Probiotics in Adolescent Prediabetes: A Pilot RCT on Glycemic Control and Intestinal Bacteriome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants—Procedures
2.3. Interventions
2.4. Outcomes
2.5. Randomization—Blinding
2.6. Statistical Methods
3. Results
3.1. Recruitment and Baseline Characteristics
3.2. Outcomes and Estimations
3.2.1. Between-Group Differences
3.2.2. Within-Group Differences
3.3. Adverse Effects—Harms
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crommen, S.; Simon, M.C. Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Selmi, C.; Tang, R.; Gershwin, M.E.; Ma, X. The microbiome and autoimmunity: A paradigm from the gut-liver axis. Cell. Mol. Immunol. 2018, 15, 595. [Google Scholar] [CrossRef]
- Yang, J.; Tamura, R.N.; Uusitalo, U.M.; Aronsson, C.A.; Silvis, K.; Riikonen, A.; Frank, N.; Joslowski, G.; Winkler, C.; Norris, J.M.; et al. Vitamin D and probiotics supplement use in young children with genetic risk for type 1 diabetes. Eur. J. Clin. Nutr. 2017, 71, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.C.; Bueno, A.A.; de Souza, R.G.; Mota, J.F. Gut microbiota, probiotics and diabetes. Nutr. J. 2014, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp. Biol. Med. 2016, 241, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef]
- Stefanaki, C.; Peppa, M.; Mastorakos, G.; Chrousos, G.P. Examining the gut bacteriome, virome, and mycobiome in glucose metabolism disorders: Are we on the right track? Metabolism 2017, 73, 52–66. [Google Scholar] [CrossRef]
- Kassaian, N.; Feizi, A.; Aminorroaya, A.; Amini, M. Probiotic and synbiotic supplementation could improve metabolic syndrome in prediabetic adults: A randomized controlled trial. Diabetes Metab. Syndr. 2019, 13, 2991–2996. [Google Scholar] [CrossRef]
- Heianza, Y.; Sun, D.; Smith, S.R.; Bray, G.A.; Sacks, F.M.; Qi, L. Changes in Gut Microbiota-Related Metabolites and Long-term Successful Weight Loss in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes Care 2018, 41, 413–419. [Google Scholar] [CrossRef]
- Hendijani, F.; Akbari, V. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis. Clin. Nutr. 2018, 37, 532–541. [Google Scholar] [CrossRef]
- Kassaian, N.; Feizi, A.; Aminorroaya, A.; Jafari, P.; Ebrahimi, M.T.; Amini, M. The effects of probiotics and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: A double-blind randomized clinical trial. Acta Diabetol. 2018, 55, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Naito, E.; Yoshida, Y.; Kunihiro, S.; Makino, K.; Kasahara, K.; Kounoshi, Y.; Aida, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Effect of Lactobacillus casei strain Shirota-fermented milk on metabolic abnormalities in obese prediabetic Japanese men: A randomised, double-blind, placebo-controlled trial. Biosci. Microbiota Food Health 2018, 37, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, C.; Bacopoulou, F.; Peppa, M. Prediabetes and Adolescence—Trends, Causes, Effects, and Screening. US Endocrinol. 2016, 12, 94–98. [Google Scholar] [CrossRef]
- Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: Implications for health and disease. Hormones 2018, 17, 33–43. [Google Scholar] [CrossRef]
- Bacopoulou, F.; Foskolos, E.; Stefanaki, C.; Tsitsami, E.; Vousoura, E. Disordered eating attitudes and emotional/behavioral adjustment in Greek adolescents. Eat. Weight Disord. 2018, 23, 621–628. [Google Scholar] [CrossRef]
- Stefanaki, C.; Peppa, M.; Boschiero, D.; Chrousos, G.P. Healthy overweight/obese youth: Early osteosarcopenic obesity features. Eur. J. Clin. Investig. 2016, 46, 767–778. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016, 2, 64. [Google Scholar] [CrossRef]
- Blatch-Jones, A.J.; Pek, W.; Kirkpatrick, E.; Ashton-Key, M. Role of feasibility and pilot studies in randomised controlled trials: A cross-sectional study. BMJ Open 2018, 8, e022233. [Google Scholar] [CrossRef]
- Stefanaki, C.; Bacopoulou, F.; Michos, A. The impact of probiotics’ administration on glycemic control, body composition, gut microbiome, mitochondria, and other hormonal signals in adolescents with prediabetes—A randomized, controlled trial study protocol. Contemp. Clin. Trials Commun. 2018, 11, 55–62. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Barnett, T.A.; Goodman, E.; Wasserman, R.C.; Kemper, A.R. Approaches to the prevention and management of childhood obesity: The role of social networks and the use of social media and related electronic technologies: A scientific statement from the American Heart Association. Circulation 2013, 127, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.L.; Bralley, J.A., III; George, J.M. Process and Method for Monitoring Gastrointestinal Microbiota. US Patent US20120021921A1, 26 January 2012. [Google Scholar]
- Group, N.H.W.; Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanriover, M.D.; Aksoy, D.Y.; Unal, S. Use of probiotics in various diseases: Evidence and promises. Pol. Arch. Med. Wewn. 2012, 122, S72–S77. [Google Scholar] [CrossRef]
- Islam, S.U. Clinical Uses of Probiotics. Medicine 2016, 95, e2658. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Asemi, Z. Effects of synbiotic food consumption on glycemic status and serum hs-CRP in pregnant women: A randomized controlled clinical trial. Hormones 2014, 13, 398–406. [Google Scholar] [CrossRef]
- Caricilli, A.M.; Saad, M.J. The role of gut microbiota on insulin resistance. Nutrients 2013, 5, 829–851. [Google Scholar] [CrossRef]
- Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009, 58, 1091–1103. [Google Scholar] [CrossRef] [Green Version]
- Khalili, L.; Alipour, B.; Asghari Jafar-Abadi, M.; Faraji, I.; Hassanalilou, T.; Mesgari Abbasi, M.; Vaghef-Mehrabany, E.; Alizadeh Sani, M. The Effects of Lactobacillus casei on Glycemic Response, Serum Sirtuin1 and Fetuin-A Levels in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Iran. Biomed. J. 2019, 23, 68. [Google Scholar] [CrossRef]
- Randle, P.J. Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes Metab. Rev. 1998, 14, 263–283. [Google Scholar] [CrossRef]
- Delarue, J.; Magnan, C. Free fatty acids and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 142–148. [Google Scholar] [CrossRef]
- Hatziagelaki, E.; Karageorgopoulos, D.E.; Chounta, A.; Tsiavou, A.; Falagas, M.E.; Dimitriadis, G. Predictors of impaired glucose regulation in patients with non-alcoholic fatty liver disease. Exp. Diabetes Res. 2012, 2012, 351974. [Google Scholar] [CrossRef]
- Bock, G.; Chittilapilly, E.; Basu, R.; Toffolo, G.; Cobelli, C.; Chandramouli, V.; Landau, B.R.; Rizza, R.A. Contribution of hepatic and extrahepatic insulin resistance to the pathogenesis of impaired fasting glucose: Role of increased rates of gluconeogenesis. Diabetes 2007, 56, 1703–1711. [Google Scholar] [CrossRef]
- Barengolts, E. Gut Microbiota, Prebiotics, Probiotics, and Synbiotics in Management of Obesity and Prediabetes: Review of Randomized Controlled Trials. Endocr. Pract. 2016, 22, 1224–1234. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Yuan, F.; Wang, H.; Tian, Y.; He, L.; Shao, Y.; Li, N.; Liu, Z. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion. BioMed Res. Int. 2016, 2016, 2384561. [Google Scholar] [CrossRef]
- Tai, N.; Wong, F.S.; Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 2015, 16, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Li, J.; Hou, Q.; Zhang, J.; Xu, H.; Sun, Z.; Menghe, B.; Zhang, H. Carbohydrate Staple Food Modulates Gut Microbiota of Mongolians in China. Front. Microbiol. 2017, 8, 484. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef]
- Fitzgerald, C.B.; Shkoporov, A.N.; Sutton, T.D.S.; Chaplin, A.V.; Velayudhan, V.; Ross, R.P.; Hill, C. Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa. BMC Genom. 2018, 19, 931. [Google Scholar] [CrossRef]
- Hippe, B.; Remely, M.; Aumueller, E.; Pointner, A.; Magnet, U.; Haslberger, A.G. Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benef. Microbes 2016, 7, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.D.; Zhao, Y.; Huang, J. Metabolic modeling of common Escherichia coli strains in human gut microbiome. BioMed Res. Int. 2014, 2014, 694967. [Google Scholar] [CrossRef]
- Lambeth, S.M.; Carson, T.; Lowe, J.; Ramaraj, T.; Leff, J.W.; Luo, L.; Bell, C.J.; Shah, V.O. Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. J. Diabetes Obes. 2015, 2, 1–7. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Grosheva, I.; Zheng, D.; Soffer, E.; Blacher, E.; Braverman, S.; Tengeler, A.C.; Barak, O.; Elazar, M.; et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 2018, 359, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Holley, S.; Morris, R.; Knibb, R.; Latter, S.; Liossi, C.; Mitchell, F.; Roberts, G. Barriers and facilitators to asthma self-management in adolescents: A systematic review of qualitative and quantitative studies. Pediatr. Pulmonol. 2017, 52, 430–442. [Google Scholar] [CrossRef]
- Gray, W.N.; Kavookjian, J.; Shapiro, S.K.; Wagoner, S.T.; Schaefer, M.R.; Resmini Rawlinson, A.; Hinnant, J.B. Transition to College and Adherence to Prescribed Attention Deficit Hyperactivity Disorder Medication. J. Dev. Behav. Pediatr. 2018, 39, 1–9. [Google Scholar] [CrossRef]
- Pandey, A.; Hale, D.; Goddings, A.L.; Blakemore, S.J.; Viner, R. Systematic review of effectiveness of universal self-regulation-based interventions and their effects on distal health and social outcomes in children and adolescents: Review protocol. Syst. Rev. 2017, 6, 175. [Google Scholar] [CrossRef]
- Li, C.; Ford, E.S.; Zhao, G.; Mokdad, A.H. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005-2006. Diabetes Care 2009, 32, 342–347. [Google Scholar] [CrossRef]
Variable | Control Group N = 10 (Median-IQR or n (%)) | Intervention Group N = 7 (Median-IQR or n (%)) | p Statistical Significance Mann–Whitney Test |
---|---|---|---|
Age (in years) | 13.50 (12–16.25) | 15 (14–16) | p = 0.41 |
Body mass index (BMI) z-score | |||
Baseline | 1.55 ((–0.65)–2.12) | 2.2 (1.30–2.60) | p = 0.08 |
Post-intervention | 1.30 ((−0.32)–2.12) | 2.2 (1.50–2.60) | p =0.07 |
Male Gender | 5 (50%) | 3 (42.9%) | p = 0.77 |
Positive History of Mother’s Gestational Diabetes | 1 (10%) | 1 (14.30%) | p = 0.78 |
Positive Family History for Diabetes | 9 (90%) | 2 (28.60%) | Chi squared test: p = 0.009 |
Positive Family History for Autoimmunity | 0 (0%) | 1 (14.30%) | Fisher’s exact test: p = 0.41 |
Fasting Morning Glucose Concentrations in mg/dl (a) During Screening Process | 104 (100–107.50) | 110 (103–119) | p = 0.23 |
Fasting Morning Glucose Concentrations in mg/dl (b) During Screening Process | 105.5 (98.25–110.25) | 110 (103–118) | p = 0.60 |
OGTT Glucose 0′ in mg/dl | 101 (95.25–103.75) | 99 (95–119) | p = 0.62 |
OGTT Glucose 30′ in mg/dl | 147.50 (127.25–164.50) | 160 (126–191) | p = 0.52 |
OGTT Glucose 60′ in mg/dl | 109 (88.75–166.25) | 148 (138.5–195) | p = 0.22 |
OGTT Glucose 90′ in mg/dl | 107 (90–139) | 128 (111–158.50) | p = 0.26 |
OGTT Glucose 120′in mg/dl | 90 (82–123) | 116 (89.50–123) | p = 0.53 |
OGTT Insulin 0′ in pmol/L | 10.50 (4.20–17.20) | 20.7 (12.10–25.40) | p = 0.07 |
OGTT Insulin 30′ in pmol/L | 45.80 (37.80–100) | 106 (34.65–215) | p = 0.43 |
OGTT Insulin 60′ in pmol/L | 57.30 (25.10–73.40) | 111 (70–178.50) | p = 0.10 |
OGTT Insulin 90′ in pmol/L | 45.10 (20.90–86.7) | 100 (61.2–146.90) | p = 0.14 |
OGTT Insulin 120′ in pmol/L | 46.80 (23.40–74) | 84 (39.10–107.50) | p = 0.26 |
Abbreviations: OGTT: Oral Glucose Tolerance Test |
Variable | Control Group N = 10 (Median-IQR) | Intervention Group N = 7 (Median-IQR) | p Statistical Significance Mann–Whitney Test |
---|---|---|---|
HbA1c in percentage (%) † and Fasting Blood Glucose Concentrations in mg/dl | |||
Baseline | 5.10 (5–5.25) | 5.2 (5–5.5) | p = 0.74 |
Post-Intervention | 5 (4.95–5.125) | 5 (4.8–5.3) * | p = 0.96 |
Morning Fasting Glucose | |||
Baseline | 102 (100–108.25) | 108 (105–109) * | p = 0.06 |
1st month | 111.5 (105.25– 119) | 99 (94–108) * | p = 0.04 |
2nd month | 102.50 (99.25–104.50) | 103 (93.25–104.25) * | p =0 1 |
3rd month | 104.50 (100–107.50) | 98 (88–105) * | p = 0.33 |
4th month | 108.50(100.50–113) | 102 (90–113) * | p = 0.33 |
Differences in Gut Digestion and Absorption Markers | |||
Total Fecal Fat (Valerate, Isobutyrate, Isovalerate) in mg/g | |||
Baseline | 28.70 (17.32–35.65) | 10.90 (4.65–21.30) | p = 0.03 |
Post-Intervention | 17.65 (14.67–34.10) | 22.15 (6.62–32.27) | p = 0.762 |
Triglycerides in mg/g | |||
Baseline | 1.55 (0.45–2.75) | 0.70 (0.25–1.15) | p = 0.22 |
Post-Intervention | 22.15 (6.62–32.27) | 1.40 (0.5–6.42) | p = 0.61 |
Long-Chain Fatty Acids in mg/g | |||
Baseline | 17.40 (11.05–24.50) | 5.10 (2.90–13.25) | p = 0.03 |
Post-Intervention | 11.10 (6.62–21) | 10.30 (3.20–18.97) | p = 0.91 |
Cholesterol in mg/g | |||
Baseline | 1.30 (0.97–2.55) | 1.50 (0.65–4.5) | p = 0.72 |
Post-Intervention | 1.60 (0.82–2.60) | 1.30 (0.55–3.17) | p = 0.76 |
Phospholipids in mg/g | |||
Baseline | 5.40 (3.75–9.90) | 1 (0.75–3.85) | p = 0.01 |
Post-Intervention | 4.45 (1.92–11.22) | 4.95 (1.70–8.57) | p = 0.91 |
Gut Immunology and Inflammation measures | |||
Calprotectin in mcg/g | |||
Baseline | 53.50 (18–111.25) | 17 (16–41) | p = 0.12 |
Post-Intervention | 17.50 (16–32.25) * | 17 (17) | p = 0.76 |
Eosinophil Protein X (EPX) in mcg/g | |||
Baseline | 7 (7) | 0.70 (0.60–4.15) | p = 0.09 |
Post-Intervention | 2.55 (0.40–4.60) | 0.65 (0.45–1) | p = 0.76 |
Gut Metabolism Markers | |||
n-Butyrate Concentration in micromole/g | |||
Baseline | 17.75 (10.55–25.75) | 14.20 (7.50–29.25) | p = 0.88 |
Post-Intervention | 17.05 (15.85–18.35) | 20.30 (8.22–31.40) | p =0 1 |
Control Group N = 10 Median (IQR) | Intervention Group N = 7 Median (IQR) | p Statistical Significance Mann–Whitney Test | |
---|---|---|---|
Prevotella spp. | |||
Baseline | 8.9 × 106 (5.75 × 106 –1.45 × 107 ) | 2.5 × 106 (6.6 × 105 –9.1 × 106) | p = 0.16 |
Post-Intervention | 8.35 × 106 (5.4 × 106–2.12 × 107) | 1.1 × 106 (8.25 × 105–1.07 × 107) | p = 0.08 |
Barnesiella spp. | |||
Baseline | 1.6 × 108 (1.14 × 108–1.82 × 108 | 3.8 × 107 (3.3 × 106–2.15 × 108) | p = 0.10 |
Post-Intervention | 2.15 × 108 (1.6 108–5.87 × 108) | 1.7 × 107 (3.5 × 106–2.07 × 107) | p = 0.01 |
Anaerotruncus colihominis | |||
Baseline | 4.8 × 106 (1.72 × 106–1.7 × 107) | 5.1 × 106 (2.9 × 106–6.8 × 106) | p = 0.71 |
Post-Intervention | 1.4 × 107 (4.92 × 106–2.35 × 107) | 3.4 × 106 (1.04 × 106–8.32 × 106) | P = 0.06 |
Butyrivibrio crossotus | |||
Baseline | 1.9 × 104 (8.35 × 103–5.9 × 104) | 1 × 104 (6.35 × 103–4.9 × 104) | p = 0.06 |
Post-Intervention | 1.9 × 105 (7.87 × 104–5 × 105) * | 2.45 × 104 (9.7 × 103–3 × 104) | p = 0.01 |
Faecalibacterium prausnitzii | |||
Baseline | 7.05 × 109 (2.97 × 109–1.175 × 1010) | 4.3 × 109 (2.25 × 109–6 × 109) | p = 0.16 |
Post-Intervention | 8.55 × 109 (6.8 × 109–1.1 × 1010) | 2.65 × 109 (9.17 × 108–5.12 × 109) | p = 0.01 |
Collinsella aerofaciens | |||
Baseline | 6.4 × 108 (9.65 × 107–8.05 × 108) | 2.7 × 108 (8.5 × 106–8.75 × 108) | p = 0.50 |
Post-Intervention | 9 × 108 (2.035 × 108– 1.45 × 109) | 1.4 × 107 (1 × 104–4.64 × 108) | p = 0.03 |
Escherichia coli | |||
Baseline | 2.7 × 107 (5.02 × 106–4.25 × 107) | 3.8 × 107 (1.61 × 107–4.65 × 107) | p = 0.37 |
Post-Intervention | 4.4 × 107 (2.4 × 107–7.5 × 107) | 5.65 × 106 (1.97 × 106–1.30 × 107) | p = 0.01 |
Methanobrevibacter smithii | |||
Baseline | 3.5 × 107 (9.37 × 105–8.675 × 107) | 5.8 × 107 (7.9 × 105–8.6 × 10 7) | p = 0.88 |
Post-Intervention | 8.6 × 107 (6.45 × 107–1.25 × 108) | 2.9 × 107 (1 × 104–7.9 × 107) | p = 0.09 |
Fusobacterium spp. | |||
Baseline | 6.1 × 104 (5.3 × 104–1.475 × 105) | 3.7 × 104 (1.7 × 104–9 × 104) | p = 0.07 |
Post-Intervention | 1.35 × 105 (3.605 × 104–2.225 × 105) | 7.6 × 103 (2.42 × 103–9.25 × 104) | p = 0.08 |
PROTEOBACTERIA PHYLUM | |||
Baseline | 3.1 × 107 (2.5 × 107–5.9 × 107) | 4.7 × 107 (1.7 × 107–6.4 × 107) | p = 1 |
Post-Intervention | 6.5 × 107 (2.8 × 107–1.4 × 108) | 2.2 × 107(6.5 × 106–4 × 107) | p = 0.08 |
Akkermansia muciniphila | |||
Baseline | 7.6 × 106 (6.52 × 105–1.55 × 107) | 6.5 × 105 (1 × 104–1.015 × 106) | p = 0.06 |
Post-Intervention | 2.8 × 106 (1.2 × 106–1.675 × 107) * | 5.05 × 105 (1 × 104–2.275 × 106) | p = 0.03 |
Month: Mean (± SD) consumed probiotics sachets/number of sachets that should be consumed |
1st: 38.00 (± 21.48)/56.00 (67%) |
2nd: 28.00 (± 16.52)/56.00 (50%) |
3rd: 30.86 (± 16.3)/56.00 (55%) |
4th: 31.43 (± 20.53)/56.00 (56%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanaki, C.; Michos, A.; Mastorakos, G.; Mantzou, A.; Landis, G.; Zosi, P.; Bacopoulou, F. Probiotics in Adolescent Prediabetes: A Pilot RCT on Glycemic Control and Intestinal Bacteriome. J. Clin. Med. 2019, 8, 1743. https://doi.org/10.3390/jcm8101743
Stefanaki C, Michos A, Mastorakos G, Mantzou A, Landis G, Zosi P, Bacopoulou F. Probiotics in Adolescent Prediabetes: A Pilot RCT on Glycemic Control and Intestinal Bacteriome. Journal of Clinical Medicine. 2019; 8(10):1743. https://doi.org/10.3390/jcm8101743
Chicago/Turabian StyleStefanaki, Charikleia, Athanasios Michos, George Mastorakos, Aimilia Mantzou, Georgios Landis, Paraskevi Zosi, and Flora Bacopoulou. 2019. "Probiotics in Adolescent Prediabetes: A Pilot RCT on Glycemic Control and Intestinal Bacteriome" Journal of Clinical Medicine 8, no. 10: 1743. https://doi.org/10.3390/jcm8101743
APA StyleStefanaki, C., Michos, A., Mastorakos, G., Mantzou, A., Landis, G., Zosi, P., & Bacopoulou, F. (2019). Probiotics in Adolescent Prediabetes: A Pilot RCT on Glycemic Control and Intestinal Bacteriome. Journal of Clinical Medicine, 8(10), 1743. https://doi.org/10.3390/jcm8101743