Carbon Dots-Based Logic Gates
Abstract
:1. Introduction
2. Logic Output
2.1. Single Output
2.2. Combinational Logic Output
2.3. Sequential Output
2.4. Reversible Output
3. Sensing Mechanisms of CDs Based Logic System
4. Carbon Dots Design for Logic Function
4.1. Pristine CDs
4.2. Functionalized CDs
4.3. Doped CDs
4.4. Co-Doped CDs
4.5. Other Complexes with CDs
5. Conclusions
6. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ej, O.; Kozák, K.; Mária, M.; Sudolská, S.; Pramanik, G.; Cígler, P.; Otyepka, M.; Zbořil, R. Photoluminescent Carbon Nanostructures. Chem. Mater. 2016, 28, 4085–4128. [Google Scholar]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Tuerhong, M.; XU, Y.; YIN, X.B. Review on Carbon Dots and Their Applications. Chin. J. Anal. Chem. 2017, 45, 139–150. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Mehta, V.N.; Hasan, N.; Wu, H.F. Applications of carbon dots in biosensing and cellular imaging. In Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials; William Andrew: Norwich, NY, USA, 2016; pp. 339–364. ISBN 9780323417389. [Google Scholar]
- Xu, D.; Lin, Q.; Chang, H.T. Recent Advances and Sensing Applications of Carbon Dots. Small Methods 2020, 4, 1–17. [Google Scholar] [CrossRef]
- Sakdaronnarong, C.; Sangjan, A.; Boonsith, S.; Kim, D.C.; Shin, H.S. Recent developments in synthesis and photocatalytic applications of carbon dots. Catalysts 2020, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Ling, G.; Wang, L.; Guan, S.; Xie, Z.; Barnoy, E.; Zhou, S.; Fixler, D. Gold Rod-Polyethylene Glycol-Carbon Dot Nanohybrids as Phototheranostic Probes. Nanomaterials 2018, 8, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Liu, L.; Hu, X.; Zhou, S.; Ankri, R.; Fixler, D.; Xie, Z. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Res. 2018, 11, 1262–1273. [Google Scholar] [CrossRef]
- Pal, A.; Sk, M.P.; Chattopadhyay, A. Recent advances in crystalline carbon dots for superior application potential. Mater. Adv. 2020, 1, 525–553. [Google Scholar] [CrossRef]
- Lu, W.; Gao, Y.; Jiao, Y.; Shuang, S.; Li, C.; Dong, C. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu2+ and its logic gate operation. Nanoscale 2017, 9, 11545–11552. [Google Scholar] [CrossRef]
- De Silva, P.A.; Gunaratne, N.H.Q.; McCoy, C.P. A molecular photoionic and gate based on fluorescent signalling. Nature 1993, 364, 42–44. [Google Scholar] [CrossRef]
- Bozdemir, O.A.; Guliyev, R.; Buyukcakir, O.; Selcuk, S.; Kolemen, S.; Gulseren, G.; Nalbantoglu, T.; Boyaci, H.; Akkaya, E.U. Selective manipulation of ICT and PET processes in styryl-bodipy derivatives: Applications in molecular logic and fluorescence sensing of metal ions. J. Am. Chem. Soc. 2010, 132, 8029–8036. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D.; Yao, C.Y.; Moody, T.S.; De Silva, A.P. Fluorescent molecular logic gates based on photoinduced electron transfer (PET) driven by a combination of atomic and biomolecular inputs. Chem. Commun. 2020, 56, 6838–6841. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.; Ndao, S. NanoThermoMechanical AND and OR Logic Gates. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- El-Atab, N.; Canas, J.C.; Hussain, M.M. Pressure-Driven Two-Input 3D Microfluidic Logic Gates. Adv. Sci. 2020, 7, 1903027. [Google Scholar] [CrossRef]
- Uchiyama, S.; Kawai, N.; De Silva, A.P.; Iwai, K. Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs. J. Am. Chem. Soc. 2004, 126, 3032–3033. [Google Scholar] [CrossRef]
- Gust, D.; Andréasson, J.; Moore, T.A.; Pischel, U. Data and signal processing using photochromic molecules. Chem. Commun. 2012, 48, 1947–1957. [Google Scholar] [CrossRef] [Green Version]
- Beiderman, M.; Ashkenazy, A.; Segal, E.; Barnoy, E.A.; Motiei, M.; Sadan, T.; Salomon, A.; Rahimipour, S.; Fixler, D.; Popovtzer, R. Gold Nanorod-Based Bio-Barcode Sensor Array for Enzymatic Detection in Biomedical Applications. ACS Appl. Nano Mater. 2020, 3, 8414–8423. [Google Scholar] [CrossRef]
- Barnoy, E.A.; Motiei, M.; Tzror, C.; Rahimipour, S.; Popovtzer, R.; Fixler, D. Biological Logic Gate Using Gold Nanoparticles and Fluorescence Lifetime Imaging Microscopy. ACS Appl. Nano Mater. 2019, 2, 6527–6536. [Google Scholar] [CrossRef]
- Stojanovic, M.N.; Stefanovic, D.; Rudchenko, S. Exercises in molecular computing. Acc. Chem. Res. 2014, 47, 1845–1852. [Google Scholar] [CrossRef]
- Cooper, C.R.; James, T.D. Selective D-glucosamine hydrochloride fluorescence signalling based on ammonium cation and diol recognition. Chem. Commun. 1997, 15, 1419–1420. [Google Scholar] [CrossRef]
- Boorboor Azimi, E.; Badiei, A.; Jafari, M.; Banitalebi Dehkordi, A.; Ghasemi, J.B.; Ziarani, G.M. Boron-doped graphitic carbon nitride as a novel fluorescent probe for mercury(ii) and iron(iii): A circuit logic gate mimic. New J. Chem. 2019, 43, 12087–12093. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Barba, V.; Agarwal, V. Nitrogen-Doped Graphene Oxide Dots-Based “turn-OFF” H2O2, Au(III), and “turn-OFF-ON” Hg(II) Sensors as Logic Gates and Molecular Keypad Locks. ACS Omega 2019, 4, 10702–10713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korram, J.; Dewangan, L.; Nagwanshi, R.; Karbhal, I.; Ghosh, K.K.; Satnami, M.L. A carbon quantum dot-gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase: Detection of pesticides. New J. Chem. 2019, 43, 6874–6882. [Google Scholar] [CrossRef]
- Cao, Q.; Li, J.; Wang, E. Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens. Bioelectron. 2019, 132, 333–342. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, W.; Li, K.B.; Chen, F.; Su, J.; Han, D.M. Graphene oxide/silver nanoclusters based logic devices and their application to multiplexed analysis of miRNA. Sens. Actuators B Chem. 2018, 273, 408–417. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19, 382–393. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, Y.; Li, B.; Pun, E.Y.B. Ultrasmall optical logic gates based on silicon periodic dielectric waveguides. Photonics Nanostructures Fundam. Appl. 2010, 8, 32–37. [Google Scholar] [CrossRef]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Verhagen, A.; Kelarakis, A. Carbon dots for forensic applications: A critical review. Nanomaterials 2020, 10, 1–27. [Google Scholar] [CrossRef]
- Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A.C.; Gunnlaugsson, T.; James, T.D.; Yoon, J.; Akkaya, E.U. Molecular logic gates: The past, present and future. Chem. Soc. Rev. 2018, 47, 2228–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, B.; Silverson, V.A.D.; Yao, C.Y.; Chen, Z.Q.; de Silva, A.P. Molecular Logic Gates as Fluorescent Sensors. In Comprehensive Supramolecular Chemistry II; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 8, pp. 3–19. ISBN 9780128031988. [Google Scholar]
- Barnoy, E.A.; Popovtzer, R.; Fixler, D. Fluorescence for biological logic gates. J. Biophotonics 2020, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dhenadhayalan, N.; Lin, K.C. Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation. Sci. Rep. 2015, 5, 10012. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Shi, B.; Liao, S.; Zhao, J.; Chen, L.; Zhao, S. Silver Nanoparticles/N-Doped Carbon-Dots Nanocomposites Derived from Siraitia Grosvenorii and Its Logic Gate and Surface-Enhanced Raman Scattering Characteristics. ACS Sustain. Chem. Eng. 2016, 4, 1728–1735. [Google Scholar] [CrossRef]
- Gao, Y.; Jiao, Y.; Lu, W.; Liu, Y.; Han, H.; Gong, X.; Xian, M.; Shuang, S.; Dong, C. Carbon dots with red emission as a fluorescent and colorimeteric dual-readout probe for the detection of chromium(vi) and cysteine and its logic gate operation. J. Mater. Chem. B 2018, 6, 6099–6107. [Google Scholar] [CrossRef]
- Bai, Z.; Yan, F.; Xu, J.; Zhang, J.; Wei, J.; Luo, Y.; Chen, L. Dual-channel fluorescence detection of mercuric (II) and glutathione by down- and up-conversion fluorescence carbon dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 29–39. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Shuang, S.; Han, H.; Dong, C. An “on-off-on” fluorescent nanoprobe for recognition of Cu2+ and GSH based on nitrogen co-doped carbon quantum dots, and its logic gate operation. Anal. Methods 2019, 11, 2650–2657. [Google Scholar] [CrossRef]
- Li, L.; Shi, L.; Jia, J.; Jiao, Y.; Gao, Y.; Liu, Y.; Dong, C.; Shuang, S. “On-off-on” detection of Fe3+ and F−, biological imaging, and its logic gate operation based on excitation-independent blue-fluorescent carbon dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117716. [Google Scholar] [CrossRef]
- Cheng, H.J.; Kao, C.L.; Chen, Y.F.; Huang, P.C.; Hsu, C.Y.; Kuei, C.H. Amino acid derivatized carbon dots with tunable selectivity as logic gates for fluorescent sensing of metal cations. Microchim. Acta 2017, 184, 3179–3187. [Google Scholar] [CrossRef]
- Singh, H.; Sidhu, J.S.; Mahajan, D.K.; Singh, N. A carbon quantum dot and rhodamine-based ratiometric fluorescent complex for the recognition of histidine in aqueous systems. Mater. Chem. Front. 2019, 3, 476–483. [Google Scholar] [CrossRef]
- Chen, Z.H.; Han, X.Y.; Lin, Z.Y.; Fan, Y.L.; Shi, G.; Zhang, S.; Zhang, M. Facile reflux synthesis of polyethyleneimine-capped fluorescent carbon dots for sequential bioassays toward Cu2+/H2S and its application for a logic system. Biotechnol. Appl. Biochem. 2019, 66, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Fu, Y.; Jiang, X.; Jin, H.; Gui, R. Self-assembly of DNA-templated copper nanoclusters and carbon dots for ratiometric fluorometric and visual determination of arginine and acetaminophen with a logic-gate operation. Microchim. Acta 2020, 187, 154. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, N.; Dong, J.X.; Luo, H.Q.; Li, N.B. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sens. Actuators B Chem. 2016, 231, 147–153. [Google Scholar] [CrossRef]
- Tian, T.; Zhong, Y.; Deng, C.; Wang, H.; He, Y.; Ge, Y.; Song, G. Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 2017, 162, 135–142. [Google Scholar] [CrossRef]
- Bandi, R.; Devulapalli, N.P.; Dadigala, R.; Gangapuram, B.R.; Guttena, V. Facile Conversion of Toxic Cigarette Butts to N,S-Codoped Carbon Dots and Their Application in Fluorescent Film, Security Ink, Bioimaging, Sensing and Logic Gate Operation. ACS Omega 2018, 3, 13454–13466. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Li, X.; Yang, H.; Chen, X. Nitrogen-doped carbon dots rapid and selective detection of mercury ion and biothiol and construction of an IMPLICATION logic gate. Talanta 2019, 194, 554–562. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, V.; Yadav, P.K.; Chandra, S.; Bano, D.; Koch, B.; Talat, M.; Hasan, S.H. Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: Live cell imaging and IMPLICATION logic gate operation. J. Photochem. Photobiol. A Chem. 2019, 384, 112042. [Google Scholar] [CrossRef]
- Fang, Y.; Zhou, L.; Zhao, J.; Zhang, Y.; Yang, M.; Yi, C. Facile synthesis of pH-responsive gadolinium(III)-doped carbon nanodots with red fluorescence and magnetic resonance properties for dual-readout logic gate operations. Carbon N. Y. 2020, 166, 265–272. [Google Scholar] [CrossRef]
- Xie, Y.J.; Wu, W.Y.; Chen, H.; Li, X.; Zhang, H.L.; Liu, L.L.; Shao, X.X.; Shan, C.F.; Liu, W.S.; Tang, Y. An Elaborate Supramolecular Assembly for a Smart Nanodevice for Ratiometric Molecular Recognition and Logic Gates. Chem. A Eur. J. 2016, 22, 8339–8345. [Google Scholar] [CrossRef]
- Lan, C.; Zhang, L.; Shi, B.; Chen, D.; Zhao, L.; Zhao, S. Fluorescent carbon dots with tunable emission by dopamine for sensing of intracellular pH, elementary arithmetic operations and a living cell imaging based INHIBIT logic gate. J. Mater. Chem. B 2017, 5, 5265–5271. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Liang, J.; Yao, H.; Shen, L.; Liu, H.; Fan, L. A chemical/molecular 4-input/2-output keypad lock with easy resettability based on red-emission carbon dots-Prussian blue composite film electrodes. Nanoscale 2018, 10, 7484–7493. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhao, A.; Ren, J.; Qu, X. Lighting up left-handed Z-DNA: Photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res. 2013, 41, 7987–7996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, R.; Jin, H.; Wang, Z.; Zhang, F.; Xia, J.; Yang, M.; Bi, S.; Xia, Y. Room-temperature phosphorescence logic gates developed from nucleic acid functionalized carbon dots and graphene oxide. Nanoscale 2015, 7, 8289–8293. [Google Scholar] [CrossRef] [PubMed]
- Vandarkuzhali, S.A.A.; Natarajan, S.; Jeyabalan, S.; Sivaraman, G.; Singaravadivel, S.; Muthusubramanian, S.; Viswanathan, B. Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega 2018, 3, 12584–12592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, W.S.; Zhao, Q.C.; Kong, W.L.; Wang, X.F.; Chen, X.M.; Zhang, J.; Wang, Y.Q. Multi-level fluorescent logic gate based on polyamine coated carbon dots capable of responding to four stimuli. Chem. Eng. J. 2018, 337, 471–479. [Google Scholar] [CrossRef]
- Fang, Y.; Zhou, L.; Yang, J.; Zhao, J.; Zhang, Y.; Yi, C.; Yi, C. Multilevel, Dual-Readout Logic Operations Based on pH-Responsive Holmium(III)-Doped Carbon Nanodots. ACS Appl. Bio Mater. 2020, 3, 3761–3769. [Google Scholar] [CrossRef]
- Pan, W.D.; Nalasani, M. Reversible logic. IEEE Potentials 2005, 24, 38–41. [Google Scholar] [CrossRef]
- Vally, A. Low Power Computing Logic Gates design using Reversible logic. IJAIEM 2014, 3, 123–129. [Google Scholar]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Khan, Z.G.; Patil, P.O. A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols. Microchem. J. 2020, 157, 105011. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, M.M.; Liu, S.P.; Liu, Z.F.; Li, Y.F.; Hu, X.L. Fluorescent carbon dots for auramine O determination and logic gate operation. Sens. Actuators B Chem. 2015, 219, 261–267. [Google Scholar] [CrossRef]
- Sk, M.P.; Sailapu, S.K.; Chattopadhyay, A. Luminescent carbon dots for logic operations in two phases. ChemPhysChem 2015, 16, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhao, X.; Liu, S.; Li, Y.; Shi, Y.; Yan, J.; Hu, X. A fluorescence switch sensor used for D-Penicillamine sensing and logic gate based on the fluorescence recovery of carbon dots. Sens. Actuators B Chem. 2016, 236, 565–573. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, J.; Liu, S.; Yang, J.; Zhang, H.; Yan, J.; Hu, X. Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sens. Actuators B Chem. 2017, 242, 545–553. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Bose, M.; Ray, D.; Ghosh, S.; Mondal, S.; Aswal, V.K.; Das, A.K.; Banerjee, S.; Das, N.C. Surface quaternized nanosensor as a one-arrow-two-hawks approach for fluorescence turn “on-off-on” bifunctional sensing and antibacterial activity. New J. Chem. 2019, 43, 6205–6219. [Google Scholar] [CrossRef]
- Du, Y.; Guo, S. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 2016, 8, 2532–2543. [Google Scholar] [CrossRef]
- Du, F.; Gong, X.; Lu, W.; Liu, Y.; Gao, Y.; Shuang, S.; Xian, M.; Dong, C. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging. Talanta 2018, 179, 554–562. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, J.; Yang, Q.; Wei, S.; Yang, R. Cost-effective and facile fluorescent probes for label-free recognition of chlorpromazine hydrochloride and logic gate operation. J. Photochem. Photobiol. A Chem. 2019, 382, 111918. [Google Scholar] [CrossRef]
- Zhang, J.; Tse, K.; Wong, M.; Zhang, Y.; Zhu, J. A brief review of co-doping. Front. Phys 2016, 11, 117405. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; He, L.; Long, Y.; Li, H.; Pan, S.; Liu, H.; Hu, X. Fluorescent carbon dots synthesized by microwave-assisted pyrolysis for chromium(VI) and ascorbic acid sensing and logic gate operation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 12–20. [Google Scholar] [CrossRef]
- Sharma, V.; Kaur, N.; Tiwari, P.; Saini, A.K.; Mobin, S.M. Multifunctional fluorescent “Off-On-Off” nanosensor for Au3+ and S2− employing N-S co-doped carbon–dots. Carbon N. Y. 2018, 139, 393–403. [Google Scholar] [CrossRef]
- Feng, D.Q.; Liu, G.; Chen, Z.; Lu, H.; Gao, Y.; Fang, X. A logic gate for fluoride anion detection based on carbon dots/gold nanoparticles. Microchem. J. 2020, 157, 104977. [Google Scholar] [CrossRef]
- Oliveira-Silva, R.; Sousa-Jerónimo, M.; Botequim, D.; Silva, N.J.O.; Paulo, P.M.R.; Prazeres, D.M.F. Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors. Trends Biochem. Sci. 2020, 45, 604–618. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; He, Y.; Liu, Z.; Chen, J. Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme. Chem. Commun. 2021. advance article. [Google Scholar] [CrossRef]
- Jana, J.; Aditya, T.; Ganguly, M.; Pal, T. Carbon dot-MnO2 FRET system for fabrication of molecular logic gates. Sens. Actuators B Chem. 2017, 246, 716–725. [Google Scholar] [CrossRef]
- Yahav, G.; Gershanov, S.; Salmon-Divon, M.; Ben-Zvi, H.; Mircus, G.; Goldenberg-Cohen, N.; Fixler, D. Pathogen Detection Using Frequency Domain Fluorescent Lifetime Measurements. IEEE Trans. Biomed. Eng. 2018, 65, 2731–2741. [Google Scholar] [CrossRef]
- Yahav, G.; Hirshberg, A.; Salomon, O.; Amariglio, N.; Trakhtenbrot, L.; Fixler, D. Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia. Cytom. Part A 2016, 89, 644–652. [Google Scholar] [CrossRef]
- Fixler, D.; Namer, Y.; Yishay, Y.; Deutsch, M. Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: Theory, simulations and experiments. IEEE Trans. Biomed. Eng. 2006, 53, 1141–1152. [Google Scholar] [CrossRef]
- He, X.; Luo, Q.; Zhang, J.; Chen, P.; Wang, H.J.; Luo, K.; Yu, X.Q. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale 2019, 11, 12973–12982. [Google Scholar] [CrossRef]
Types of CDs | Application | Logic Function | Type of Logic Output | Ref. |
---|---|---|---|---|
Spermine functionalized CDs | B to Z DNA transition | AND, NAND, AND + INH, NAND + INH | Single and sequential | [54] |
Pristine CDs | O auramine detection | NOR-AND | Sequential | [63] |
Pristine CDs | Metal ions (Fe2+, Fe3+) and organic molecules (Picric acid and H2O2) detection | NOT, OR, AND, NOR, NAND, NOT-NAND | Single and Integrated | [64] |
Acid and amine-functionalized CDs | Cations and anions sensing | YES, OR, XOR, NOT, IMP | Single | [35] |
Nucleic acid functionalized carbon dots | Phosphoresce logic gates were developed using cd, DNA, hg2+, dox | OR, INHIBIT, OR-INHIBIT | Single and sequential | [55] |
Surface quaternized cationic CDs | Phosphate detection | YES, two INHIBIT | Combination | [51] |
Silver Nanoparticles/N-Doped CDs Nanocomposites | SERS | AND | Single | [36] |
magnesium and nitrogen co-doped CDs | Hg2+ and cys detection | IMPLICATION | Single | [45] |
Pristine | D-Penicillamine detection | AND | Single | [65] |
Silver-CDs nanohybrid | AA detection | IMPLICATION | Single | [46] |
Pristine CDs | Glyphosate detection | AND | Single | [66] |
CDs-MnO2 adduct | NAC detection | YES | Single | [77] |
Pristine CDs | Intracellular pH sensing | XOR-AND, INHIBIT-XOR | Combination | [52] |
Pristine CDs | Arginine and Cu2+ detection | AND | Single | [11] |
Amino acid derivatized CDs | Detection of Pb, Hg2+, Fe3+, Zn2+, Cr3+, Cu2+ | AND, INHIBIT | Single | [41] |
Nitrogen doped CDs | Fe3+ and AA detection | AND | Single | [69] |
Pristine CDs | fluoride ions detection | NOT, IMP, NOT-AND-OR | Single, sequential | [56] |
Pristine CDs | Cr6+ and Cys detection | AND | Single | [37] |
Polyamine coated CDs | Zn2+, Cu2+, S2- and H+ detection | IMP-NOR-AND, NOR-INH | Integrative | [57] |
N, S-Codoped CDs | Fluorescent Film, Security Ink, Bioimaging, Fe2+, Fe3+, and AA Sensing | IMP | Single | [47] |
Pristine CDs | Hg2+ and glutathione detection | AND | Single | [38] |
N,S- Codoped CDs | Cr6+ and AA detection | AND | Single | [72] |
N,S- Codoped CDs | Au3+ and S2−detection | AND | Single | [73] |
Nitrogen-doped CDs | Hg2+ and biothiols Detection | IMP | Single | [48] |
Benzalkonium chloride functionalized CDs | Cr6+ sensing and antibacterial activity | AND | Single | [67] |
N-doped CDs | Hg2+ and glutathione detection, cell imaging | IMP | Single | [49] |
Polyethyleneimine-capped fluorescent CDs | Cu2+ and H2S detection | INHIBIT | Single | [43] |
CDs-gold nanoparticle | Detection of pesticides | INHIBIT-OR | Combination | [25] |
Nitrogen-doped CDs | Cu2+ and GSH detection | AND | Single | [39] |
Nitrogen-doped CDs | chlorpromazine hydrochloride detection | AND | Single | [70] |
Pristine CDs | Fe3+ anf F- sensing | AND | Single | [40] |
Holium doped CDs | dual imaging | XOR+INH-OR | Integrative | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawar, S.; Duadi, H.; Fleger, Y.; Fixler, D. Carbon Dots-Based Logic Gates. Nanomaterials 2021, 11, 232. https://doi.org/10.3390/nano11010232
Pawar S, Duadi H, Fleger Y, Fixler D. Carbon Dots-Based Logic Gates. Nanomaterials. 2021; 11(1):232. https://doi.org/10.3390/nano11010232
Chicago/Turabian StylePawar, Shweta, Hamootal Duadi, Yafit Fleger, and Dror Fixler. 2021. "Carbon Dots-Based Logic Gates" Nanomaterials 11, no. 1: 232. https://doi.org/10.3390/nano11010232
APA StylePawar, S., Duadi, H., Fleger, Y., & Fixler, D. (2021). Carbon Dots-Based Logic Gates. Nanomaterials, 11(1), 232. https://doi.org/10.3390/nano11010232