General Anesthetic Agents and Renal Function after Nephrectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Anesthesia and Surgical Techniques
2.4. Outcome Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Znaor, A.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Bray, F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 2015, 67, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bensalah, K.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma, the 2019 Update. Eur. Urol. 2019, 75, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Liberti, M.E.; Russo, D.; Russo, L.; Fuiano, G.; Cianfrone, P.; Conte, G.; De Nicola, L.; Minutolo, R.; Borrelli, S. Effect of post-nephrectomy acute kidney injury on renal outcome, a retrospective long-term study. World J. Urol. 2018, 36, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Krishna, N.; Ravi, P.; Meyer, C.P.; Becker, A.; Dalela, D.; Sood, A.; Chun, F.K.H.; Kibel, A.S.; Menon, M.; et al. Trends of acute kidney injury after radical or partial nephrectomy for renal cell carcinoma. Urol. Oncol. 2016, 34, 293-e1–293-e10. [Google Scholar] [CrossRef] [PubMed]
- Grams, M.E.; Rabb, H. The distant organ effects of acute kidney injury. Kidney Int. 2012, 81, 942–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weight, C.J.; Larson, B.T.; Fergany, A.F.; Gao, T.; Lane, B.R.; Campbell, S.C.; Kaouk, J.H.; Klein, E.A.; Novick, A.C. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J. Urol. 2010, 183, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.; Ozrazgat-Baslanti, T.; Kuxhausen, A.; Thottakkara, P.; Efron, P.A.; Moore, F.A.; Moldawer, L.L.; Segal, M.S.; Bihorac, A. Cost and Mortality Associated with Postoperative Acute Kidney Injury. Ann. Surg. 2015, 261, 1207–1214. [Google Scholar] [CrossRef]
- Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef]
- Rajan, S.; Babazade, R.; Govindarajan, S.R.; Pal, R.; You, J.; Mascha, E.J.; Khanna, A.; Yang, M.; Marcano, F.D.; Singh, A.K.; et al. Perioperative factors associated with acute kidney injury after partial nephrectomy. Br. J. Anaesth. 2016, 116, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Gandaglia, G.; Sood, A.; Olugbade, K., Jr.; Ruhotina, N.; Sammon, J.D.; Varda, B.; Chang, S.L.; Kibel, A.S.; Chun, F.K.; et al. Predictors of 30-day acute kidney injury following radical and partial nephrectomy for renal cell carcinoma. Urol. Oncol. 2014, 32, 1259–1266. [Google Scholar] [CrossRef]
- Hur, M.; Park, S.K.; Yoo, S.; Choi, S.N.; Jeong, C.W.; Kim, W.H.; Kim, J.T.; Kwak, C.; Bahk, J.H. The association between intraoperative urine output and postoperative acute kidney injury differs between partial and radical nephrectomy. Sci. Rep. 2019, 9, 760. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Hong, J.H.; Koh, D.H.; Lee, J.; Nam, H.J.; Kim, S.Y. Effect of Diabetes Mellitus on Acute Kidney Injury after Minimally Invasive Partial Nephrectomy, A Case-Matched Retrospective Analysis. J. Clin. Med. 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.C.; Ercole, C.; Takagi, T.; Zhang, Z.; Velet, L.; Remer, E.M.; Demirjian, S.; Campbell, S.C. Decline in renal function after partial nephrectomy, etiology and prevention. J. Urol. 2015, 193, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lau, W.L.; Rhee, C.M.; Harley, K.; Kovesdy, C.P.; Sim, J.J.; Jacobsen, S.; Chang, A.; Landman, J.; Kalantar-Zadeh, K. Risk of chronic kidney disease after cancer nephrectomy. Nat. Rev. Nephrol. 2014, 10, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac SurgeryA retrospective cohort analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Kil, H.; Kim, J.; Choi, Y.; Lee, H.; Kim, T. Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy, Pilot Study. J. Clin. Med. 2018, 7, E470. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Shi, S.; Jiang, W.; Liu, X.; He, Y. Protective role of propofol on the kidney during early unilateral ureteral obstruction through inhibition of epithelial-mesenchymal transition. Am. J. Transl. Res. 2016, 8, 460. [Google Scholar] [PubMed]
- Li, Y.; Zhong, D.; Lei, L.; Jia, Y.; Zhou, H.; Yang, B. Propofol prevents renal ischemia-reperfusion injury via inhibiting the oxidative stress pathways. Cell. Physiol. Biochem. 2015, 37, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Gentz, B.A.; Malan, T.P. Renal toxicity with sevoflurane. Drugs 2001, 61, 2155–2162. [Google Scholar] [CrossRef]
- Kong, H.Y.; Zhu, S.M.; Wang, L.Q.; He, Y.; Xie, H.Y.; Zheng, S.S. Sevoflurane protects against acute kidney injury in a small-size liver transplantation model. Am. J. Nephrol. 2010, 32, 347–355. [Google Scholar] [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.R.; Kim, W.H.; Kim, D.J.; Shin, I.W.; Sohn, J.T. Prediction and Prevention of Acute Kidney Injury after Cardiac Surgery. BioMed Res. Int. 2016, 2016, 2985148. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.E.; Bilous, R.W.; Lamb, E.J.; Coresh, J.; et al. Kidney Disease, Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Yuan, D.; Li, X.; Yao, W.; Luo, G.; Chi, X.; Li, H.; Irwin, M.G.; Xia, Z.; Hei, Z. Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32. Anesthesiology 2015, 122, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Hsing, C.-H.; Chou, W.; Wang, J.-J.; Chen, H.-W.; Yeh, C.-H. Propofol increases bone morphogenetic protein-7 and decreases oxidative stress in sepsis-induced acute kidney injury. Nephrol. Dial. Transplant. 2010, 26, 1162–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Conde, P.; Rodriguez-Lopez, J.M.; Nicolás, J.L.; Lozano, F.S.; García-Criado, F.J.; Cascajo, C.; González-Sarmiento, R.; Muriel, C. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesth. Analg. 2008, 106, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Zabell, J.R.; Wu, J.; Suk-Ouichai, C.; Campbell, S.C. Renal ischemia and functional outcomes following partial nephrectomy. Urol. Clin. 2017, 44, 243–255. [Google Scholar] [CrossRef]
- Cho, A.; Lee, J.E.; Kwon, G.Y.; Huh, W.; Lee, H.M.; Kim, Y.G.; Kim, D.J.; Oh, H.Y.; Choi, H.Y. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol. Dial. Transplant. 2011, 26, 3496–3501. [Google Scholar] [CrossRef] [Green Version]
- Kharasch, E.D.; Frink, E.J.; Artru, A., Jr.; Michalowski, P.; Rooke, G.A.; Nogami, W. Long-duration low-flow sevoflurane and isoflurane effects on postoperative renal and hepatic function. Anesth. Analg. 2001, 93, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijs-Moeke, G.J.; Nieuwenhuijs, V.B.; Seelen, M.A.J.; Berger, S.P.; Van Den Heuvel, M.C.; Burgerhof, J.G.M.; Ottens, P.J.; Ploeg, R.J.; Leuvenink, H.G.D.; Struys, M.M.R.F. Propofol-based anaesthesia versus sevoflurane-based anaesthesia for living donor kidney transplantation, results of the VAPOR-1 randomized controlled trial. Br. J. Anaesth. 2017, 118, 720–732. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Chen, S.W.; Doetschman, T.C.; Deng, C.; D’Agati, V.D.; Kim, M. Sevoflurane protects against renal ischemia and reperfusion injury in mice via the transforming growth factor-β1 pathway. Am. J. Physiol. Renal Physiol. 2008, 295, F128–F136. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Kim, M.; Song, J.H.; Chen, S.W.; Gubitosa, G.; Emala, C.W. Sevoflurane-mediated TGF-β1 signaling in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 2008, 294, F371–F378. [Google Scholar] [CrossRef] [PubMed]
- Scosyrev, E.; Messing, E.M.; Sylvester, R.; Campbell, S.; Van Poppel, H. Renal function after nephron-sparing surgery versus radical nephrectomy, results from EORTC randomized trial 30904. Eur. Urol. 2014, 65, 372–377. [Google Scholar] [CrossRef]
- Yoo, Y.C.; Shim, J.K.; Song, Y.; Yang, S.Y.; Kwak, Y.L. Anesthetics influence the incidence of acute kidney injury following valvular heart surgery. Kidney Int. 2014, 86, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Mahmoud, K. Comparative effect of propofol versus sevoflurane on renal ischemia/reperfusion injury after elective open abdominal aortic aneurysm repair. Saudi J. Anaesth. 2016, 10, 301. [Google Scholar]
- Bang, J.Y.; Lee, J.; Oh, J.; Song, J.G.; Hwang, G.S. The Influence of Propofol and Sevoflurane on Acute Kidney Injury after Colorectal Surgery, A Retrospective Cohort Study. Anesth. Analg. 2016, 123, 363–370. [Google Scholar] [CrossRef]
- Ebert, T.J.; Arain, S.R. Renal responses to low-flow desflurane, sevoflurane, and propofol in patients. Anesthesiology 2000, 93, 1401–1406. [Google Scholar] [CrossRef]
- Oh, T.K.; Kim, J.; Han, S.; Kim, K.; Jheon, S.; Ji, E. Effect of sevoflurane-based or propofol-based anaesthesia on the incidence of postoperative acute kidney injury, A retrospective propensity score-matched analysis. Eur. J. Anaesthesiol. 2019, 36, 649–655. [Google Scholar]
- Kheterpal, S.; Tremper, K.K.; Englesbe, M.J.; O’Reilly, M.; Shanks, A.M.; Fetterman, D.M.; Rosenberg, A.L.; Swartz, R.D. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology 2007, 107, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Farag, E.; Makarova, N.; Argalious, M.; Cywinski, J.B.; Benzel, E.; Kalfas, I.; Sessler, D.I. Vasopressor infusion during prone spine surgery and acute renal injury, A retrospective cohort analysis. Anesth. Analg. 2019, 219, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Mascha, E.J.; Dalton, J.E.; Kurz, A.; Saager, L. Statistical grand rounds, understanding the mechanism, mediation analysis in randomized and nonrandomized studies. Anesth. Analg. 2013, 117, 980–994. [Google Scholar] [CrossRef]
- Kheterpal, S.; Tremper, K.K.; Heung, M.; Rosenberg, A.L.; Englesbe, M.; Shanks, A.M.; Campbell, D.A. Development and validation of an acute kidney injury risk index for patients undergoing general surgery, results from a national data set. Anesthesiology 2009, 110, 505–515. [Google Scholar] [CrossRef]
- Stucker, F.; Ponte, B.; De la Fuente, V.; Alves, C.; Rutschmann, O.; Carballo, S.; Vuilleumier, N.; Martin, P.Y.; Perneger, T.; Saudan, P. Risk factors for community-acquired acute kidney injury in patients with and without chronic kidney injury and impact of its initial management on prognosis, a prospective observational study. BMC Nephrol. 2017, 18, 380. [Google Scholar] [CrossRef] [PubMed]
- Spaliviero, M.; Power, N.E.; Murray, K.S.; Sjoberg, D.D.; Benfante, N.E.; Bernstein, M.L.; Wren, J.; Russo, P.; Coleman, J.A. Intravenous mannitol versus placebo during partial nephrectomy in patients with normal kidney function, a double-blind, clinically-integrated, randomized trial. Eur. Urol. 2018, 73, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Cockshott, I.D.; Briggs, L.P.; Douglas, E.J.; White, M. Pharmacokinetics of propofol in female patients, studies using single bolus injections. Br. J. Anaesth. 1987, 59, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Propofol (n = 130) | Sevoflurane (n = 644) | Desflurane (n = 313) | p-Value |
---|---|---|---|---|
Demographic data | ||||
Age, years | 55 (47–62) | 57 (48–67) | 58 (49–66) | 0.12 |
Female, n | 34 (26.2) | 199 (30.9) | 87 (27.8) | 0.42 |
Body-mass index, kg/m² | 24.5 (22.4–26.6) | 24.5 (22.6–26.6) | 24.5 (22.5–26.6) | 0.98 |
Current smoker, n | 22 (16.9) | 85 (13.2) | 59 (18.8) | 0.06 |
Background medical status | ||||
ASA 1/2/3/4 | 69 (53.1)/55 (42.3)/6 (4.6)/0 | 317 (49.2)/280 (43.5)/47 (7.3)/0 | 119 (38.0)/181 (57.8)/12 (3.8)/1 (0.3) | <0.001 |
Hypertension, n | 46 (35.4) | 292 (45.3) | 131 (41.9) | 0.10 |
Diabetes mellitus, n | 16 (12.3) | 99 (15.4) | 53 (16.9) | 0.47 |
Cerebrovascular accident, n | 4 (3.1) | 17 (2.6) | 4 (1.3) | 0.34 |
Liver disease, n | 11 (8.5) | 22 (3.4) | 13 (4.2) | 0.03 |
Ischemic heart disease, n | 2 (1.5) | 11 (1.7) | 2 (0.6) | 0.41 |
Hyperlipidemia, n | 8 (6.2) | 59 (9.2) | 34 (10.9) | 0.29 |
Preoperative eGFR (mL/min/1.73 m2) | 82 (73–89) | 81 (69–92) | 77 (68–90) | 0.068 |
Preoperative stage of CKD | 0.09 | |||
1 (eGFR ≥ 90 mL/min/1.73 m2) | 29 (22.3) | 193 (30.0) | 79 (25.2) | 0.179 |
2 (60–89 mL/min/1.73 m2) | 91 (71.0) | 365 (56.7) | 185 (59.1) | |
3a (45–59 mL/min/1.73 m2) | 4 (3.1) | 47 (7.3) | 29 (9.3) | |
3b (30–44 mL/min/1.73 m2) | 4 (3.1) | 13 (2.0) | 7 (2.2) | |
4 (15–30 mL/min/1.73 m2) | 1 (0.8) | 3 (0.5) | 2 (0.6) | |
5 (< 15 mL/min/1.73 m2) | 1 (0.8) | 23 (3.6) | 11 (3.5) | |
Preoperative proteinuria, n | 9 (6.9) | 43 (6.7) | 31 (9.9) | 0.20 |
Preoperative hemoglobin, g/dL | 14.3 (12.8–15.1) | 13.7 (12.5–14.8) | 13.8 (12.5–14.9) | 0.04 |
Preoperative albumin, g/dL | 4.4 (4.2–4.7) | 4.4 (4.1–4.6) | 4.4 (4.2–4.6) | 0.20 |
ECOG performance status | 0.001 | |||
0/1/2/3 | 121/6/3/0 | 536/82/23/2 | 285/25/1/2 | |
Clinical stage | ||||
T 1a/1b | 103 (79.2)/ 14 (10.8) | 416 (64.6)/ 126 (19.6) | 231 (73.8)/ 25 (8.0) | 0.23 |
T 2a/2b | 7 (5.4)/- | 65 (10.1)/ 15 (2.3) | 35 (11.2)/ 6 (1.9) | |
T 3a/3b/3c | 3 (2.3)/2 (1.5)/1 (0.8) | 12 (1.9)/4 (0.6)/6 (0.9) | 4 (1.3)/6 (1.9)/6 (1.9) | |
N 0/1 | 129 (99.2)/ 1 (0.8) | 616 (95.7)/ 28 (4.3) | 298 (95.2)/ 15 (4.8) | 0.10 |
M 0/1 | 123 (94.6)/ 7 (5.4) | 619 (96.1)/ 25 (3.9) | 303 (96.8)/ 10 (3.2) | 0.30 |
Operation and anesthesia related | ||||
Surgery type | 0.07 | |||
Radical nephrectomy, n | 44 (33.8) | 286 (44.4) | 139 (44.4) | |
Partial nephrectomy, n | 86 (66.2) | 358 (55.6) | 174 (55.6) | |
Surgical approach | <0.001 | |||
Laparoscopic, n | 10 (7.7) | 130 (20.2) | 51 (16.3) | |
Hand-assisted laparoscopic, n | 2 (1.5) | 22 (3.4) | 11 (3.5) | |
Robot-assisted, n | 62 (47.7) | 40 (6.2) | 32 (10.2) | |
Open, n | 56 (43.1) | 452 (70.2) | 219 (70.0) | |
Operation time, hour | 2.8 (2.3–3.3) | 2.2 (1.7–2.8) | 2.2 (1.7–2.9) | <0.001 |
Renal ischemic time, min * | 27 (21.5–35.5) | 24.6 (20.0–31.0) | 22.4 (17.4–27.5) | <0.001 |
Ischemia type * | 0.13 | |||
Cold ischemia | 1 (1.2) | 22 (6.1) | 7 (4.0) | |
Warm ischemia | 85 (98.8) | 336 (93.9) | 167 (96.0) | |
Intraoperative vasopressor use, n | 5 (3.8) | 10 (1.6) | 7 (2.2) | 0.55 |
pRBC transfusion, n | 15 (11.5) | 68 (10.6) | 40 (12.8) | 0.59 |
Crystalloid administration, mL/kg | 18.8 (12.3–24.9) | 18.7 (14.2–25.0) | 18.1 (12.5–25.2) | 0.17 |
Colloid administration, mL/kg | 0 (0–5.8) | 0 (0–5.0) | 0 (0–5.5) | 0.78 |
Outcomes | Propofol | Sevoflurane | Risk Difference, % | p-Value |
---|---|---|---|---|
Number of patients before matching | 130 | 644 | ||
Postoperative AKI, n | 29 (22.3) | 229 (35.6) | −13 (−5 to −21) | 0.032 |
Stage 1 | 24 (18.5) | 203 (31.5) | −13 (−5 to −21) | |
Stage 2 | 1 (0.8) | 2 (0.3) | 0.5 (−1.1 to 2.0) | |
Stage 3 | 4 (3.1) | 24 (3.7) | −0.6 (−3.9 to 2.7) | |
Postoperative new-onset CKD stage 3a or high, n | 33 (25.4) | 296 (46.0) | −21 (−12 to −29) | <0.001 |
CKD upstaging, n | 38 (29.2) | 307 (47.7) | −18 (−10 to −27) | <0.001 |
Number of patients after matching | 125 | 125 | ||
Postoperative AKI, n | 29 (23.2) | 50 (39.5) | −17 (−5 to −28) | 0.004 |
Stage 1 | 24 (19.2) | 45 (36.0) | −17 (−6 to −28) | |
Stage 2 | 1 (0.8) | - | - | |
Stage 3 | 4 (3.2) | 5 (4.0) | −0.8 (−5.4 to 3.8) | |
Postoperative new-onset CKD stage 3a or high, n | 33 (26.4) | 61 (48.8) | −22 (−11 to −34) | <0.001 |
CKD upstaging, n | 34 (27.2) | 73 (58.4) | −31 (−20 to −43) | <0.001 |
Outcomes | Propofol | Desflurane | Risk Difference, % | p-Value |
---|---|---|---|---|
Number of patients before matching | 130 | 313 | ||
Postoperative AKI, n | 29 (22.3) | 113 (36.1) | −14 (−5 to −22) | 0.042 |
Stage 1 | 24 (18.5) | 100 (31.9) | −13 (−5 to −22) | |
Stage 2 | 1 (0.8) | 3 (1.0) | −0.2 (−2.0 to 1.7) | |
Stage 3 | 4 (3.1) | 10 (3.2) | −0.1 (−3.7 to 3.4) | |
Postoperative new-onset CKD stage 3a or high, n | 33 (25.4) | 131 (41.9) | −16 (−7 to −26) | 0.001 |
CKD upstaging, n | 38 (29.2) | 141 (45.0) | −16 (−6 to −25) | 0.002 |
Number of patients after matching | 105 | 105 | ||
Postoperative AKI, n | 22 (21.0) | 36 (34.3) | −13 (−1 to −25) | 0.031 |
Stage 1 | 19 (18.1) | 31 (29.5) | −11 (−0.1 to −23) | |
Stage 2 | 1 (1.0) | - | - | |
Stage 3 | 2 (1.9) | 5 (4.8) | −2.9 (−7.7 to 2.0) | |
Postoperative new-onset CKD stage 3a or high, n | 24 (22.9) | 35 (33.3) | −10 (−23 to 2) | 0.09 |
CKD upstaging, n | 34 (32.4) | 51 (48.6) | −16 (−29 to −3) | 0.017 |
Outcomes | Sevoflurane | Desflurane | Risk Difference, % | p-Value |
---|---|---|---|---|
Number of patients before matching | 644 | 313 | ||
Postoperative AKI, n | 229 (35.6) | 113 (36.1) | −0.5 (−7.0 to 5.9) | 0.98 |
Stage 1 | 203 (31.5) | 100 (31.9) | −0.4 (−6.7 to 5.9) | |
Stage 2 | 2 (0.3) | 3 (1.0) | −0.6 (−1.8 to 0.5) | |
Stage 3 | 24 (3.7) | 10 (3.2) | 0.5 (−1.9 to 3.0) | |
Postoperative new-onset CKD stage 3a or high, n | 296 (46.0) | 131 (41.9) | 4.1 (−2.6 to 10.8) | 0.23 |
CKD upstaging, n | 307 (47.7) | 141 (45.0) | 2.7 (−4.1 to 9.4) | 0.45 |
Number of patients after matching | 307 | 307 | ||
Postoperative AKI, n | 103 (33.6) | 110 (35.8) | −2.3 (−9.8 to 5.2) | 0.55 |
Stage 1 | 93 (30.3) | 99 (32.2) | −2.0 (−9.3 to 5.4) | |
Stage 2 | - | 3 (1.0) | - | |
Stage 3 | 10 (3.3) | 8 (2.6) | 0.7 (−2.0 to 3.3) | |
Postoperative new-onset CKD stage 3a or high, n | 136 (44.3) | 127 (41.4) | 2.9 (−4.9 to 10.8) | 0.46 |
CKD upstaging, n | 147 (47.9) | 139 (45.3) | 2.6 (−5.3 to 10.5) | 0.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-J.; Bae, J.; Kwon, Y.; Jang, H.S.; Yoo, S.; Jeong, C.W.; Kim, J.-T.; Kim, W.H. General Anesthetic Agents and Renal Function after Nephrectomy. J. Clin. Med. 2019, 8, 1530. https://doi.org/10.3390/jcm8101530
Lee H-J, Bae J, Kwon Y, Jang HS, Yoo S, Jeong CW, Kim J-T, Kim WH. General Anesthetic Agents and Renal Function after Nephrectomy. Journal of Clinical Medicine. 2019; 8(10):1530. https://doi.org/10.3390/jcm8101530
Chicago/Turabian StyleLee, Ho-Jin, Jinyoung Bae, Yongsuk Kwon, Hwan Suk Jang, Seokha Yoo, Chang Wook Jeong, Jin-Tae Kim, and Won Ho Kim. 2019. "General Anesthetic Agents and Renal Function after Nephrectomy" Journal of Clinical Medicine 8, no. 10: 1530. https://doi.org/10.3390/jcm8101530
APA StyleLee, H.-J., Bae, J., Kwon, Y., Jang, H. S., Yoo, S., Jeong, C. W., Kim, J.-T., & Kim, W. H. (2019). General Anesthetic Agents and Renal Function after Nephrectomy. Journal of Clinical Medicine, 8(10), 1530. https://doi.org/10.3390/jcm8101530