Context-Aware Personalization: A Systems Engineering Framework
Abstract
:1. Introduction
- Persona—‘recognition and knowledge’ of the users and their behavior;
- Awareness of users’ current context;
- Intent prediction—comprehension of their situation and projection of future status;
- Cohort-directed prescriptions for the next best content.
2. Materials and Methods
2.1. Data Capture
2.2. Persona Generation
- i.
- Random initialization of cluster centroids {z1, z2, …, zk} ∈ RN
- ii.
- Iterate until convergence:
- i.
- First, initialize mean μ, covariance ∑, and mixing probability π;
- ii.
- Evaluate the initial value of the log-likelihood L;
- iii.
- Evaluate the responsibility function using current parameters;
- iv.
- Using newly obtained responsibilities, obtain the new μ, ∑, and π;
- v.
- Compute the log-likelihood L again. Iterate (iii) and (iv) until convergence.
2.3. Context-Aware Computing
- A.
- inventory available in the user’s location or preferred store;
- B.
- user’s product category and brand affinities;
- C.
- order delivery location-based options;
- D.
- proximity to stores and a selected store;
- E.
- user’s search queries;
- F.
- directed response to inclement weather;
- G.
- promotions available to a user;
- H.
- availability of expert installation for certain products;
- I.
- order history;
- J.
- order tracking information;
- K.
- the semantics of extracts from product reviews;
- L.
- user’s sensitivity to pricing;
- M.
- customer lifetime value.
- 1.
- CV1—Propensity to purchase;
- 2.
- CV2—Timelapse in the current session;
- 3.
- CV3—Count of activities in the current session;
- 4.
- CV4—Average price of products clicked through in the current session;
- 5.
- CV5—Frequency of purchase;
- 6.
- CV6—Measure of customer value (CV5 × Average Order Value).
2.4. User Intent Detection
- Learn the embeddings from the data using long short-term memory (LSTM) [46], an artificial recurrent neural network-related architecture for learning user intent [41]. The embeddings are created by mapping the discrete categorical variables in the listed inputs to vectors of continuous numbers (sequences):
- ▪
- aggregated cohort behavior features from the persona generator;
- ▪
- user context (context-sensitive variables);
- ▪
- user interaction.
- Combine embedding-methods based on linear transformations and concatenation have produced accurate meta-embeddings [47].
- Explore fine-tuning pre-trained BERT (Bidirectional Encoder Representations from Transformers) models with the dataset used for the experiments [48].
- Develop paired cohort-directed prescriptive actions for intent prediction instances that are different from a desired positive outcome.
- Propose testing, validation, and end-to-end architecture for development, deployment, and monitoring.
2.5. Cohort-Directed Prescription
2.6. Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, A. Context-Aware Collaborative Filtering System: Predicting the User’s Preference in the Ubiquitous Computing Environment. In Location- and Context-Awareness; Springer: Berlin/Heidelberg, Germany, 2005; pp. 244–253. [Google Scholar] [CrossRef]
- Van Setten, M.; Pokraev, S.; Koolwaaij, J. Context-aware recommendations in the mobile tourist application COMPASS. In Adaptive Hypermedia and Adaptive Web-Based Systems; Proceedings; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3137, pp. 235–244. [Google Scholar] [CrossRef]
- Palmisano, C.; Tuzhilin, A.; Gorgoglione, M. Using Context to Improve Predictive Modeling of Customers in Personalization Applications. IEEE Trans. Knowl. Data Eng. 2008, 20, 1535–1549. [Google Scholar] [CrossRef]
- Adomavicius, G.; Mobasher, B.; Ricci, F.; Tuzhilin, A. Context-Aware Recommender Systems. AI Mag. 2011, 32, 67. [Google Scholar] [CrossRef]
- Baltrunas, L.; Kaminskas, M.; Ludwig, B.; Moling, O.; Ricci, F.; Aydin, A.; Lüke, K.-H.; Schwaiger, R. InCarMusic: Context-Aware Music Recommendations in a Car. In E-Commerce and Web Technologies; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–100. [Google Scholar] [CrossRef]
- Quadrana, M.; Karatzoglou, A.; Hidasi, B.; Cremonesi, P. Personalizing Session-Based Recommendations with Hierarchical Recurrent Neural Networks. In Proceedings of the Eleventh ACM Conference on Recommender Systems, New York, NY, USA, 27–31 August 2017. [Google Scholar] [CrossRef]
- Ling, M. Web Content Personalization and Task Complexity in E-Commerce Decision Making; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2006. [Google Scholar]
- Alpert, S.R.; Karat, J.; Karat, C.-M.; Brodie, C.; Vergo, J.G. User Attitudes Regarding a User-Adaptive eCommerce Web Site. User Model. User-Adapt. Interact. 2003, 13, 373–396. [Google Scholar] [CrossRef]
- Crowder, J.A.; Carbone, J.N.; Demijohn, R. Introduction: Systems Engineering-Why? In Multidisciplinary Systems Engineering Architecting the Design Process; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–26. [Google Scholar]
- Forsberg, K.; Co-Principals, H.M. 4 System Engineering for Faster, Cheaper, Better. INCOSE Int. Symp. 1999, 9, 924–932. [Google Scholar] [CrossRef]
- Thones, J. Microservices. IEEE Softw. 2015, 32, 116. [Google Scholar] [CrossRef]
- eCommerce Behavior Data from the Multi-Category Store. (2019–2020). [Dataset]. Available online: https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store (accessed on 20 July 2023).
- Li, J.; Luo, X.; Lu, X.; Moriguchi, T. The Double-Edged Effects of E-Commerce Cart Re_targeting: Does Re_targeting Too Early Backfire? J. Mark. 2020, 85, 002224292095904. [Google Scholar] [CrossRef]
- Yue, C.; Xie, M.; Wang, H. An Automatic HTTP Cookie Management System. Comput. Netw. 2010, 54, 2182–2198. [Google Scholar] [CrossRef]
- Berendt, B. More than Modelling and Hiding: Towards a Comprehensive View of Web Mining and Privacy. Data Min. Knowl. Discov. 2012, 24, 697–737. [Google Scholar] [CrossRef]
- Kobusińska, A.; Pawluczuk, K.; Brzeziński, J. Big Data Fingerprinting Information Analytics for Sustainability. Future Gener. Comput. Syst. 2018, 86, 1321–1337. [Google Scholar] [CrossRef]
- Faulkner, A.; Nicholson, M. Data-Centric Safety; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Dong, G.; Liu, H. Feature Engineering for Machine Learning and Data Analytics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Heine, F.; Kleiner, C.; Koschel, A.; Westermayer, J. The data checking engine: Complex rules for data quality monitoring. Int. J. Adv. Softw. 2014, 7, 171–181. [Google Scholar]
- Ehrlinger, L.; Haunschmid, V.; Palazzini, D.; Lettner, C. A DaQL to Monitor Data Quality in Machine Learning Applications. In Database and Expert Systems Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 227–237. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques (The Morgan Kaufmann Series in Data Management Systems), 3rd ed.; Morgan Kaufmann: Burlington, MA, USA, 2011. [Google Scholar]
- Yang, J.; Grunsky, E.; Cheng, Q. A Novel Hierarchical Clustering Analysis Method Based on Kullback–Leibler Divergence and Application on Dalaimiao Geochemical Exploration Data. Comput. Geosci. 2019, 123, 10–19. [Google Scholar] [CrossRef]
- Wigness, M.; Draper, B.; Beveridge, R.; Howe, A.; Peterson, C. Hierarchical Cluster Guided Labeling: Efficient Label Collection for Visual Classification; Colorado State University, Libraries: Fort Collins, CO, USA, 2015. [Google Scholar]
- Selim, S.Z.; Ismail, M.A. K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Simske, S. Meta-Analytics: Consensus Approaches and System Patterns for Data Analysis, 1st ed.; Morgan Kaufmann, Print: Burlington, MA, USA, 2019; 16–19; Volume 99, pp. 261–265. [Google Scholar]
- Gan, G.; Ng, M.K.-P. K-Means Clustering with Outlier Removal. Pattern Recognit. Lett. 2017, 90, 8–14. [Google Scholar] [CrossRef]
- Yu, S.-S.; Chu, S.-W.; Wang, C.-M.; Chan, Y.-K.; Chang, T.-C. Two Improved K-Means Algorithms. Appl. Soft Comput. 2018, 68, 747–755. [Google Scholar] [CrossRef]
- Huang, X.; Ye, Y.; Xiong, L.; Lau, R.Y.K.; Jiang, N.; Wang, S. Time Series K -Means: A New K -Means Type Smooth Subspace Clustering for Time Series Data. Inf. Sci. 2016, 367–368, 1–13. [Google Scholar] [CrossRef]
- Xu, J.; Han, J.; Nie, F.; Li, X. Re-Weighted Discriminatively Embedded K -Means for Multi-View Clustering. IEEE Trans. Image Process. 2017, 26, 3016–3027. [Google Scholar] [CrossRef] [PubMed]
- Do, C.B. The Multivariate Gaussian Distribution. Stanford Libraries. 2008. Available online: https://cs229.stanford.edu/section/gaussians.pdf (accessed on 20 July 2023).
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Brown, J. Choosing the right number of components or factors in PCA and EFA. JALT Test. Eval. SIG Newsl. 2009, 13, 19–23. [Google Scholar]
- Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a ‘Kneedle’ in a Haystack: Detecting Knee Points in System Behavior. In Proceedings of the 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA, 20–24 June 2011; pp. 166–171. [Google Scholar]
- The scikit-yb Developers. Yellowbrick: A Suite of Visual Analysis and Diagnostic Tools for Machine Learning. PyPI. Available online: https://pypi.org/project/yellowbrick/ (accessed on 27 October 2023).
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat.–Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 224–227. [Google Scholar] [CrossRef]
- Macías, A.; Navarro, E. An Integrated Approach for Context-Aware Development. In Proceedings of the ECSA’18: Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings, Madrid, Spain, 24–28 September 2018. [Google Scholar] [CrossRef]
- Zhao, J.T.; Jing, S.Y.; Jiang, L.Z. Management of API Gateway Based on Micro-Service Architecture. J. Phys. Conf. Ser. 2018, 1087, 032032. [Google Scholar] [CrossRef]
- Chiș, A. A Modeling Method for Model-Driven API Management. Complex Syst. Inform. Model. Q. 2020, 25, 1–18. [Google Scholar] [CrossRef]
- Loyola, P.; Liu, C.; Hirate, Y. Modeling User Session and Intent with an Attention-Based Encoder-Decoder Architecture. In Proceedings of the RecSys’17: Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017. [Google Scholar] [CrossRef]
- Agrawal, R.; Habeeb, A.; Hsueh, C. Learning User Intent from Action Sequences on Interactive Systems. arXiv 2018, arXiv:1712.01328. [Google Scholar]
- Requena, B.; Cassani, G.; Tagliabue, J.; Greco, C.; Lacasa, L. Shopper Intent Prediction from Clickstream E-Commerce Data with Minimal Browsing Information. Sci. Rep. 2020, 10, 16983. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Shroff, G.M.; Kumar, M.; Choudhury, S.R.; Kadarkar, S.; Virk, R.; Verma, S.; Tewari, V. Fast Online ‘Next Best Offers’ using Deep Learning. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, Kolkata, India, 3–5 January 2019. [Google Scholar]
- Sakar, C.O.; Polat, S.O.; Katircioglu, M.; Kastro, Y. Real-Time Prediction of Online Shoppers’ Purchasing Intention Using Multilayer Perceptron and LSTM Recurrent Neural Networks. Neural Comput. Appl. 2018, 31, 6893–6908. [Google Scholar] [CrossRef]
- Toth, A.; Tan, L.; Di Fabbrizio, G.; Datta, A. Predicting shopping behavior with mixture of RNNs. In Proceedings of the SIGIR 2017 Workshop on eCommerce (ECOM 17), Tokyo, Japan, 11 August 2017. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.; Bollegala, D. Frustratingly Easy Meta-Embedding–Computing Meta-Embeddings by Averaging Source Word Embeddings. arXiv 2018, arXiv:1804.05262. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Bosman, A.S.; Engelbrecht, A.; Helbig, M. Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network Loss Functions. Neurocomputing 2020, 400, 113–136. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Mikolov, T.; Yih, W.T.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, GA, USA, 9–14 June 2013; pp. 746–751. [Google Scholar]
- Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. Towards Early Purchase Intention Prediction in Online Session Based Retailing Systems. Electron. Mark. 2021, 31, 697–715. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; Zhou, H. Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. arXiv 2017, arXiv:1611.05148. [Google Scholar]
Feature | Description |
---|---|
{δtEV = ti+1 − ti}user_id | The time lapse between user events |
{|Xi|}user_session | Count of events per user session |
{∑|Si|}user_id | Cumulative count of sessions per user |
{(∑Pi/Ni)}user_id/purchase | Average order value per user |
{|Bi|}user_id/purchase | Count of unique brands purchased per user |
{∑|Xi|}user_id/purchase | Number of purchase events per user |
{|Ci|}user_id/purchase | Count of unique product categories purchased per user |
{(∑Pi/Ni)} user_id/add_to_cart | Average price of cart per user |
{|Bi|}user_id/add_to_cart | Count of unique brands added to cart per user |
{∑|Xi|}user_id/add_to_cart | Number of addition-to-cart events per user |
{|Ci|}user_id/ add_to_cart | Count of unique product categories added to cart per user |
{(∑Pi/Ni)}user_id/views | Average price of products viewed per user |
{|Bi|}user_id/views | Count of unique brands viewed per user |
{∑|Xi|}user_id/views | Number of product view events per user |
{|Ci|}user_id/ views | Count of unique categories of products viewed per user |
Cohort | Size | Cohort Metrics | |||||
---|---|---|---|---|---|---|---|
Time between Sessions (s) | Events in Session | Sessions by Each User | Product Views | Add to Cart ($) | Purchases | ||
0 | 659,044 | 65,904 | 1.77 | 4.23 | 2757 | 2.43 | 0.06 |
1 | 119,238 | 27,981 | 7.67 | 31.52 | 16,159 | 15.34 | 0.33 |
2 | 105,160 | 45,791 | 3.86 | 17.94 | 10,036 | 802.4 | 1.49 |
3 | 6620 | 21,365 | 5.63 | 65.88 | 40,121 | 5928.21 | 13.75 |
4 | 14,866 | 9362 | 14.25 | 128.72 | 63,422 | 378.76 | 1.57 |
Iteration | Steps/Epoch | Average Time/Step | No. of Neurons | Optimizer | Loss Function | Loss | MAE | Test MAE |
---|---|---|---|---|---|---|---|---|
1 | 8777 | 390 ms | 16 | RMSprop | MSE | 0.0194 | 0.0495 | 0.050 |
2 | 8777 | 10,262 s | 32 | RMSprop | MSE | 0.0202 | 0.0479 | 0.055 |
Iteration | Steps/ Epoch | Average Time/Step | No. of Neurons | Optimizer | Loss Function | Loss | MAE | Accuracy | Test MAE |
---|---|---|---|---|---|---|---|---|---|
3 | 43,864 | 265 ms | 16 | Adam | MSE | 0.0194 | 0.0419 | 0.9688 | 0.04 |
4 (+Cohort Metrics) | 8773 | 377 ms | 4 | Adam | MSE | 0.0194 | 0.0465 | 0.9688 | 0.05 |
Iteration | Steps/ Epoch | Average Time/Step | No. of Neurons | Optimizer | Loss Function | Loss | MAE | Accuracy | Test MAE |
---|---|---|---|---|---|---|---|---|---|
3 | 43,864 | 265 ms | 16 | Adam | MSE | 0.019 | 0.042 | 0.9688 | 0.04 |
4 | 8773 | 377 ms | 4 | Adam | MSE | 0.019 | 0.047 | 0.9688 | 0.05 |
5 | 8773 | 394 ms | 4 | Adam | MSE | 0.019 | 0.048 | 0.9688 | 0.05 |
6 | 8773 | 413 ms | 4 | Adam | MSE | 0.019 | 0.049 | 0.9688 | 0.05 |
7 | 8773 | 436 ms | 4 | Adam | MSE | 0.019 | 0.049 | 0.9688 | 0.05 |
8 | 1952 | 431 ms | 4 | Adam | MSE | 0.015 | 0.043 | 0.9731 | 0.04 |
4 | Cohort Metrics only | 7 | Combined Cohort Metrics and Context Variables | ||||||
5 | Context Variables only | 8 | BERT Pre-trained Model | ||||||
6 | With Derived Context Variables |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oguntola, O.; Simske, S. Context-Aware Personalization: A Systems Engineering Framework. Information 2023, 14, 608. https://doi.org/10.3390/info14110608
Oguntola O, Simske S. Context-Aware Personalization: A Systems Engineering Framework. Information. 2023; 14(11):608. https://doi.org/10.3390/info14110608
Chicago/Turabian StyleOguntola, Olurotimi, and Steven Simske. 2023. "Context-Aware Personalization: A Systems Engineering Framework" Information 14, no. 11: 608. https://doi.org/10.3390/info14110608
APA StyleOguntola, O., & Simske, S. (2023). Context-Aware Personalization: A Systems Engineering Framework. Information, 14(11), 608. https://doi.org/10.3390/info14110608