Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry
Abstract
:1. Introduction
2. Biocatalysts Available for the Biosynthesis of Short Oligopeptides
2.1. Enzymes Used as Biocatalysts for the Biosynthesis of Dipeptides
2.1.1. NRPSs
2.1.2. ATP-Grasp Enzymes
l-Amino Acid Ligase (Lal)
d-Alanine: d-Alanine Ligase
The Poly-α-Glutamic Acid (αPGA) Synthetase RimK
2.1.3. α-Amino Acid Ester Acyltransferase
2.1.4. Enzymes Used for β-Lactam Biosynthesis (β-Lactam Acylases)
2.1.5. Cyanophycinases (CGPases)
2.1.6. Methods Used for the Biosynthesis of Cyclic Dipeptides
2.1.7. Biosynthesis of Imidazole-Related Dipeptides by Carnosine Synthase
2.1.8. Proteases
3. Emerging Approaches for the Efficient Production of Short Oligopeptides: Rational Protein Engineering and Strain Development
3.1. Dipeptide Formation by Rational Engineering of NRPSs
3.2. Engineering Modifications of Cephalosporin Acylase
3.3. Metabolic Engineering of Microorganisms for the Biosynthesis of Desirable Dipeptides
4. Conclusions
Funding
Conflicts of Interest
References
- Santos, S.; Torcato, I.; Castanho, M.A. Biomedical applications of dipeptides and tripeptides. Biopolymers 2012, 98, 288–293. [Google Scholar] [CrossRef]
- Bera, B.K.; Ray, S.; Mondal, S.; Karmakar, P.; Mandal, A.; Mallick, S.; Ghosh, A.K. Kinetic and mechanistic studies on the interaction of Glycyl-L-alanine, Glycyl-L-asparagine, and Glycyl-L-tyrosine with hydroxopentaaquarhodium(III) Ion. J. Chem. 2013, 2013. [Google Scholar] [CrossRef]
- Mccormack, W.P.; Hoffman, J.R.; Pruna, G.J.; Jajtner, A.R.; Townsend, J.R.; Stout, J.R.; Fragala, M.S.; Fukuda, D.H. Effects of l-Alanyl-l-Glutamine ingestion on one-hour run performance. J. Am. Coll. Nutr. 2015, 34, 488–496. [Google Scholar] [CrossRef]
- Magnuson, B.A.; Burdock, G.A.; Doull, J.; Kroes, R.M.; Marsh, G.M.; Pariza, M.W.; Spencer, P.S.; Waddell, W.J.; Walker, R.; Williams, G.M. Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 2007, 37, 629–727. [Google Scholar] [CrossRef]
- Kino, H.; Nakajima, S.; Arai, T.; Kino, K. Effective production of Pro-Gly by mutagenesis of l-amino acid ligase. J. Biosci. Bioeng. 2016, 122, 155–159. [Google Scholar] [CrossRef]
- Davis, C.K.; Laud, P.J.; Zsanett, B.; Rajanikant, G.K.; Arshad, M. Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke. J. Cereb. Blood Flow Metab. 2016, 36, 1686–1694. [Google Scholar] [CrossRef]
- Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Semiletov, Y.A.; Davydova, N.G.; Kurysheva, N.I.; Zhukotskii, A.V.; Goldman, I.M. N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides 2001, 22, 979–994. [Google Scholar] [CrossRef]
- Perazzo, J.; Castanho, M.A.; Sá, S.S. Pharmacological potential of the endogenous dipeptide kyotorphin and selected derivatives. Front. Pharm. 2016, 7, 530–540. [Google Scholar] [CrossRef]
- Khavinson, V.K.; Morozov, V.G.; Malinin, V.V.; Kazakova, T.B.; Korneva, E.A. Effect of peptide Lys-Glu on interleukin-2 gene expression in lymphocytes. Bull. Exp. Biol. Med. 2000, 130, 898–899. [Google Scholar] [CrossRef]
- Nakatani, M.; Shinohara, Y.; Takii, M.; Mori, H.; Asai, N.; Nishimura, S.; Furukawa-Hibi, Y.; Miyamoto, Y.; Nitta, A. Periocular injection of in situ hydrogels containing Leu-Ile, an inducer for neurotrophic factors, promotes retinal ganglion cell survival after optic nerve injury. Exp. Eye Res. 2011, 93, 873–879. [Google Scholar] [CrossRef]
- Wang, T.; Wu, M.B.; Chen, Z.J.; Lin, J.P.; Yang, L.R. Separation, determination and antifungal activity test of the products from a new Bacillus amyloliquefaciens. Nat. Prod. Res. 2015, 30, 1215–1218. [Google Scholar] [CrossRef]
- Gahungu, M.; Arguellesarias, A.; Fickers, P.; Zervosen, A.; Joris, B.; Damblon, C.; Luxen, A. Synthesis and biological evaluation of potential threonine synthase inhibitors: Rhizocticin A and Plumbemycin A. Bioorg. Med. Chem. 2013, 21, 4958–4967. [Google Scholar] [CrossRef]
- Turner, J.G.; Taha, R.R.; Jill, D. Effects of tabtoxin on nitrogen metabolism. Physiol.Plant. 2010, 67, 649–653. [Google Scholar] [CrossRef]
- Yagasaki, M.; Hashimoto, S. Synthesis and application of dipeptides; current status and perspectives. Appl. Microbiol. Biotechnol. 2008, 81, 13–22. [Google Scholar] [CrossRef]
- Mandity, I.M.; Olasz, B.; Otvos, S.B.; Fulop, F. Continuous-flow solid-phase peptide synthesis: A revolutionary reduction of the amino acid excess. ChemSusChem 2014, 7, 3172–3176. [Google Scholar] [CrossRef]
- Lawrenson, S.; Arav, R.; North, M. The peptide synthesis. Green Chem. 2017, 19, 1685–1691. [Google Scholar] [CrossRef]
- Goswami, A.; Van Lanen, S.G. Enzymatic strategies and biocatalysts for amide bond formation: Tricks of the trade outside of the ribosome. Mol. Biosyst. 2015, 11, 338–353. [Google Scholar] [CrossRef]
- Hashimoto, S.I. Occurrence, biosynthesis, and biotechnological production of dipeptides. In Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering; Wendisch, V.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5, pp. 327–348. [Google Scholar]
- Süssmuth, R.D.; Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed. Engl. 2017, 56, 3770–3821. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.; Wu, M.; Chen, Z.; Lin, J.; Yang, L. Natural products from Bacillus subtilis with antimicrobial properties. Chinese J. Chem. Eng. 2015, 23, 744–754. [Google Scholar] [CrossRef]
- Strieker, M.; Tanović, A.; Marahiel, M.A. Nonribosomal peptide synthetases: Structures and dynamics. Curr. Opin. Struc. Biol. 2010, 20, 234–240. [Google Scholar] [CrossRef]
- Candela, T.; Fouet, A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. Y 2006, 60, 1091–1098. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Dairi, T. Biosynthesis of Oligopeptides using ATP-grasp Enzymes. Chemistry 2017, 23, 10714–10724. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Koonin, E.V. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci. 1997, 6, 2639–2643. [Google Scholar] [CrossRef]
- Tsuda, T.; Suzuki, T.; Kojima, S. Crystallization and preliminary X-ray diffraction analysis of Bacillus subtilis YwfE, an l -amino-acid ligase. Acta Cryst. A 2012, 68, 203–206. [Google Scholar]
- Tsuda, T.; Asami, M.; Koguchi, Y.; Kojima, S. Single mutation alters the substrate specificity of L-amino acid ligase. Biochemistry 2014, 53, 2650–2660. [Google Scholar] [CrossRef]
- Arai, T.; Arimura, Y.; Ishikura, S.; Kino, K. L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides. Appl. Env. Microbiol. 2013, 79, 5023–5029. [Google Scholar] [CrossRef]
- Kino, K.; Noguchi, A.; Arai, T.; Yagasaki, M. Identification and characterization of a novel L-amino acid ligase from Photorhabdus luminescens subsp. laumondii TT01. J. Biosci. Bioeng. 2010, 110, 39–41. [Google Scholar] [CrossRef]
- Kino, K.; Nakazawa, Y.; Yagasaki, M. Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum. Biochem. Biophys. Res. Commun. 2008, 371, 536–540. [Google Scholar] [CrossRef]
- Kino, H.; Kino, K. Alteration of the substrate specificity of l-amino acid ligase and selective synthesis of Met-Gly as a salt taste enhancer. Biosci. Biotechnol. Biochem. 2015, 79, 1827–1832. [Google Scholar] [CrossRef]
- Kagawa, W.; Arai, T.; Ishikura, S.; Kino, K.; Kurumizaka, H. Structure of RizA, an L-amino-acid ligase from Bacillus subtilis. Acta Cryst. A 2015, 71, 1125–1130. [Google Scholar]
- Arai, T.; Kino, K. A novel -amino acid ligase is encoded by a gene in the Phaseolotoxin biosynthetic gene cluster from pv. 1448A. Biosci. E Biotechnol. Biochem. 2014, 72, 3048–3050. [Google Scholar] [CrossRef]
- Blasiak, L.C.; Clardy, J. Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression. J. Am. Chem. Soc. 2010, 132, 926–927. [Google Scholar] [CrossRef]
- Kino, K.; Noguchi, A.; Nakazawa, Y.; Yagasaki, M. A novel l -amino acid ligase from Bacillus licheniformis. J. Biosci. Bioeng. 2008, 106, 313–315. [Google Scholar] [CrossRef]
- Nishanth Kumar, S.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J. Cyclo(D-Tyr-D-Phe): A new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode. J. Pept. Sci. 2014, 20, 173–185. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, E.; Yang, W.; Zhang, X.; Zhang, W.; Rao, Y. D-Serine made by serine racemase in Drosophila intestine plays a physiological role in sleep. Nat. Commun. 2019, 10, 1986–1996. [Google Scholar]
- Al-Bar, O.A.; O’Connor, C.D.; Giles, I.G.; Akhtar, M. D-alanine: D-alanine ligase of Escherichia coli. Expression, purification and inhibitory studies on the cloned enzyme. Biochem. J. 1992, 282, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Prosser, G.A.; de Carvalho, L.P. Metabolomics reveal D-Alanine: D-Alanine ligase as the _target of D-cycloserine in Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013, 4, 1233–1237. [Google Scholar] [CrossRef]
- Kino, K.; Arai, T.; Arimura, Y. Poly-alpha-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12. Appl. Env. Microbiol. 2011, 77, 2019–2025. [Google Scholar] [CrossRef] [Green Version]
- Yokozeki, K.; Hara, S. A novel and efficient enzymatic method for the production of peptides from unprotected starting materials. J. Biotechnol. 2005, 115, 211–220. [Google Scholar] [CrossRef]
- Abe, I.; Hara, S.; Yokozeki, K. Gene cloning and characterization of α-amino acid ester acyl transferase in Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458. Biosci. Biotechnol. Biochem. 2011, 75, 2087–2892. [Google Scholar] [CrossRef] [Green Version]
- Hirao, Y.; Mihara, Y.; Kira, I.; Abe, I.; Yokozeki, K. Enzymatic production of L-alanyl-L-glutamine by recombinant E. coli expressing alpha-amino acid ester acyltransferase from Sphingobacterium siyangensis. Biosci. Biotechnol. Biochem. 2013, 77, 618–623. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yuan, W.; Gao, J.; Fan, C.; Wu, W.; Bai, F. Production of l-alanyl-l-glutamine by recycling E. coli expressing α-amino acid ester acyltransferase. Bioresour. Technol. 2017, 245, 1603–1609. [Google Scholar] [CrossRef]
- Srirangan, K.; Orr, V.; Akawi, L.; Westbrook, A.; Moo-Young, M.; Chou, C.P. Biotechnological advances on Penicillin G acylase: Pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol. Adv. 2013, 31, 1319–1332. [Google Scholar] [CrossRef]
- Sklyarenko, A.V.; El’Darov, M.A.; Kurochkina, V.B.; Yarotsky, S.V. Enzymatic synthesis of β-lactam acids (review). App. Biochem. Micro. 2015, 51, 627–640. [Google Scholar] [CrossRef]
- Gaudelli, N.M.; Long, D.H.; Townsend, C.A. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis. Nature 2015, 520, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Helena, M.O.; Martina, P.K.; Michal, G.; Pavel, K. Current state and perspectives of penicillin G acylase-based biocatalyses. Appl. Microbiol. Biotechnol. 2014, 98, 2867–2879. [Google Scholar]
- Arroyo, M.; De la Mata, I.; Acebal, C.; Castillón, M.P. Biotechnological applications of penicillin acylases: State-of-the-art. Appl. Microbiol. Biotechnol. 2003, 60, 507–514. [Google Scholar] [CrossRef]
- Grulich, M.; Štěpánek, V.; Kyslík, P. Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol. Adv. 2013, 31, 1458–1472. [Google Scholar] [CrossRef]
- Lai, L.; Xu, Z.; Zhou, J.; Lee, K.D.; Amidon, G.L. Molecular basis of prodrug activation by human valacyclovirase, an alpha-amino acid ester hydrolase. J. Biol. Chem. 2008, 283, 9318–9327. [Google Scholar] [CrossRef] [Green Version]
- Polderman-Tijmes, J.J.; Jekel, P.A.; de Vries, E.J.; van Merode, A.E.; Floris, R.; van der Laan, J.M.; Sonke, T.; Janssen, D.B. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding an alpha-amino acid ester hydrolase from Acetobacter turbidans. Appl. Environ. Microbiol. 2002, 68, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.J.; Wang, L.; Pan, Y.; Cao, Y. Changing the specificity of α-amino acid ester hydrolase toward -hydroxyl cephalosporins synthesis by site-directed saturation mutagenesis. Biotechnol. Let. 2012, 34, 1719–1724. [Google Scholar] [CrossRef]
- Rosini, E.; Monelli, C.S.; Pollegioni, L.; Riva, S.; Monti, D. On the substrate preference of glutaryl acylases. J. Mol. Catal. B 2012, 76, 52–58. [Google Scholar] [CrossRef]
- Bora, O.; Myungsook, K.; Jongchul, Y.; Kyungwha, C.; Yongchul, S.; Dongsoon, L.; Youngsoo, K. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochem. Biophys. Res. Commun. 2003, 310, 19–27. [Google Scholar]
- Loredano, P.; Elena, R.; Gianluca, M. Cephalosporin C acylase: Dream and(/or) reality. Appl. Microbiol. Biotechnol. 2013, 97, 2341–2355. [Google Scholar]
- Volpato, G.; Rodrigues, R.C.; Fernandez-Lafuente, R. Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: Drawbacks and perspectives. Curr. Med. Chem. 2010, 17, 3855–3873. [Google Scholar] [CrossRef]
- Pollegioni, L.; Lorenzi, S.E.; Marcone, G.L.; Molla, G.; Verga, R.; Cabri, W.; Pilone, M.S. Evolution of an acylase active on cephalosporin C. Protein Sci. 2010, 14, 3064–3076. [Google Scholar] [CrossRef] [Green Version]
- Otten, L.G.; Sio, C.F.; van der Sloot, A.M.; Cool, R.H.; Quax, W.J. Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Chembiochem 2004, 5, 820–825. [Google Scholar] [CrossRef]
- Tseng, W.C.; Fang, T.Y.; Hsieh, Y.C.; Chen, C.Y.; Li, M.C. Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli. J. Biotechnol. 2017, 249, 59–65. [Google Scholar] [CrossRef]
- Hühns, M.; Neumann, K.; Hausmann, T.; Ziegler, K.; Klemke, F.; Kahmann, U.; Staiger, D.; Lockau, W.; Pistorius, E.K.; Broer, I. Plastid _targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotechnol. J. 2010, 6, 321–336. [Google Scholar] [CrossRef]
- Simone Cardoso, D.; Ingo, V.; Alexander, S. Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol. Bioeng. 2010, 93, 698–717. [Google Scholar]
- Sallam, A.; Kalkandzhiev, D.; Steinbüchel, A. Production optimization of cyanophycinase ChpE al from Pseudomonas alcaligenes DIP1. AMB Express 2011, 1, 38. [Google Scholar] [CrossRef] [Green Version]
- Nausch, H.; Broer, I. Cyanophycinase CphE from P. alcaligenes produced in different compartments of N. benthamiana degrades high amounts of cyanophycin in plant extracts. Appl. Microbiol. Biotechnol. 2017, 101, 1–17. [Google Scholar] [CrossRef]
- Sallam, A.; Kast, A.; Przybilla, S.; Meiswinkel, T.; Steinbuchel, A. Biotechnological process for production of beta-dipeptides from cyanophycin on a technical scale and its optimization. Appl. Env. Microbiol. 2009, 75, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Ponndorf, D.; Broer, I.; Nausch, H. Expression of CphB- and CphE-type cyanophycinases in cyanophycin-producing tobacco and comparison of their ability to degrade cyanophycin in plant and plant extracts. Transgenic Res. 2017, 26, 491–499. [Google Scholar] [CrossRef]
- Ernst, A.; Liu, Y.D.; Reich, S.; Böger, P. Diurnal nitrogenase modification in the Cyanobacterium Anabaena variabilis. Plant Biol. 2015, 103, 183–189. [Google Scholar]
- Martin, O.; Fred Bernd, O.S.; Heinrich, L.; Alexander, S. Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica strain BI. The cphE gene from P. anguilliseptica BI encodes a cyanophycinhydrolyzing enzyme. J. Biol. Chem. 2002, 277, 25096–25105. [Google Scholar]
- Obst, M.; Sallam, A.; Luftmann, H.; Steinbuchel, A. Isolation and characterization of gram-positive cyanophycin-degrading bacteria-kinetic studies on cyanophycin depolymerase activity in aerobic bacteria. Biomacromolecules 2004, 5, 153–161. [Google Scholar] [CrossRef]
- Martin, O.; Andreas, K.; Heinrich, L.; Alexander, S. Degradation of cyanophycin by Sedimentibacter hongkongensis strain KI and Citrobacter amalonaticus strain G isolated from an anaerobic bacterial consortium. Appl. Env. Microbiol. 2005, 71, 3642–3652. [Google Scholar]
- Ahmed, S.; Alexander, S. Anaerobic and aerobic degradation of cyanophycin by the denitrifying bacterium Pseudomonas alcaligenes strain DIP1 and role of three other coisolates in a mixed bacterial consortium. Appl. Env. Microbiol. 2008, 74, 3434–3443. [Google Scholar]
- Mishra, A.K.; Choi, J.; Choi, S.J.; Baek, K.H. Cyclodipeptides: An overview of their biosynthesis and biological activity. Molecules 2017, 22, 1796–1808. [Google Scholar] [CrossRef] [Green Version]
- Gondry, M.; Sauguet, L.; Belin, P.; Thai, R.; Amouroux, R.; Tellier, C.; Tuphile, K.; Jacquet, M.; Braud, S.; Courcon, M.; et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 2009, 5, 414–420. [Google Scholar] [CrossRef]
- García-Estrada, C.; Ullán, R.; Albillos, S.; Fernández-Bodega, M.; Durek, P.; Vondöhren, H.; Martín, J. A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem. Biol. 2011, 18, 1499–1512. [Google Scholar] [CrossRef] [Green Version]
- Giessen, T.W.; Marahiel, M.A. The tRNA-dependent biosynthesis of modified cyclic dipeptides. Int. J. Mol. R Sci. 2014, 15, 14610–14631. [Google Scholar] [CrossRef] [Green Version]
- Belin, P.; Moutiez, M.; Lautru, S.; Seguin, J.; Pernodet, J.L.; Gondry, M. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat. Prod. Rep. 2012, 29, 961–979. [Google Scholar] [CrossRef]
- Seguin, J.; Moutiez, M.; Li, Y.; Belin, P.; Lecoq, A.; Fonvielle, M.; Charbonnier, J.B.; Pernodet, J.L.; Gondry, M. Nonribosomal peptide synthesis in animals: The cyclodipeptide synthase of Nematostella. Chem. Biol. 2011, 18, 1362–1368. [Google Scholar] [CrossRef]
- Jacques, I.B.; Moutiez, M.; Witwinowski, J.; Darbon, E.; Martel, C.; Seguin, J.; Favry, E.; Thai, R.; Lecoq, A.; Dubois, S. Analysis of 51 cyclodipeptide synthases reveals the basis for substrate specificity. Nat. Chem. Biol. 2015, 11, 721–727. [Google Scholar] [CrossRef]
- Moutiez, M.; Seguin, J.; Fonvielle, M.; Belin, P.; Jacques, I.B.; Favry, E.; Arthur, M.; Gondry, M. Specificity determinants for the two tRNA substrates of the cyclodipeptide synthase AlbC from Streptomyces noursei. Nucleic Acids Res. 2014, 42, 7247–7258. [Google Scholar] [CrossRef] [Green Version]
- Sauguet, L.; Moutiez, M.; Li, Y.; Belin, P.; Seguin, J.; Le Du, M.H.; Thai, R.; Masson, C.; Fonvielle, M.; Pernodet, J.L.; et al. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Res. 2011, 39, 4475–4489. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, G.; Seguin, J.; Babin, M.; Belin, P.; Moutiez, M.; Mechulam, Y.; Gondry, M.; Schmitt, E. Structural basis for partition of the cyclodipeptide synthases into two subfamilies. J. Struct. Biol. 2018, 203, 17–26. [Google Scholar] [CrossRef]
- Moutiez, M.; Schmitt, E.; Seguin, J.; Thai, R.; Favry, E.; Belin, P.; Mechulam, Y.; Gondry, M. Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases. Nat. Commun. 2014, 5, 5141–5147. [Google Scholar] [CrossRef] [Green Version]
- Skinnider, M.A.; Johnston, C.W.; Merwin, N.J.; Dejong, C.A.; Magarvey, N.A. Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis. BMC Genom. 2018, 19, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Kumagai, T.; Kitani, K.; Mori, M.; Matoba, Y.; Sugiyama, M. Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. J. Biol. Chem. 2007, 282, 9073–9081. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, L.; Arai, T.; Sakaguchi, Y.; Suzuki, T.; Ishitani, R.; Nureki, O. Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc. Nati. Acad. Sci. USA 2011, 108, 3912–3917. [Google Scholar] [CrossRef] [Green Version]
- Dubois, P.; Correia, I.; Le Chevalier, F.; Dubois, S.; Jacques, I.; Canu, N.; Moutiez, M.; Thai, R.; Gondry, M.; Lequin, O.; et al. Reprogramming Escherichia coli for the production of prenylated indole diketopiperazine alkaloids. Sci. Rep. 2019, 9, 9208–9220. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yu, H.; Li, S.M. Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains. Appl. Microbiol. Biotechnol. 2018, 102, 4435–4444. [Google Scholar] [CrossRef]
- Chun, S.B.; Nam-Seok, J.; Giancarlo, A.; Yeum, K.J. Biological functions of histidine-dipeptides and metabolic syndrome. Nutr. Res. Pr. 2014, 8, 3–10. [Google Scholar]
- Drozak, J.; Veiga-da-Cunha, M.; Vertommen, D.; Stroobant, V.; Schaftingen, E.V. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J. Biol. Chem. 2010, 285, 9346–9356. [Google Scholar] [CrossRef] [Green Version]
- Veiga-Da-Cunha, M.; Chevalier, N.; Stroobant, V.; Vertommen, D.; Van, S.E. Metabolite proofreading in carnosine and homocarnosine synthesis: Molecular identification of PM20D2 as β-alanyl-lysine dipeptidase. J. Biol. Chem. 2014, 289, 19726–19736. [Google Scholar] [CrossRef] [Green Version]
- Yazawa, K.; Numata, K. Recent advances in chemoenzymatic peptide syntheses. Molecules 2014, 19, 13755–13774. [Google Scholar] [CrossRef] [Green Version]
- Bialkowska, A.M.; Morawski, K.; Florczak, T. Extremophilic proteases as novel and efficient tools in short peptide synthesis. J. Ind. Microbiol. Biotechnol. 2017, 44, 1325–1342. [Google Scholar] [CrossRef]
- Salam, S.M.A.; Kagawa, K.-i.; Matsubara, T.; Kawashiro, K. Protease-catalyzed dipeptide synthesis from N-protected amino acid carbamoylmethyl esters and free amino acids in frozen aqueous solutions. Enzym. Microb. Tech. 2008, 43, 537–543. [Google Scholar] [CrossRef]
- Miyazawa, T.; Horimoto, T.; Tanaka, K. Kinetically controlled peptide synthesis mediated by papain using the carbamoylmethyl ester as an acyl donor. Int. J. Pept. Res. Ther. 2014, 20, 371–376. [Google Scholar] [CrossRef]
- Harrison, M.J.; Burton, N.A.; Hillier, I.H. Catalytic mechanism of the enzyme papain: Predictions with a hybrid quantum mechanical/molecular mechanical potential. J. Am. Chem. Soc. 1997, 119, 12285–12291. [Google Scholar] [CrossRef]
- Gudeangadi, P.G.; Tsuchiya, K.; Sakai, T.; Numata, K. Chemoenzymatic synthesis of polypeptides consisting of periodic di- and tri-peptide motifs similar to elastin. Polym. Chem. 2018, 9, 2336–2344. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Qi, W.; Yu, Q.; Su, R.; He, Z. Kinetically controlled enzymatic synthesis of dipeptide precursor of L-alanyl-L-glutamine. Biotechnol. Appl. Bioc. 2011, 58, 449–455. [Google Scholar] [CrossRef]
- Cao, S.L.; Xu, H.; Li, X.H.; Lou, W.Y.; Zong, M.H. Papain@ magnetic nanocrystalline cellulose nanobiocatalyst: A highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustain. Chem. Eng. 2015, 3, 1589–1599. [Google Scholar] [CrossRef]
- Doekel, S.; Marahiel, M.A. Dipeptide formation on engineered hybrid peptide synthetases. Chem. Biol. 2000, 7, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Miyanaga, A.; Kudo, F.; Eguchi, T. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines. Nat. Prod. Rep. 2018, 35, 1185–1209. [Google Scholar] [CrossRef]
- Duerfahrt, T.; Doekel, S.; Sonke, T.; Quaedflieg, P.J.; Marahiel, M.A. Construction of hybrid peptide synthetases for the production of alpha-l-aspartyl-l-phenylalanine, a precursor for the high-intensity sweetener aspartame. Eur. J. Biochem. 2003, 270, 4555–4563. [Google Scholar] [CrossRef]
- Rui, Z.; Zhang, W. Engineering biosynthesis of non-ribosomal peptides and polyketides by directed evolution. Curr. Top. Med. Chem. 2016, 16, 1755–1762. [Google Scholar] [CrossRef]
- Belshaw, P.J.; Walsh, C.T.; Stachelhaus, T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 1999, 284, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Niquille, D.L.; Hansen, D.A.; Mori, T.; Fercher, D.; Kries, H.; Hilvert, D. Nonribosomal biosynthesis of backbone-modified peptides. Nat. Chem. 2018, 10, 282–287. [Google Scholar] [CrossRef]
- Ferrario, V.; Fischer, M.; Zhu, Y.; Pleiss, J. Modelling of substrate access and substrate binding to cephalosporin acylases. Sci. Rep. 2019, 9, 12402–12414. [Google Scholar] [CrossRef] [Green Version]
- Sonawane, V.C. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 2006, 26, 95–120. [Google Scholar] [CrossRef]
- Sio, C.F.; Otten, L.G.; Cool, R.H.; Quax, W.J. Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochem. Biophys. Res. Commun. 2003, 312, 755–760. [Google Scholar] [CrossRef]
- Xiao, Y.; Huo, X.; Qian, Y.; Zhang, Y.; Chen, G.; Ouyang, P.; Lin, Z. Engineering of a CPC acylase using a facile pH indicator assay. J. Ind. Microbiol. Biotechnol. Y 2014, 41, 1617–1625. [Google Scholar] [CrossRef]
- Ye, T.; Xu, Z.; Huang, X.; Zhu, Y. Computational design to improve catalytic activity of cephalosporin C acylase from Pseudomonas strain N176. RSC Adv. 2017, 7, 30370–30375. [Google Scholar]
- Xu, Z.; Ye, T.; Zhu, Y. Computational design of thermostable mutants for cephalosporin C acylase from Pseudomonas strain SE83. Comput. Chem. Eng. 2018, 116, 112–121. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, X.; Li, Q.; Zhu, Y. Computational design of variants for cephalosporin C acylase fromPseudomonasstrain N176 with improved stability and activity. Appl. Microbiol. Biotechnol. 2017, 101, 621–632. [Google Scholar] [CrossRef]
- Qing, L.; Huang, X.; Zhu, Y. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking. J. Mol. R Model. 2014, 20, 2314–2325. [Google Scholar]
- He, J.; Huang, X.; Xue, J.; Zhu, Y. Computational redesign of penicillin acylase for cephradine synthesis with high kinetic selectivity. Green Chem. 2018, 20, 5484–5490. [Google Scholar] [CrossRef]
- Huang, X.; Xue, J.; Lin, M.; Zhu, Y. Use of an improved matching algorithm to select scaffolds for enzyme design based on a complex active site model. PLoS ONE 2016, 11, e0156559. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, J.; Huang, G.; Yang, Z.; Han, L. Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment. Bioresour. Technol. 2018, 264, 327–334. [Google Scholar] [CrossRef]
- Ovchinnikov, S.; Park, H.; Varghese, N.; Huang, P.S.; Pavlopoulos, G.A.; Kim, D.E.; Kamisetty, H.; Kyrpides, N.C.; Baker, D. Protein structure determination using metagenome sequence data. Science 2017, 355, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Dey, F.; Petrey, D.; Honig, B. Structure-based prediction of ligand-protein interactions on a genome-wide scale. Pro. Nati. Acad. Sci. USA 2017, 114, 13685–13690. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Zhao, J.; Cui, C.; Fu, Z.; Li, X.; Liu, X.; Ding, X.; Tan, X.; Li, F.; Luo, X. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Med. Res. Rev. 2018, 38, 914–950. [Google Scholar] [CrossRef]
- Yamamoto, T.; Shimoyama, T.; Kuriyama, M. Dietary and enteral interventions for Crohn’s disease. Curr. Opini. Biotechnol. 2017, 44, 69–73. [Google Scholar] [CrossRef]
Function | Chemical Compound | Reference |
---|---|---|
Parenteral nutrition | Gly-Tyr | [2] |
Ala-Gln | [3] | |
Taste-enhancing | Sweetener: Aspartame | [4] |
Salt substance: Pro-Gly | [5] | |
Cytosolic buffering | Carnosine | [6] |
Ophthalmic drug | N-Acetyl carnosine | [7] |
Analgesic | Kyotorphin (Arg-Tyr) | [8] |
Anti-tumor | Lys-Glu | [9] |
Neuroprotective | Leu-Ile | [10] |
Anti-bacterial | Bacilysin/Chlorotetaine | [11] |
rhizocticin | [12] | |
tabtoxin | [13] |
Enzyme | Components Catalyzed | Availability of the Crystal Structure | Source | Ref. | |
---|---|---|---|---|---|
Natural Product | Unnatural Product | ||||
BacD | Ala-Gln | +, PDB ID: 3VMM | Bacillus subtilis | [25] | |
RizA | / | +, PDB ID: 4WD3 | Bacillus subtilis NBRC 3134 | [31] | |
PSPPH 4299 | Ala-HomoArg, Ala-Arg Ala-Lys Ala-His Ala-Gln Ala-Asn Ala-Met Ala-Phe Ala-Trp | +, PDB ID: 3VMM | Pseudomonas syringae pv. phaseolicola 1448A | [32] | |
TabS | Arg-Phe Gln-Trp Leu-Ser Glu-Thr Leu-Ile Pro-Gly | - | Pseudomonas syringae NBRC 14081 | [26] | |
FtyB | / | - | Pseudoalteromonas tunicata D2 | [33] | |
Rsp1486a | Phe-Cys, His-Ala, His-Val, His-Gly | / | - | Ralstonia solanacearum JCM 10486 | [28] |
BL00235 | Met-Gly, Met-Met | / | +, PDB ID: 3VOT | Bacillus licheniformis NBRC 12200 | [29,34] |
plu1440 | Asn-Gly, Asn-Ala, Asn-Cys, Asn-Gln | / | - | Photorhabdus luminescens subsp. laumondii TT01 | [27] |
Enzyme | Source | Product | Reference | |
---|---|---|---|---|
Intracellular | Cyanophycinase (CphB) | Anabaena cylindrica | β-Asp-Arg | [66] |
Extracellular | CphEPa | Pseudomonas anguilliseptica BI | β-Asp-Arg | [67] |
CphEBm | Bacillus megaterium BAC19 | Small molecules | [68] | |
CphE | Sedimentibacter hongkongensis KI | β-Asp-Arg, β-Asp-Lys | [69] | |
CphE | Pseudomonas alcaligenes DIP1 | Ethanol, acetic acid, succinic acid | [70] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, Y.-R.; Liu, X.-H.; Ge, S.; Zhu, Y.-S. Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules 2019, 9, 733. https://doi.org/10.3390/biom9110733
Wang T, Zhang Y-R, Liu X-H, Ge S, Zhu Y-S. Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules. 2019; 9(11):733. https://doi.org/10.3390/biom9110733
Chicago/Turabian StyleWang, Tao, Yu-Ran Zhang, Xiao-Huan Liu, Shun Ge, and You-Shuang Zhu. 2019. "Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry" Biomolecules 9, no. 11: 733. https://doi.org/10.3390/biom9110733
APA StyleWang, T., Zhang, Y.-R., Liu, X.-H., Ge, S., & Zhu, Y.-S. (2019). Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules, 9(11), 733. https://doi.org/10.3390/biom9110733