Acute Kidney Injury Adjusted for Parenchymal Mass Reduction and Long-Term Renal Function after Partial Nephrectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Surgical and Anesthesia Procedure
2.3. Patient Data and Outcome Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajan, S.; Babazade, R.; Govindarajan, S.R.; Pal, R.; You, J.; Mascha, E.J.; Khanna, A.; Yang, M.; Marcano, F.D.; Singh, A.K.; et al. Perioperative factors associated with acute kidney injury after partial nephrectomy. Br. J. Anaesth. 2016, 116, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhao, J.; Dong, W.; Remer, E.; Li, J.; Demirjian, S.; Zabell, J.; Campbell, S.C. Acute Kidney Injury after Partial Nephrectomy: Role of Parenchymal Mass Reduction and Ischemia and Impact on Subsequent Functional Recovery. Eur. Urol. 2016, 69, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Weight, C.J.; Larson, B.T.; Fergany, A.F.; Gao, T.; Lane, B.R.; Campbell, S.C.; Kaouk, J.H.; Klein, E.A.; Novick, A.C. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J. Urol. 2010, 183, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.C.; Ercole, C.; Takagi, T.; Zhang, Z.; Velet, L.; Remer, E.M.; Demirjian, S.; Campbell, S.C. Decline in renal function after partial nephrectomy: Etiology and prevention. J. Urol. 2015, 193, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Zabell, J.; Isharwal, S.; Dong, W.; Abraham, J.; Wu, J.; Suk-Ouichai, C.; Palacios, D.A.; Remer, E.; Li, J.; Campbell, S.C. Acute Kidney Injury after Partial Nephrectomy of Solitary Kidneys: Impact on Long-Term Stability of Renal Function. J. Urol. 2018, 200, 1295–1301. [Google Scholar] [CrossRef]
- Cho, A.; Lee, J.E.; Kwon, G.Y.; Huh, W.; Lee, H.M.; Kim, Y.G.; Kim, D.J.; Oh, H.Y.; Choi, H.Y. Post-operative acute kidney injury in patients with renal cell carcinoma is a potent risk factor for new-onset chronic kidney disease after radical nephrectomy. Nephrol. Dial. Transplant. 2011, 26, 3496–3501. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, C.; Liberti, M.E.; Russo, D.; Russo, L.; Fuiano, G.; Cianfrone, P.; Conte, G.; De Nicola, L.; Minutolo, R.; Borrelli, S. Effect of post-nephrectomy acute kidney injury on renal outcome: A retrospective long-term study. World J. Urol. 2018, 36, 59–63. [Google Scholar] [CrossRef]
- Thomas, M.E.; Blaine, C.; Dawnay, A.; Devonald, M.A.; Ftouh, S.; Laing, C.; Latchem, S.; Lewington, A.; Milford, D.V.; Ostermann, M. The definition of acute kidney injury and its use in practice. Kidney Int. 2015, 87, 62–73. [Google Scholar] [CrossRef]
- Chapman, D.; Moore, R.; Klarenbach, S.; Braam, B. Residual renal function after partial or radical nephrectomy for renal cell carcinoma. Can. Urol. Assoc. J. 2010, 4, 337–343. [Google Scholar] [CrossRef]
- Tachibana, H.; Kondo, T.; Takagi, T.; Okumi, M.; Tanabe, K. Impact of preoperative proteinuria on renal functional outcomes after open partial nephrectomy in patients with a solitary kidney. Investig. Clin. Urol. 2017, 58, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, O.D.; Bravo, H.; Arias, M.; Dallos, D.; Quiroz, Y.; Medina, L.G.; Cacciamani, G.E.; Carlini, R.G. Determinant factors for chronic kidney disease after partial nephrectomy. Oncoscience 2018, 5, 13–20. [Google Scholar] [PubMed] [Green Version]
- Kim, N.Y.; Hong, J.H.; Koh, D.H.; Lee, J.; Nam, H.J.; Kim, S.Y. Effect of Diabetes Mellitus on Acute Kidney Injury after Minimally Invasive Partial Nephrectomy: A Case-Matched Retrospective Analysis. J. Clin. Med. 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.R.; Kim, W.H.; Kim, D.J.; Shin, I.W.; Sohn, J.T. Prediction and Prevention of Acute Kidney Injury after Cardiac Surgery. BioMed Res. Int. 2016, 2016, 2985148. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.N.; Fergany, A.F.; Campbell, S.C. Effect of parenchymal volume preservation on kidney function after partial nephrectomy. J. Urol. 2011, 186, 405–410. [Google Scholar] [CrossRef]
- Ding, Y.; Kong, W.; Zhang, J.; Dong, B.; Chen, Y.; Xue, W.; Liu, D.; Huang, Y. Spherical cap surface model: A novel method for predicting renal function after partial nephrectomy. Int. J. Urol. 2016, 23, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, S.; Uzzo, R.G.; Allaf, M.E.; Bass, E.B.; Cadeddu, J.A.; Chang, A.; Clark, P.E.; Davis, B.J.; Derweesh, I.H.; Giambarresi, L.; et al. Renal Mass and Localized Renal Cancer: AUA Guideline. J. Urol. 2017, 198, 520–529. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, A.G.; Parker, D.C.; Egleston, B.L.; Uzzo, R.G.; Haseebuddin, M.; Joshi, S.S.; Viterbo, R.; Greenberg, R.E.; Chen, D.Y.T.; Smaldone, M.C.; et al. Prediction of significant estimated glomerular filtration rate decline after renal unit removal to aid in the clinical choice between radical and partial nephrectomy in patients with a renal mass and normal renal function. BJU Int. 2019. [Google Scholar] [CrossRef]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.C.; Campbell, R.A.; Sharma, N.; Remer, E.M.; Li, J.; Demirjian, S.; Kaouk, J.; Campbell, S.C. Parenchymal volume preservation and ischemia during partial nephrectomy: Functional and volumetric analysis. Urology 2013, 82, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Tobert, C.M.; Takagi, T.; Liss, M.A.; Lee, H.; Derweesh, I.H.; Campbell, S.C.; Lane, B.R. Multicenter Validation of Surgeon Assessment of Renal Preservation in Comparison to Measurement with 3D Image Analysis. Urology 2015, 86, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Klingler, M.J.; Babitz, S.K.; Kutikov, A.; Campi, R.; Hatzichristodoulou, G.; Sanguedolce, F.; Brookman-May, S.; Akdogan, B.; Capitanio, U.; Roscigno, M.; et al. Assessment of volume preservation performed before or after partial nephrectomy accurately predicts postoperative renal function: Results from a prospective multicenter study. Urol. Oncol. 2019, 37, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, M.; Breda, A.; Sanguedolce, F.; Landman, J.; Stolzenburg, J.U.; Verze, P.; Rassweiler, J.; Van Poppel, H.; Klingler, H.C.; Janetschek, G.; et al. The use of mannitol in partial and live donor nephrectomy: An international survey. World J. Urol. 2013, 31, 977–982. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, J.F.; Hsu, T.H., Jr.; Sprung, J.; Cywinski, J.B.; Rolin, H.A.; Novick, A.C. The effect of dopamine on renal function in solitary partial nephrectomy surgery. J. Urol. 2002, 167, 24–28. [Google Scholar] [CrossRef]
- Mir, M.C.; Takagi, T.; Campbell, R.A.; Sharma, N.; Remer, E.M.; Li, J.; Demirjian, S.; Stein, R.; Kaouk, J.; Campbell, S.C. Poorly functioning kidneys recover from ischemia after partial nephrectomy as well as strongly functioning kidneys. J. Urol. 2014, 192, 665–670. [Google Scholar] [CrossRef]
- Hung, A.J.; Cai, J.; Simmons, M.N.; Gill, I.S. “Trifecta” in partial nephrectomy. J. Urol. 2013, 189, 36–42. [Google Scholar] [CrossRef]
- Paulucci, D.J.; Rosen, D.C.; Sfakianos, J.P.; Whalen, M.J.; Abaza, R.; Eun, D.D.; Krane, L.S.; Hemal, A.K.; Badani, K.K. Selective arterial clamping does not improve outcomes in robot-assisted partial nephrectomy: A propensity-score analysis of patients without impaired renal function. BJU Int. 2017, 119, 430–435. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Dong, B.; Kong, W.; Zhang, J.; Xue, W.; Liu, D.; Huang, Y. Effect of remote ischaemic preconditioning on renal protection in patients undergoing laparoscopic partial nephrectomy: A ‘blinded’ randomised controlled trial. BJU Int. 2013, 112, 74–80. [Google Scholar] [CrossRef]
- Hur, M.; Park, S.K.; Shin, J.; Choi, J.Y.; Yoo, S.; Kim, W.H.; Kim, J.T. The effect of remote ischemic preconditioning on serum creatinine in patients undergoing partial nephrectomy: A study protocol for a randomized controlled trial. Trials 2018, 19, 473. [Google Scholar] [CrossRef] [PubMed]
- Kil, H.K.; Kim, J.Y.; Choi, Y.D.; Lee, H.S.; Kim, T.K.; Kim, J.E. Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. J. Clin. Med. 2018, 7, 470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.X.; Kalbfleisch, M.; Yang, Y.X.; Bihari, R.; Lobb, I.; Davison, M.; Mok, A.; Cepinskas, G.; Lawendy, A.-R.; Sener, A. Detrimental effects of prolonged warm renal ischaemia-reperfusion injury are abrogated by supplemental hydrogen sulphide: An analysis using real-time intravital microscopy and polymerase chain reaction. BJU Int. 2012, 110, E1218–E1227. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Renard, J.; Billia, M.; Musso, F.; Volpe, A.; Burruni, R.; Terrone, C.; Colla, L.; Piccoli, G.; Podio, V.; et al. Is renal warm ischemia over 30 min during laparoscopic partial nephrectomy possible? One-year results of a prospective study. Eur. Urol. 2007, 52, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, Y.; Hattori, R.; Yamamoto, T.; Kamihira, O.; Kato, K.; Gotoh, M. Ischemic renal damage after nephron-sparing surgery in patients with normal contralateral kidney. Eur. Urol. 2009, 55, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Lane, B.R.; Russo, P.; Uzzo, R.G.; Hernandez, A.V.; Boorjian, S.A.; Thompson, R.H.; Fergany, A.F.; Love, T.E.; Campbell, S.C. Comparison of cold and warm ischemia during partial nephrectomy in 660 solitary kidneys reveals predominant role of nonmodifiable factors in determining ultimate renal function. J. Urol. 2011, 185, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Song, B.D.; Byun, S.S.; Lee, S.E.; Hong, S.K. Impact of warm ischaemia time on postoperative renal function after partial nephrectomy for clinical T1 renal cell carcinoma: A propensity score-matched study. BJU Int. 2018, 121, 46–52. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Adjusted AKI | No AKI | p-Value |
---|---|---|---|
Patient population, n | 54 (8.6) | 575 (91.4) | |
Demographic data | |||
Age, yr | 61 (51–67) | 54 (46–65) | 0.020 |
Female, n | 3 (5.6) | 176 (30.6) | <0.001 |
Body-mass index, kg/m2 | 24.2 (22.5–26.7) | 24.6 (22.6–26.7) | 0.599 |
Background medical status | |||
Hypertension, n | 27 (50.0) | 202 (35.1) | 0.030 |
Diabetes mellitus, n | 9 (16.7) | 75 (13.0) | 0.409 |
Cerebrovascular accident, n | 1 (1.9) | 14 (2.4) | 0.781 |
Angina pectoris, n | 2 (3.7) | 4 (0.7) | 0.087 |
Preoperative hemoglobin, g/dL | 14.0 (11.1–15.2) | 14.1 (12.9–15.0) | 0.147 |
Preoperative serum albumin level, g/dL | 4.3 (3.9–4.5) | 4.5 (4.2–4.6) | 0.001 |
Preoperative proteinuria, n | 8 (14.8) | 27 (4.7) | 0.007 |
Unilateral kidney, n | 8 (14.8) | 51 (8.9) | 0.147 |
Operation and anesthesia details | |||
Surgery type, n | 0.965 | ||
Laparoscopic | 1 (1.9) | 31 (5.4) | |
Robot-assisted | 6 (11.1) | 122 (21.2) | |
Open | 47 (87.0) | 422 (73.4) | |
Clinical stage, n | <0.001 | ||
T1a/T1b | 35 (64.8)/12 (22.2) | 496 (86.3)/62 (10.8) | |
T2a/T2b | 3 (5.6)/2 (3.7) | 14 (2.4)/2 (0.3) | |
T3a/T3b/T3c | 1 (1.9)/1 (1.9)/0 | 1 (0.2)/0/0 | |
N 0/1 | 51 (94.4)/3 (5.6) | 571 (99.3)/4 (0.7) | 0.016 |
M 0/1 | 51 (94.4)/3 (5.6) | 567 (98.6)/8 (1.4) | 0.060 |
R.E.N.A.L. score | 7 (7–8) | 6 (5–7) | <0.001 |
Low (4–6) | 9 (16.7) | 390 (67.8) | |
Intermediate (7–9) | 42 (77.8) | 179 (31.1) | |
High (10–12) | 3 (5.6) | 6 (1.0) | |
Tumor maximal diameter, cm | 2.5 (2.0–4.0) | 2.3 (1.5–3.5) | 0.038 |
Operation time, min | 150 (120–206) | 140 (107–180) | 0.113 |
Warm ischemia, n | 51 (94.4) | 548 (95.3) | 0.736 |
Cold ischemia, n | 3 (5.6) | 27 (4.7) | 0.736 |
Renal ischemic time, min | 30 (24–42) | 24 (17–30) | <0.001 |
Warm ischemic time, min | 28 (24–42) | 24 (18–30) | <0.001 |
Cold ischemic time, min | 38 (30–38) | 31 (17–39) | 0.387 |
Estimated parenchymal volume preservation, % | 89 (85–90) | 89 (88–90) | 0.623 |
Anesthesia technique | 0.113 | ||
Total intravenous agent, n | 50 (92.6) | 483 (84.0) | |
Inhalational agent, n | 4 (7.4) | 92 (16.0) | |
Intraoperative vasopressor use, n | 7 (16.3) | 66 (12.0) | 0.467 |
Bleeding and transfusion amount | |||
pRBC transfusion, n | 10 (18.5) | 20 (3.5) | <0.001 |
Estimated blood loss, mL | 300 (200–600) | 200 (100–350) | <0.001 |
Input and output during surgery | |||
Crystalloid administration, mL | 1150 (800–1700) | 1200 (800–1700) | 0.653 |
Colloid administration, mL | 0 (0–500) | 0 (0–400) | 0.486 |
Variable | β ± Standard Error | p-Value | VIF |
---|---|---|---|
Age, per 10 yr | 0.003 ± 0.009 | 0.741 | 1.48 |
Male | −0.014 ± 0.024 | 0.556 | 1.34 |
Body-mass index, kg/m2 | 0.008 ± 0.003 | 0.107 | 1.16 |
Hypertension | −0.011 ± 0.022 | 0.622 | 1.28 |
Diabetes mellitus | 0.016 ± 0.030 | 0.608 | 1.14 |
Preoperative hemoglobin concentration, g/dL | 0.014 ± 0.007 | 0.051 | 1.56 |
Preoperative albumin level, g/dL | 0.065 ± 0.026 | 0.011 | 1.41 |
Preoperative proteinuria | −0.147 ± 0.054 | 0.007 | 1.23 |
Preoperative estimated glomerular filtration rate, mL/min/1.73 m2 | 0.001 ± 0.001 | 0.160 | 1.13 |
Surgery type, open versus minimal invasive surgery | −0.014 ± 0.023 | 0.555 | 1.20 |
Renal ischemia time, per 10 min | −0.026 ± 0.009 | 0.008 | 1.21 |
Ischemia type (cold) | 0.036 ± 0.047 | 0.444 | 1.06 |
Maximal diameter of renal mass, cm | −0.005 ± 0.007 | 0.410 | 1.16 |
Adjusted acute kidney injury grade * | −0.129 ± 0.026 | <0.001 | 1.10 |
OR unadjusted acute kidney injury grade | −0.011 ± 0.020 | 0.573 | 1.32 |
Variable | β ± Standard Error | p-Value | VIF |
---|---|---|---|
Age, per 10 yr | −0.019 ± 0.049 | 0.706 | 1.48 |
Male | −0.186 ± 0.130 | 0.152 | 1.31 |
Body-mass index, kg/m2 | −0.024 ± 0.017 | 0.162 | 1.17 |
Hypertension | −0.027 ± 0.122 | 0.826 | 1.27 |
Diabetes mellitus | −0.073 ± 0.166 | 0.663 | 1.14 |
Preoperative hemoglobin concentration, g/dL | 0.020 ± 0.041 | 0.631 | 1.55 |
Preoperative albumin level, g/dL | 0.130 ± 0.136 | 0.338 | 1.29 |
Preoperative estimated glomerular filtration rate, mL/min/1.73 m2 | 0.001 ± 0.003 | 0.726 | 1.25 |
Renal ischemia time, per 10 min | −0.057 ± 0.048 | 0.236 | 1.17 |
Ischemia type (cold) | 0.774 ± 0.262 | 0.003 | 1.06 |
Maximal diameter of renal mass, cm | −0.230 ± 0.037 | <0.001 | 1.23 |
Adjusted acute kidney injury stage * | −0.243 ± 0.106 | 0.023 | 1.28 |
OR unadjusted acute kidney injury stage | −0.177 ± 0.118 | 0.137 | 1.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.-K.; Lee, H.-J.; Yoo, S.; Park, S.-K.; Kwon, Y.; Jun, K.; Jeong, C.W.; Kim, W.H. Acute Kidney Injury Adjusted for Parenchymal Mass Reduction and Long-Term Renal Function after Partial Nephrectomy. J. Clin. Med. 2019, 8, 1482. https://doi.org/10.3390/jcm8091482
Yoon H-K, Lee H-J, Yoo S, Park S-K, Kwon Y, Jun K, Jeong CW, Kim WH. Acute Kidney Injury Adjusted for Parenchymal Mass Reduction and Long-Term Renal Function after Partial Nephrectomy. Journal of Clinical Medicine. 2019; 8(9):1482. https://doi.org/10.3390/jcm8091482
Chicago/Turabian StyleYoon, Hyun-Kyu, Ho-Jin Lee, Seokha Yoo, Sun-Kyung Park, Yongsuk Kwon, Kwanghoon Jun, Chang Wook Jeong, and Won Ho Kim. 2019. "Acute Kidney Injury Adjusted for Parenchymal Mass Reduction and Long-Term Renal Function after Partial Nephrectomy" Journal of Clinical Medicine 8, no. 9: 1482. https://doi.org/10.3390/jcm8091482
APA StyleYoon, H. -K., Lee, H. -J., Yoo, S., Park, S. -K., Kwon, Y., Jun, K., Jeong, C. W., & Kim, W. H. (2019). Acute Kidney Injury Adjusted for Parenchymal Mass Reduction and Long-Term Renal Function after Partial Nephrectomy. Journal of Clinical Medicine, 8(9), 1482. https://doi.org/10.3390/jcm8091482