Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-_target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity Studies
2.2.1. AChE and BChE Inhibitory Activities of Compounds 2a–i and 3a–i
2.2.2. β-Secretase Inhibitory Activities of Compounds 3b and 3e
2.2.3. In Vitro Inhibitory Assays against Cyclooxygenase-2 and Lipoxygenases
2.3. Kinetic Studies of 3b and 3e against AChE, BChE and BACE-1
2.4. Molecular Docking Studies of Selected Active Compounds against the Enzyme _targets
2.4.1. Molecular Docking Studies within the AChE and BChE Binding Sites
2.4.2. Molecular Docking into β-secretase (PDB: 3IXJ) Binding Sites
3. Experimental
3.1. General
3.2. Synthesis of 3-iodo-2,4-dihydroxyacetophenone
3.3. Synthesis of 8-hydroxy-7-iodo-4-oxo-4H-chromene-3-carbaldehyde (1)
3.4. Typical Procedure for Tandem Sonogashira Cross-Coupling–Heteroannulation of 1
3.5. Typical Procedure for the Synthesis of Hydrazones 3a–i from 2a–i
3.6. Biological Activity Studies
3.6.1. Cholinesterase Enzyme Assays of 2a–i and 3a–i
3.6.2. β-Secretase Assays of Compounds 3b and 3e
3.6.3. COX-2 Assays for Compounds 2a–i and 3a–i
3.6.4. Soybean LOX-15 Inhibitory Assay of Compounds 2a–i and 3a–i
3.6.5. Human LOX-5 Inhibitory Assay of Compounds 2f–h, 3b and 3e–g
3.7. Kinetic Studies AChE, BChE and BACE-1
3.7.1. Kinetic Studies of 3b and 3e Against AChE and BChE
3.7.2. Kinetic Studies of 3b and 3e Against β-Secretase
3.8. DPPH Assays of Compounds 2a–i and 3a–i
3.9. Molecular Docking Studies into AChE, BChE and BACE-1 Active Sites
3.10. Cytotoxicity Studies of 3b and 3e Against the Hek293-T Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emmerzaal, T.L.; Kiliaan, A.J.; Gustafson, D.R. 2003–2013: A decade of body mass index, Alzheimer’s disease, and dementia. J. Alzheimer’s Dis. 2015, 43, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Allsop, D.; Mayes, J. Amyloid β-peptide and Alzheimer’s disease. Essays Biochem. 2014, 56, 99–110. [Google Scholar] [PubMed]
- Liston, D.R.; Nielsen, J.A.; Villalobos, A.; Chapin, D.; Jones, S.B.; Hubbard, S.T.; Shalaby, I.A.; Ramirez, A.; Nason, D.; White, W.F. Pharmacology of selective acetylcholinesterase inhibitors: Implications for use in Alzheimer’s disease. Eur. J. Pharmacol. 2004, 486, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.A.; Chilukuri, N.; Darvesh, S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013, 234, 53–68. [Google Scholar] [CrossRef]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef]
- Hartmann, J.; Kiewert, C.; Duysen, E.G.; Lockridge, O.; Greig, N.H.; Klein, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007, 100, 1421–1429. [Google Scholar] [CrossRef]
- Gupta, S.; Mohan, C.G. Dual binding site and selective acetylcholinesterase inhibitors derived from integrated pharmacophore models and sequential virtual screening. Biomed. Res. Int. 2014, 2014, 291214. [Google Scholar] [CrossRef]
- Ballard, C.G. Advances in the treatment of Alzheimer’s disease: Benefits of dual cholinesterase inhibition. Eur. Neurol. 2002, 47, 64–70. [Google Scholar] [CrossRef]
- Kishore, N.; Kumar, P.; Shanker, K.; Verma, A.K. Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur. J. Med. Chem. 2019, 179, 272–309. [Google Scholar] [CrossRef]
- Verdile, G.; Fuller, S.J.; Martins, R.N. The role of type 2 diabetes in neurodegeneration. Neurobiol. Dis. 2015, 84, 22–38. [Google Scholar] [CrossRef]
- Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L.; et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2016, 2, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543. [Google Scholar] [CrossRef] [PubMed]
- Bajda, M.; Guzior, N.; Ignasik, M.; Malawska, B. Multi-_target-directed ligands in Alzheimer’s disease treatment. Curr. Med. Chem. 2011, 18, 4949–4975. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 2002, 1, 727–730. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, C.A.; Downey, G.P.; El-Gabalawy, H. Signalling platforms that modulates the inflammatory response: New _targets for drug development. Nat. Rev. Drug Discov. 2006, 5, 864–876. [Google Scholar] [CrossRef] [PubMed]
- Grover, J.; Kumar, V.; Singh, V.; Bairwa, K.; Sobhia, M.E.; Jachak, S.M. Synthesis, biological evaluation, molecular docking and theoretical evaluation of ADMET properties of nepodin and chrysophanol derivatives as potential cyclooxygenase (COX-1, COX-2) inhibitors. Eur. J. Med. Chem. 2014, 80, 47–56. [Google Scholar] [CrossRef]
- Silva, S.F.M.; Pinto, D.C.G.A.; Silva, A.M.S. Chromones: A promising ring system for new anti-inflammatory drugs. Chem. Med. Chem. 2016, 11, 2252–2260. [Google Scholar] [CrossRef]
- Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960–4992. [Google Scholar] [CrossRef]
- Namdanung, U.; Athipornchai, A.; Khammee, T.; Kuno, M.; Suksamrarn, S. 2-Arylbenzofurans from Artocarpus lakoocha and methyl ether analogs with potent cholinesterase inhibitory activity. Eur. J. Med. Chem. 2018, 143, 1301–1311. [Google Scholar] [CrossRef]
- Reis, J.; Gaspar, A.; Milhazes, N.; Borges, F. Chromone as a privileged scaffold in drug discovery: Recent advances. J. Med. Chem. 2017, 60, 7941–7957. [Google Scholar] [CrossRef] [PubMed]
- Hamulakova, S.; Janovec, L.; Hrabinova, M.; Spilovska, K.; Korabecny, J.; Kristian, P.; Kuca, K.; Imrich, J. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. J. Med. Chem. 2014, 57, 7073–7084. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Abreen, N.; Mughal, U.R.; Jalil, S.; Perveen, S.; Choudhary, M.I. 3-Formylchromones: Potential antiinflammatory agents. Eur. J. Med. Chem. 2010, 45, 4058–4064. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.P.; Markosyan, N.; Connolly, E.; Lawson, J.A.; Li, X.; Grant, G.R.; Grosser, T.; FitzGerald, G.A.; Smyth, E.M. Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function. Carcinogenesis 2014, 35, 1788–1797. [Google Scholar] [CrossRef]
- Liu, F.; Sun, G.-Q.; Gao, H.-Y.; Li, R.-S.; Soromou, L.-W.; Chen, N.; Deng, Y.-H.; Feng, H.-H. Angelicin regulates LPS-induced inflammation via inhibiting MAPK/NF-kappaB pathways. J. Surg. Res. 2013, 185, 300–309. [Google Scholar] [CrossRef]
- Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and synthetic coumarins with effects on inflammation. Molecules 2016, 21, 1322. [Google Scholar] [CrossRef]
- Pergola, C.; Werz, O. 5-Lipoxygenase inhibitors: A review of recent developments and patents. Expert Opin. Ther. Pat. 2010, 20, 355–375. [Google Scholar] [CrossRef]
- Wilson, K.L.; Kennedy, A.R.; Murray, J.; Greatrex, B.; Jameison, C.; Watson, A.J.B. Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation. Beilstein J. Org. Chem. 2016, 12, 2005–2011. [Google Scholar] [CrossRef]
- Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 2011, 40, 5084–5121. [Google Scholar] [CrossRef]
- Leroux, F.R.; Manteau, B.; Vors, J.-P.; Pazenok, S. Trifluoromethyl ethers–synthesis and properties of an unusual substituent. Beilstein J. Org. Chem. 2008, 4. [Google Scholar] [CrossRef]
- Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2012, 56, 1363–1388. [Google Scholar] [CrossRef]
- Kang, J.E.; Cho, J.K.; Curtis-Long, M.J.; Ryu, H.W.; Kim, J.H.H.; Kim, J.; Yuk, H.K.; Kim, D.W.; Park, K.H. Inhibitory evaluation of sulfonamide chalcones on β-secretase and acylcholinesterase. Molecules 2013, 18, 140–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, P.J.; Manju, S.L.; Ethiraj, K.R.; Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci. 2018, 121, 356–381. [Google Scholar]
- Dimitra, H.; Christos, K.; ElenI, P.; Marianna, D.; Antonia, A.; Haralambos, E.K. Anti-inflammatory and antioxidant activity of coumarins designed as potential fluorescent zinc sensors. J. Enzym. Inhib. Med. Chem. 2007, 22, 287–292. [Google Scholar]
- Carter, G.W.; Young, P.R.; Albert, D.H.; Bouska, J.; Dyer, R.; Bell, R.L.; Summers, J.B.; Brooks, D.W. 5-Lipoxygenase inhibitory activity of zileuton. J. Pharmacol. Exp. Ther. 1991, 256, 929–937. [Google Scholar]
- Khan, M.T.H. Molecular interactions of cholinesterases inhibitors using in silico methods: Current status and future prospects. New Biotechnol. 2009, 25, 331–346. [Google Scholar] [CrossRef]
- Radić, Z.; Pickering, N.A.; Vellom, D.C.; Camp, S.; Taylor, P. Three distinct domains in the cholinesterase molecule confer selectivity for acetylcholinesterase and butyrylcholinesterase inhibitors. Biochemistry 1993, 32, 12074–12084. [Google Scholar] [CrossRef]
- Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018, 158, 463–477. [Google Scholar] [CrossRef]
- Fedorko Saxena, J.M.; Vinayaka, C.R.; Medhekar, R.; Radić, Z.; Taylor, P.; Lockridge, O.; Doctor, B.P. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases. Eur. J. Biochem. 2003, 270, 4447–4458. [Google Scholar] [CrossRef]
- Brus, A.; Kosak, U.; Turk, S.; Pislar, A.; Coquelle, N.; Kos, J.; Stojan, J.; Colletier, J.P.; Gobec, S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. J. Med. Chem. 2014, 57, 8167–8179. [Google Scholar] [CrossRef]
- Shah, M.V.; Sethna, S. Chromones and flavones. Part 1. Iodination of 5-and 7-hydroxy-2-methylchromone. J. Chem. Soc. 1959, 2676–2678. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. α-Glucosidase and 15-lipoxygenase inhibitory activities of phytochemicals from Calophyllum symingtonianum. Nat. Prod. Commun. 2015, 10, 1585–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mphahlele, M.J.; Agbo, E.N.; Gildenhuys, S. Synthesis and evaluation of the 4-substituted 2-hydroxy-5-iodochalcones and their 7-substituted 6-iodoflavonol derivatives for inhibitory effect on cholinesterases and β-secretase. Int. J. Mol. Sci. 2018, 19, 4112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Zhou, H.; Qian, H. Antioxidant and free radical scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochem. 2006, 41, 1296–1302. [Google Scholar] [CrossRef]
Entry | R | %Yield of 2 | %Yield of 3 |
---|---|---|---|
1 | C6H5- | 68 (2a) | 64 (3a) |
2 | 3-FC6H4- | 60 (2b) | 62 (3b) |
3 | 4-FC6H4- | 63 (2c) | 65 (3c) |
4 | 3-ClC6H4- | 75 (2d) | 68 (3d) |
5 | 4-ClC6H4- | 58 (2e) | 64 (3e) |
6 | 4-MeOC6H4- | 74 (2f) | 70 (3f) |
7 | 3,5-MeO(C6H3)- | 76 (2g) | 60 (3g) |
8 | 4-MeC6H4- | 71 (2h) | 69 (3h) |
9 | -Cyclohex-1-en-1-yl | 74 (2i) | 66 (3i) |
Compound | IC50 (µM) | ||
---|---|---|---|
AChE | BChE | SI | |
2a | 25.1 ± 0.04 | 34.2 ± 0.02 | 0.8 |
2b | 15.2 ± 0.03 | 9.2 ± 0.01 | 1.7 |
2c | 30.4 ± 0.01 | 28.3 ± 0.03 | 1.1 |
2d | 19.8 ± 0.03 | 13.2 ± 0.05 | 1.5 |
2e | 27.1 ± 0.04 | 32.6 ± 0.02 | 0.8 |
2f | 34.2 ± 0.02 | 21.8 ± 0.02 | 1.6 |
2g | 25.3 ± 0.02 | 23.2 ± 0.04 | 1.1 |
2h | 20.9 ± 0.01 | 25.9 ± 0.03 | 0.8 |
2i | 15.3 ± 0.03 | 31.6 ± 0.02 | 0.5 |
3a | 15.4 ± 0.01 | 18.7 ± 0.03 | 0.8 |
3b | 10.4 ± 0.02 | 7.2 ± 0.01 | 1.4 |
3c | 18.1 ± 0.01 | 15.6 ± 0.02 | 1.2 |
3d | 24.3 ± 0.03 | 30.1 ± 0.03 | 0.8 |
3e | 5.4 ± 0.02 | 9.9 ± 0.04 | 0.5 |
3f | 18.4 ± 0.05 | 27.6 ± 0.04 | 0.7 |
3g | 22.3 ± 0.02 | 30.5 ± 0.03 | 0.7 |
3h | 9.1 ± 0.02 | 14.2 ± 0.01 | 0.6 |
3i | 13.3 ± 0.04 | 17.9 ± 0.03 | 0.7 |
Donepezil | 0.02 ± 0.03 | 4.7 ± 0.01 | 0.004 |
Galantamine | 0.01 ± 0.01 | 3.6 ± 0.02 | 0.003 |
Compound | IC50 (µM) BACE-1 |
---|---|
3b | 15.8 ± 0.01 |
3e | 13.6 ± 0.02 |
Quercetin | 12.9 ± 0.01 |
Compound | IC50 Values in µM | |||
---|---|---|---|---|
COX-2 | LOX-15 | LOX-5 | DPPH | |
2a | 25.6 ± 0.01 | 12.5 ± 0.03 | - | 10.1 ± 0.03 |
2b | 43.7 ± 0.01 | 18.6 ± 0.01 | - | 27.6 ± 0.02 |
2c | 15.8 ± 0.03 | 14.3 ± 0.01 | - | 7.5 ± 0.02 |
2d | 23.1 ± 0.02 | 22.9 ± 0.02 | - | 29.1 ± 0.01 |
2e | 18.6 ± 0.01 | 15.2 ± 0.04 | - | 19.9 ± 0.01 |
2f | 13.7 ± 0.04 | 8.2 ± 0.03 | 17.3 ± 0.01 | 14.3 ± 0.02 |
2g | 23.5 ± 0.03 | 10.6 ± 0.04 | 24.6 ± 0.02 | 8.3 ± 0.02 |
2h | 19.8 ± 0.03 | 9.2 ± 0.03 | 28.7 ± 0.03 | 11.6 ± 0.03 |
2i | 12.1 ± 0.01 | 21.5 ± 0.02 | - | 15.9 ± 0.02 |
3a | 29.7 ± 0.02 | 16.3 ± 0.01 | - | 15.3 ± 0.01 |
3b | 31.7 ± 0.04 | 24.6 ± 0.01 | 34.1 ± 0.01 | 18.7 ± 0.03 |
3c | 41.8 ± 0.04 | 30.8 ± 0.04 | - | 31.3 ± 0.01 |
3d | 30.2 ± 0.03 | 11.8 ± 0.03 | - | 32.5 ± 0.03 |
3e | 10.4 ± 0.03 | 14.9 ± 0.04 | 28.5 ± 0.02 | 25.9 ± 0.05 |
3f | 14.7 ± 0.01 | 6.1 ± 0.01 | 32.5 ± 0.02 | 19.1 ± 0.04 |
3g | 17.6 ± 0.02 | 9.4 ± 0.02 | 19.1 ± 0.04 | 24.6 ± 0.01 |
3h | 22.4 ± 0.01 | 18.6 ± 0.03 | - | 16.3 ± 0.03 |
3i | 13.6 ± 0.01 | 43.9 ± 0.01 | - | 20.1 ± 0.01 |
Celecoxib | 7.2 ± 0.01 | - | - | - |
Quercetin | - | 3.3 ± 0.01 | 10.2 ± 0.01 | - |
Zileuton | - | - | 11.8 ± 0.02 | - |
Ascorbic acid | - | - | - | 4.6 ± 0.01 |
Compound | BE (kcal/mol) |
---|---|
3b | −53.33 |
3e | −67.77 |
3h | −61.77 |
Donepezil | −126.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mphahlele, M.J.; Agbo, E.N.; Gildenhuys, S.; Setshedi, I.B. Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-_target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15. Biomolecules 2019, 9, 736. https://doi.org/10.3390/biom9110736
Mphahlele MJ, Agbo EN, Gildenhuys S, Setshedi IB. Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-_target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15. Biomolecules. 2019; 9(11):736. https://doi.org/10.3390/biom9110736
Chicago/Turabian StyleMphahlele, Malose J., Emmanuel N. Agbo, Samantha Gildenhuys, and Itumeleng B. Setshedi. 2019. "Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-_target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15" Biomolecules 9, no. 11: 736. https://doi.org/10.3390/biom9110736
APA StyleMphahlele, M. J., Agbo, E. N., Gildenhuys, S., & Setshedi, I. B. (2019). Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-_target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15. Biomolecules, 9(11), 736. https://doi.org/10.3390/biom9110736