elefante, E.; Mosca, M.; Donati, V.; et al. Fri0153 Ultra High-Resolution Ultrasound (Uhfus) of Labial Salivary Glands: Potential Applications in Primary Sjögren’s Syndrome. Ann. Rheum. Dis. 2020, 79 (Suppl. 1), 660–661. [Google Scholar] [CrossRef]
- Cindil, E.; Oktar, S.O.; Akkan, K.; Sendur, H.N.; Mercan, R.; Tufan, A.; Ozturk, M.A. Ultrasound Elastography in Assessment of Salivary Glands Involvement in Primary Sjögren’s Syndrome. Clin. Imaging 2018, 50, 229–234. [Google Scholar] [CrossRef]
- Radovic, M.; Vukicevic, A.; Zabotti, A.; Milic, V.; De Vita, S.; Filipovic. Deep Learning Based Approach for Assessment of Primary Sjögren’s Syndrome from Salivary Gland Ultrasonography Images. Available online: https://www.springerprofessional.de/en/deep-learning-based-approach-for-assessment-of-primary-sjoegren-/17790232 (accessed on 23 August 2022).
- Lorenzon, M.; Di Franco, F.T.; Zabotti, A.; Pegolo, E.; Giovannini, I.; Manfrè, V.; Mansutti, E.; De Vita, S.; Zuiani, C.; Girometti, R. Sonographic Features of Lymphoma of the Major Salivary Glands Diagnosed with Ultrasound-Guided Core Needle Biopsy in Sjögren’s Syndrome. Clin. Exp. Rheumatol. 2021, 39 (Suppl. 133), 175–183. [Google Scholar] [CrossRef]
- Grevers, G.; Ihrler, S.; Vogl, T.J.; Weiss, M. A Comparison of Clinical, Pathological and Radiological Findings with Magnetic Resonance Imaging Studies of Lymphomas in Patients with Sjögren’s Syndrome. Eur. Arch. Otorhinolaryngol. 1994, 251, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Baldini, C.; Zabotti, A.; Filipovic, N.; Vukicevic, A.; Luciano, N.; Ferro, F.; Lorenzon, M.; De Vita, S. Imaging in Primary Sjögren’s Syndrome: The “Obsolete and the New”. Clin. Exp. Rheumatol. 2018, 36 (Suppl. 112), 215–221. [Google Scholar] [PubMed]
- Sosabowsky, J.; Melendez-Alafort, L.; Mather, S. Radiolabelling of Peptides for Diagnosis and Therapy of Non-Oncological Diseases. Q. J. Nucl. Med. 2003, 47, 223–237. [Google Scholar]
- Anzola, L.K.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; Martinez, F.A.; Moreno, S.; Signore, A. Somatostatin Receptor Imaging by SPECT and PET in Patients with Chronic Inflammatory Disorders: A Systematic Review. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2496–2513. [Google Scholar] [CrossRef]
- Signore, A.; Anzola, K.L.; Auletta, S.; Varani, M.; Petitti, A.; Pacilio, M.; Galli, F.; Lauri, C. Current Status of Molecular Imaging in Inflammatory and Autoimmune Disorders. Curr. Pharm. Des. 2018, 24, 743–753. [Google Scholar] [CrossRef]
- Duet, M.; Lioté, F. Somatostatin and Somatostatin Analog Scintigraphy: Any Benefits for Rheumatology Patients? Joint Bone Spine 2004, 71, 530–535. [Google Scholar] [CrossRef]
- Cascini, G.L.; Cuccurullo, V.; Tamburrini, O.; Rotondo, A.; Mansi, L. Peptide Imaging with Somatostatin Analogues: More than Cancer Probes. Curr. Radiopharm. 2013, 6, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Anzola, L.; Lauri, C.; Granados, C.; Lagana, B.; Signore, A. Uptake Pattern of [68Ga]Ga-DOTA-NOC in Tissues: Implications for Inflammatory Diseases. Q. J. Nucl. Med. Mol. Imaging 2019, 66, 156–161. [Google Scholar] [CrossRef]
- Anzola, L.K.; Rivera, J.N.; Dierckx, R.A.; Lauri, C.; Valabrega, S.; Galli, F.; Lopez, S.M.; Glaudemans, A.W.J.M.; Signore, A. Value of Somatostatin Receptor Scintigraphy with 99mTc-HYNIC-TOC in Patients with Primary Sjögren Syndrome. J. Clin. Med. 2019, 8, 763. [Google Scholar] [CrossRef]
- Anzola-Fuentes, L.K.; Chianelli, M.; Galli, F.; Glaudemans, A.W.J.M.; Martin, L.M.; Todino, V.; Migliore, A.; Signore, A. Somatostatin Receptor Scintigraphy in Patients with Rheumatoid Arthritis and Secondary Sjögren’s Syndrome Treated with Infliximab: A Pilot Study. EJNMMI Res. 2016, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Markusse, H.M.; Krenning, E.P.; VanHagen, M.; Laissue, J.A. Vascular Somatostatin Receptors in Synovium from Patients with Rheumatoid Arthritis. Eur. J. Pharmacol. 1994, 271, 371–378. [Google Scholar] [CrossRef]
- Tedder, T.F.; Boyd, A.W.; Freedman, A.S.; Nadler, L.M.; Schlossman, S.F. The B Cell Surface Molecule B1 Is Functionally Linked with B Cell Activation and Differentiation. J. Immunol. Baltim. Md 1985, 135, 973–979. [Google Scholar]
- Malviya, G.; Galli, F.; Sonni, I.; Pacilio, M.; Signore, A. _targeting T and B Lymphocytes with Radiolabelled Antibodies for Diagnostic and Therapeutic Applications. Q. J. Nucl. Med. Mol. Imaging 2010, 54, 654–676. [Google Scholar] [PubMed]
- Dörner, T.; Kinnman, N.; Tak, P.P. _targeting B Cells in Immune-Mediated Inflammatory Disease: A Comprehensive Review of Mechanisms of Action and Identification of Biomarkers. Pharmacol. Ther. 2010, 125, 464–475. [Google Scholar] [CrossRef]
- Gandolfo, S.; De Vita, S. Emerging Drugs for Primary Sjögren’s Syndrome. Expert Opin. Emerg. Drugs 2019, 24, 121–132. [Google Scholar] [CrossRef]
- Mavragani, C.P.; Niewold, T.B.; Moutsopoulos, N.M.; Pillemer, S.R.; Wahl, S.M.; Crow, M.K. Augmented Interferon-Alpha Pathway Activation in Patients with Sjögren’s Syndrome Treated with Etanercept. Arthritis Rheum. 2007, 56, 3995–4004. [Google Scholar] [CrossRef]
- Giacomelli, R.; Afeltra, A.; Alunno, A.; Baldini, C.; Bartoloni-Bocci, E.; Berardicurti, O.; Carubbi, F.; Cauli, A.; Cervera, R.; Ciccia, F.; et al. International Consensus: What Else Can We Do to Improve Diagnosis and Therapeutic Strategies in Patients Affected by Autoimmune Rheumatic Diseases (Rheumatoid Arthritis, Spondyloarthritides, Systemic Sclerosis, Systemic Lupus Erythematosus, Antiphospholipid Syndrome and Sjogren’s Syndrome)?: The Unmet Needs and the Clinical Grey Zone in Autoimmune Disease Management. Autoimmun. Rev. 2017, 16, 911–924. [Google Scholar] [CrossRef]
- Gottenberg, J.-E.; Cinquetti, G.; Larroche, C.; Combe, B.; Hachulla, E.; Meyer, O.; Pertuiset, E.; Kaplanski, G.; Chiche, L.; Berthelot, J.-M.; et al. Efficacy of Rituximab in Systemic Manifestations of Primary Sjogren’s Syndrome: Results in 78 Patients of the AutoImmune and Rituximab Registry. Ann. Rheum. Dis. 2013, 72, 1026–1031. [Google Scholar] [CrossRef]
- Carubbi, F.; Cipriani, P.; Marrelli, A.; Benedetto, P.D.; Ruscitti, P.; Berardicurti, O.; Pantano, I.; Liakouli, V.; Alvaro, S.; Alunno, A.; et al. Efficacy and Safety of Rituximab Treatment in Early Primary Sjögren’s Syndrome: A Prospective, Multi-Center, Follow-up Study. Arthritis Res. Ther. 2013, 15, R172. [Google Scholar] [CrossRef]
- Malviya, G.; Conti, F.; Chianelli, M.; Scopinaro, F.; Dierckx, R.A.; Signore, A. Molecular Imaging of Rheumatoid Arthritis by Radiolabelled Monoclonal Antibodies: New Imaging Strategies to Guide Molecular Therapies. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Malviya, G.; Anzola, K.L.; Podestà, E.; Laganà, B.; Del Mastro, C.; Dierckx, R.A. (99m)Tc-Labeled Rituximab for Imaging B Lymphocyte Infiltration in Inflammatory Autoimmune Disease Patients. Mol. Imaging Biol. 2012, 14, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Picarelli, A.; Annovazzi, A.; Britton, K.E.; Grossman, A.B.; Bonanno, E.; Maras, B.; Barra, D.; Pozzilli, P. 123I-Interleukin-2: Biochemical Characterization and in Vivo Use for Imaging Autoimmune Diseases. Nucl. Med. Commun. 2003, 24, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Parman, A.; Pozzilli, P.; Andreani, D.; Beverley, P.C. Detection of Activated Lymphocytes in Endocrine Pancreas of BB/W Rats by Injection of 123I-Interleukin-2: An Early Sign of Type 1 Diabetes. Lancet Lond. Engl. 1987, 2, 537–540. [Google Scholar] [CrossRef]
- Signore, A.; Chianelli, M.; Alessio, A.; Bonanno, E.; Spagnoli, L.G.; Pozzilli, P.; Pallone, F.; Biancone, L. 123I-Interleukin-2 Scintigraphy for in Vivo Assessment of Intestinal Mononuclear Cell Infiltration in Crohn’s Disease. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2000, 41, 242–249. [Google Scholar]
- Campagna, G.; Anzola, L.K.; Varani, M.; Lauri, C.; Silveri, G.G.; Chiurchioni, L.; Spinelli, F.R.; Priori, R.; Conti, F.; Signore, A. Imaging Activated-T-Lymphocytes in the Salivary Glands of Patients with Sjögren’s Syndrome by 99mTc-Interleukin-2: Diagnostic and Therapeutic Implications. J. Clin. Med. 2022, 11, 4368. [Google Scholar] [CrossRef]
- Di Gialleonardo, V.; Signore, A.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; De Vries, E.F.J. N -(4- 18 F-Fluorobenzoyl)Interleukin-2 for PET of Human-Activated T Lymphocytes. J. Nucl. Med. 2012, 53, 679–686. [Google Scholar] [CrossRef]
- Jimenez-Royo, P.; Bombardieri, M.; Ciurtin, C.; Kostapanos, M.; Tappuni, A.R.; Jordan, N.; Saleem, A.; Fuller, T.; Port, K.; Pontarini, E.; et al. Advanced Imaging for Quantification of Abnormalities in the Salivary Glands of Patients with Primary Sjögren’s Syndrome. Rheumatology 2021, 60, 2396–2408. [Google Scholar] [CrossRef]
- Glaudemans, A.W.J.M.; Enting, R.H.; Heesters, M.A.A.M.; Dierckx, R.A.J.O.; Van Rheenen, R.W.J.; Walenkamp, A.M.E.; Slart, R.H.J.A. Value of 11C-Methionine PET in Imaging Brain Tumours and Metastases. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 615–635. [Google Scholar] [CrossRef]
- Ziakas, P.D.; Poulou, L.S.; Thanos, L. Towards Integrating Positron Emission Tomography for Work-up of Patients with Sjögren’s Syndrome and Associated Lymphomas. Autoimmun. Rev. 2014, 13, 327–329. [Google Scholar] [CrossRef]
- Cohen, C.; Mekinian, A.; Uzunhan, Y.; Fauchais, A.-L.; Dhote, R.; Pop, G.; Eder, V.; Nunes, H.; Brillet, P.-Y.; Valeyre, D.; et al. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computer Tomography as an Objective Tool for Assessing Disease Activity in Sjögren’s Syndrome. Autoimmun. Rev. 2013, 12, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Signore, A.; Lauri, C.; Auletta, S.; Anzola, K.; Galli, F.; Casali, M.; Versari, A.; Glaudemans, A.W. mmuno-Imaging to Predict Treatment Response in Infection, Inflammation and Oncology. J. Clin. Med. 2019, 8, 681. [Google Scholar] [CrossRef] [PubMed]
- Zintzaras, E. The Risk of Lymphoma Development in Autoimmune Diseases: A Meta-Analysis. Arch. Intern. Med. 2005, 165, 2337. [Google Scholar] [CrossRef] [PubMed]
- Weiler-Sagie, M.; Bushelev, O.; Epelbaum, R.; Dann, E.J.; Haim, N.; Avivi, I.; Ben-Barak, A.; Ben-Arie, Y.; Bar-Shalom, R.; Israel, O. 18F-FDG Avidity in Lymphoma Readdressed: A Study of 766 Patients. J. Nucl. Med. 2010, 51, 25–30. [Google Scholar] [CrossRef]
- Keraen, J.; Blanc, E.; Besson, F.L.; Leguern, V.; Meyer, C.; Henry, J.; Belkhir, R.; Nocturne, G.; Mariette, X.; Seror, R. Usefulness of 18F-Labeled Fluorodeoxyglucose–Positron Emission Tomography for the Diagnosis of Lymphoma in Primary Sjögren’s Syndrome. Arthritis Rheumatol. 2019, 71, 1147–1157. [Google Scholar] [CrossRef]
- Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 Chemokine Ligand/Receptor Axis in Cardiovascular Disease. Front. Physiol. 2014, 5, 212. [Google Scholar] [CrossRef]
- Cytawa, W.; Kircher, S.; Schirbel, A.; Shirai, T.; Fukushima, K.; Buck, A.K.; Wester, H.-J.; Lapa, C. Chemokine Receptor 4 Expression in Primary Sjögren’s Syndrome. Clin. Nucl. Med. 2018, 43, 835–836. [Google Scholar] [CrossRef]
Pathway | ELS-Positive _target Tissues in Rheumatic Autoimmune Diseases |
---|---|
CXCL13 | CD4+ T Cells, CD14+ monocytes, CD68+ macrophages or DC, Endothelial cells, epithelial cells, fibroblast-like synoviocytes, and Follicular DCs. |
CCL19 | Myofibroblast-like stroma |
CCL21 | Myofibroblast-like stroma, Lymphatic endothelial cells, DCs. |
RANKL | B cells, Fibroblast-like synoviocytes |
IL-7 | Fibroblast-like synoviocytes, Siblining synovial macrophages |
IL-22 | CD4+ T cells, NKp44 NK cells. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, A.L.; Nelson, R.J.; Sara, R.; Alberto, S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J. Clin. Med. 2022, 11, 5227. https://doi.org/10.3390/jcm11175227
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. Journal of Clinical Medicine. 2022; 11(17):5227. https://doi.org/10.3390/jcm11175227
Chicago/Turabian StyleKelly, Anzola Luz, Rivera Jose Nelson, Ramírez Sara, and Signore Alberto. 2022. "Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine" Journal of Clinical Medicine 11, no. 17: 5227. https://doi.org/10.3390/jcm11175227
APA StyleKelly, A. L., Nelson, R. J., Sara, R., & Alberto, S. (2022). Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. Journal of Clinical Medicine, 11(17), 5227. https://doi.org/10.3390/jcm11175227