Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mulvagh, S.L.; Mullen, K.A.; Nerenberg, K.A.; Kirkham, A.A.; Green, C.R.; Dhukai, A.R.; Grewal, J.; Hardy, M.; Harvey, P.J.; Ahmed, S.B.; et al. The Canadian Women’s Heart Health Alliance Atlas on the Epidemiology, Diagnosis, and Management of Cardiovascular Disease in Women—Chapter 4: Sex- and Gender-Unique Disparities: CVD Across the Lifespan of a Woman. CJC Open 2021, 4, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Mikkola, T.S.; Gissler, M.; Merikukka, M.; Tuomikoski, P.; Ylikorkala, O. Sex Differences in Age-Related Cardiovascular Mortality. PLoS ONE 2013, 8, e63347. [Google Scholar] [CrossRef] [PubMed]
- Collins, H.E. Female Cardiovascular Biology and Resilience in the Setting of Physiological and Pathological Stress. Redox Biol. 2023, 63, 102747. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Lambrinoudaki, I.; Lumsden, M.; Mishra, G.D.; Pal, L.; Rees, M.; Santoro, N.; Simoncini, T. Menopause. Nat. Rev. Dis. Primers 2015, 1, 15004. [Google Scholar] [CrossRef] [PubMed]
- Avis, N.E.; Crawford, S.L.; Greendale, G.; Bromberger, J.T.; Everson-Rose, S.A.; Gold, E.B.; Hess, R.; Joffe, H.; Kravitz, H.M.; Tepper, P.G.; et al. Duration of Menopausal Vasomotor Symptoms over the Menopause Transition. JAMA Intern. Med. 2015, 175, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Brooks, H.L.; Pollow, D.P.; Hoyer, P.B. The VCD Mouse Model of Menopause and Perimenopause for the Study of Sex Differences in Cardiovascular Disease and the Metabolic Syndrome. Physiology 2016, 31, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Del Fernandes, R.; Hall, A.; Ferguson, M.; Lorenzen-Schmidt, I.; Balasubramaniam, V.; Pyle, W.G. Cardiac Changes during the Peri-Menopausal Period in a VCD-Induced Murine Model of Ovarian Failure. Acta Physiol. 2019, 227, e13290. [Google Scholar] [CrossRef] [PubMed]
- Mayer, L.P.; Dyer, C.A.; Eastgard, R.L.; Hoyer, P.B.; Banka, C.L. Atherosclerotic Lesion Development in a Novel Ovary-Intact Mouse Model of Perimenopause. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1910–1916. [Google Scholar] [CrossRef] [PubMed]
- Konhilas, J.P.; Sanchez, J.N.; Regan, J.A.; Constantopoulos, E.; Lopez-Pier, M.; Cannon, D.K.; Skaria, R.; McKee, L.A.; Chen, H.; Lipovka, Y.; et al. Using 4-Vinylcyclohexene Diepoxide as a Model of Menopause for Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1461–H1473. [Google Scholar] [CrossRef]
- Pollow, D.P.; Romero-Aleshire, M.J.; Sanchez, J.N.; Konhilas, J.P.; Brooks, H.L. ANG II-Induced Hypertension in the VCD Mouse Model of Menopause Is Prevented by Estrogen Replacement during Perimenopause. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1546–R1552. [Google Scholar] [CrossRef]
- Sabbatini, A.R.; Kararigas, G. Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 75, 1074–1082. [Google Scholar] [CrossRef]
- da Silva, J.S.; Montagnoli, T.L.; de Sá, M.P.L.; Zapata-Sudo, G. Heart Failure in Menopause: Treatment and New Approaches. Int. J. Mol. Sci. 2022, 23, 15140. [Google Scholar] [CrossRef]
- Shaw, L.J.; Bugiardini, R.; Merz, C.N.B. Women and Ischemic Heart Disease. Evolving Knowledge. J. Am. Coll. Cardiol. 2009, 54, 1561–1575. [Google Scholar] [CrossRef] [PubMed]
- Ezekowitz, J.A.; Savu, A.; Welsh, R.C.; McAlister, F.A.; Goodman, S.G.; Kaul, P. Is There a Sex Gap in Surviving an Acute Coronary Syndrome or Subsequent Development of Heart Failure? Circulation 2020, 142, 2231–2239. [Google Scholar] [CrossRef]
- Srinivasan, N.T.; Schilling, R.J. Sudden Cardiac Death and Arrhythmias. Arrhythm. Electrophysiol. Rev. 2018, 7, 111. [Google Scholar] [CrossRef]
- Mikkola, T.S.; Tuomikoski, P.; Lyytinen, H.; Korhonen, P.; Hoti, F.; Vattulainen, P.; Gissler, M.; Ylikorkala, O. Increased Cardiovascular Mortality Risk in Women Discontinuing Postmenopausal Hormone Therapy. J. Clin. Endocrinol. Metab. 2015, 100, 4588–4594. [Google Scholar] [CrossRef]
- Karam, N.; Bataille, S.; Marijon, E.; Giovannetti, O.; Tafflet, M.; Savary, D.; Benamer, H.; Caussin, C.; Garot, P.; Juliard, J.M.; et al. Identifying Patients at Risk for Prehospital Sudden Cardiac Arrest at the Early Phase of Myocardial Infarction: The e-MUST Study (Evaluation En Médecine d’Urgence Des Stratégies Thérapeutiques Des Infarctus Du Myocarde). Circulation 2016, 134, 2074–2083. [Google Scholar] [CrossRef] [PubMed]
- Parks, R.J.; Bogachev, O.; Mackasey, M.; Ray, G.; Rose, R.A.; Howlett, S.E. The Impact of Ovariectomy on Cardiac Excitation-Contraction Coupling Is Mediated through CAMP/PKA-Dependent Mechanisms. J. Mol. Cell. Cardiol. 2017, 111, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Fares, E.; Parks, R.J.; MacDonald, J.K.; Egar, J.M.S.; Howlett, S.E. Ovariectomy Enhances SR Ca2+ Release and Increases Ca 2+ Spark Amplitudes in Isolated Ventricular Myocytes. J. Mol. Cell. Cardiol. 2012, 52, 32–42. [Google Scholar] [CrossRef]
- Fares, E.; Pyle, W.G.; Ray, G.; Rose, R.A.; Denovan-Wright, E.M.; Chen, R.P.; Howlett, S.E. The Impact of Ovariectomy on Calcium Homeostasis and Myofilament Calcium Sensitivity in the Aging Mouse Heart. PLoS ONE 2013, 8, e74719. [Google Scholar] [CrossRef]
- Lipskaia, L.; Keuylian, Z.; Blirando, K.; Mougenot, N.; Jacquet, A.; Rouxel, C.; Sghairi, H.; Elaib, Z.; Blaise, R.; Adnot, S.; et al. Expression of Sarco (Endo) Plasmic Reticulum Calcium ATPase (SERCA) System in Normal Mouse Cardiovascular Tissues, Heart Failure and Atherosclerosis. Biochim. Biophys. Acta 2014, 1843, 2705–2718. [Google Scholar] [CrossRef]
- Cleverdon, R.E.G.; Braun, J.L.; Geromella, M.S.; Whitley, K.C.; Marko, D.M.; Hamstra, S.I.; Roy, B.D.; MacPherson, R.E.K.; Fajardo, V.A. Sarco(Endo)Plasmic Reticulum Ca2+-ATPase Function Is Impaired in Skeletal and Cardiac Muscles from Young DBA/2J Mdx Mice. iScience 2022, 25, 104972. [Google Scholar] [CrossRef]
- Geromella, M.S.; Braun, J.L.; Fajardo, V.A. Measuring SERCA-Mediated Calcium Uptake in Mouse Muscle Homogenates. STAR Protoc. 2023, 4, 101987. [Google Scholar] [CrossRef]
- Ferguson, M.; Lorenzen-Schmidt, I.; Pyle, W.G. Bisphenol S Rapidly Depresses Heart Function through Estrogen Receptor-β and Decreases Phospholamban Phosphorylation in a Sex-Dependent Manner. Sci. Rep. 2019, 9, 15948. [Google Scholar] [CrossRef]
- Asahi, M.; Otsu, K.; Nakayama, H.; Hikoso, S.; Takeda, T.; Gramolini, A.O.; Trivieri, M.G.; Oudit, G.Y.; Morita, T.; Kusakari, Y.; et al. Cardiac-Specific Overexpression of Sarcolipin Inhibits Sarco(Endo)Plasmic Reticulum Ca2+ ATPase (SERCA2a) Activity and Impairs Cardiac Function in Mice. Proc. Natl. Acad. Sci. USA 2004, 101, 9199–9204. [Google Scholar] [CrossRef]
- Singh, D.R.; Dalton, M.P.; Cho, E.E.; Pribadi, M.P.; Zak, T.J.; Šeflová, J.; Makarewich, C.A.; Olson, E.N.; Robia, S.L. Newly Discovered Micropeptide Regulators of SERCA Form Oligomers but Bind to the Pump as Monomers. J. Mol. Biol. 2019, 431, 4429–4443. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.R.; Makarewich, C.A.; Anderson, D.M.; Winders, B.R.; Troupes, C.D.; Wu, F.; Reese, A.L.; McAnally, J.R.; Chen, X.; Kavalali, E.T.; et al. Muscle Physiology: A Peptide Encoded by a Transcript Annotated as Long Noncoding RNA Enhances SERCA Activity in Muscle. Science 2016, 351, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, D.; Ohtani, T.; Sakata, Y.; Mano, T.; Takeda, Y.; Tamaki, S.; Omori, Y.; Tsukamoto, Y.; Furutani, K.; Komiyama, Y.; et al. Ca2+ Entry Mode of Na+/Ca2+ Exchanger as a New Therapeutic _target for Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2012, 33, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Spacht, W.A.; Lau, E.S. A Disease of Her Own? Unique Features of Heart Failure in Women. Climacteric 2024, 27, 32–40. [Google Scholar] [CrossRef]
- Abubakar, M.; Saleem, A.; Hajjaj, M.; Faiz, H.; Pragya, A.; Jamil, R.; Salim, S.S.; Lateef, I.K.; Singla, D.; Ramar, R.; et al. Sex-Specific Differences in Risk Factors, Comorbidities, Diagnostic Challenges, Optimal Management, and Prognostic Outcomes of Heart Failure with Preserved Ejection Fraction: A Comprehensive Literature Review. Heart Fail. Rev. 2024, 29, 235–256. [Google Scholar] [CrossRef]
- Vasiljevic, Z.; Krljanac, G.; Davidovic, G.; Panic, G.; Radovanovic, S.; Mickovski, N.; Srbljak, N.; Markovic-Nikolic, N.; Curic-Petkovic, S.; Panic, M.; et al. Gender Differences in Case Fatality Rates of Acute Myocardial Infarction in Serbia. Eur. Heart J. Suppl. 2014, 16, A48–A55. [Google Scholar] [CrossRef]
- Li, S.; Gupte, A.A. The Role of Estrogen in Cardiac Metabolism and Diastolic Function. Methodist. Debakey Cardiovasc. J. 2017, 13, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Nagy, N.; Tóth, N.; Nánási, P.P. Antiarrhythmic and Inotropic Effects of Selective Na+/Ca2+ Exchanger Inhibition: What Can We Learn from the Pharmacological Studies? Int. J. Mol. Sci. 2022, 23, 14651. [Google Scholar] [CrossRef]
- Kho, C. _targeting Calcium Regulators as Therapy for Heart Failure: Focus on the Sarcoplasmic Reticulum Ca-ATPase Pump. Front. Cardiovasc. Med. 2023, 10, 1185261. [Google Scholar] [CrossRef]
- Hamstra, S.I.; Whitley, K.C.; Baranowski, R.W.; Kurgan, N.; Braun, J.L.; Messner, H.N.; Fajardo, V.A. The Role of Phospholamban and GSK3 in Regulating Rodent Cardiac SERCA Function. Am. J. Physiol. Cell Physiol. 2020, 319, C694–C699. [Google Scholar] [CrossRef] [PubMed]
- Mattiazzi, A.; Mundiña-Weilenmann, C.; Guoxiang, C.; Vittone, L.; Kranias, E. Role of Phospholamban Phosphorylation on Thr17 in Cardiac Physiological and Pathological Conditions. Cardiovasc. Res. 2005, 68, 366–375. [Google Scholar] [CrossRef]
- Funk, F.; Kronenbitter, A.; Hackert, K.; Oebbeke, M.; Klebe, G.; Barth, M.; Koch, D.; Schmitt, J.P. Phospholamban Pentamerization Increases Sensitivity and Dynamic Range of Cardiac Relaxation. Cardiovasc. Res. 2023, 119, 1568–1582. [Google Scholar] [CrossRef]
- Koch, D.; Alexandrovich, A.; Funk, F.; Kho, A.L.; Schmitt, J.P.; Gautel, M. Molecular Noise Filtering in the β-Adrenergic Signaling Network by Phospholamban Pentamers. Cell Rep. 2021, 36, 109448. [Google Scholar] [CrossRef]
- Asahi, M.; Kurzydlowski, K.; Tada, M.; MacLennan, D.H. Sarcolipin Inhibits Polymerization of Phospholamban to Induce Superinhibition of Sarco(Endo)Plasmic Reticulum Ca2+-ATPases (SERCAs). J. Biol. Chem. 2002, 277, 26725–26728. [Google Scholar] [CrossRef]
- Anderson, D.M.; Anderson, K.M.; Chang, C.L.; Makarewich, C.A.; Nelson, B.R.; McAnally, J.R.; Kasaragod, P.; Shelton, J.M.; Liou, J.; Bassel-Duby, R.; et al. A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance. Cell 2015, 160, 595–606. [Google Scholar] [CrossRef]
- Appleby, S.; Aitken-Buck, H.M.; Holdaway, M.S.; Byers, M.S.; Frampton, C.M.; Paton, L.N.; Richards, A.M.; Lamberts, R.R.; Pemberton, C.J. Cardiac Effects of Myoregulin in Ischemia-Reperfusion. Peptides 2024, 174, 171156. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M.; Bassani, J.W.M.; Bassani, R.A. Na-Ca Exchange and Ca Fluxes during Contraction and Relaxation in Mammalian Ventricular Muscle. Ann. N. Y. Acad. Sci. 1996, 779, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Piacentino, V.; Weber, C.R.; Chen, X.; Weisser-Thomas, J.; Margulies, K.B.; Bers, D.M.; Houser, S.R. Cellular Basis of Abnormal Calcium Transients of Failing Human Ventricular Myocytes. Circ. Res. 2003, 92, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Weisser-Thomas, J.; Piacentino, V.; Gaughan, J.P.; Margulies, K.; Houser, S.R. Calcium Entry via Na/Ca Exchange during the Action Potential Directly Contributes to Contraction of Failing Human Ventricular Myocytes. Cardiovasc. Res. 2003, 57, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Primessnig, U.; Schönleitner, P.; Höll, A.; Pfeiffer, S.; Bracic, T.; Rau, T.; Kapl, M.; Stojakovic, T.; Glasnov, T.; Leineweber, K.; et al. Novel Pathomechanisms of Cardiomyocyte Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2016, 18, 987–997. [Google Scholar] [CrossRef]
- Roos, K.P.; Jordan, M.C.; Fishbein, M.C.; Ritter, M.R.; Friedlander, M.; Chang, H.C.; Rahgozar, P.; Han, T.; Garcia, A.J.; Maclellan, W.R.; et al. Hypertrophy and Heart Failure in Mice Overexpressing the Cardiac Sodium-Calcium Exchanger. J. Card. Fail. 2007, 13, 318–329. [Google Scholar] [CrossRef]
Antigen | Species and Product Number | Company | Dilution |
---|---|---|---|
SERCA2a | anti-rabbit, 4388S | Cell Signaling | 1:1000 |
PLN | anti-rabbit, 9608305 | MyBioSource | 1:5000 |
P-PLN-T17 | anti-rabbit, 4756839 | MyBioSource | 1:5000 |
P-PLN-S16 | anti-rabbit, 9143798 | MyBioSource | 1:5000 |
NCX | anti-rabbit, 79350S | Cell Signaling | 1:1000 |
Myoregulin | anti-rabbit, 5400549 | MyBioSource | 1:1000 |
Sarcolipin | anti-rabbit, 713457 | MyBioSource | 1:1000 |
DWORF | anti-rabbit, 541442 | MyBioSource | 1:1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barry, C.; Rouhana, S.; Braun, J.L.; Geromella, M.S.; Fajardo, V.A.; Pyle, W.G. Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure. Biomolecules 2024, 14, 675. https://doi.org/10.3390/biom14060675
Barry C, Rouhana S, Braun JL, Geromella MS, Fajardo VA, Pyle WG. Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure. Biomolecules. 2024; 14(6):675. https://doi.org/10.3390/biom14060675
Chicago/Turabian StyleBarry, Ciara, Sarah Rouhana, Jessica L. Braun, Mia S. Geromella, Val A. Fajardo, and W. Glen Pyle. 2024. "Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure" Biomolecules 14, no. 6: 675. https://doi.org/10.3390/biom14060675
APA StyleBarry, C., Rouhana, S., Braun, J. L., Geromella, M. S., Fajardo, V. A., & Pyle, W. G. (2024). Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure. Biomolecules, 14(6), 675. https://doi.org/10.3390/biom14060675