Measuring the Effect of an Ergonomic Lecture on the Rapid Upper Limb Assessment Scores of Dental Assistant Students Using Inertial Sensor-Based Motion Capture—A Randomized Controlled Study
Abstract
:1. Introduction
- Educating dental assistant students on ergonomic principles for use in the workplace would lead to a significant improvement in their working posture.
- A _targeted training intervention (stretching and strengthening) lasting 5 weeks, provided by an ergonomic assessment application, would allow for the short- and mid-term reduction in the occurrence of MSDs.
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
- They usually remain in the same position for long periods because of the monotonous work (holding and suctioning) performed.
- Frequently spend long periods in a chair without a break because of patient preparation and follow-up (e.g., removal of temporaries and impressions).
- Sit subordinate to the position of the dentist.
- Frequently encounter a poor field of vision, as the mouth is a small, detailed working area (e.g., for fillings, the dentist must first and foremost be able to see well, and the dental assistant must adapt to the dentist’s position).
- Require additional equipment to perform their work (e.g., magnifying or prism loupes and armrests on chairs).
2.3. Procedure
2.4. Measurement of Musculoskeletal Disorders (MSDs)
- Neck
- Upper arms
- Lower arms
- Wrists
- Trunk
- Lower back
2.5. Experimental Settings
2.6. Experimental Task
- Sit in the assistant chair.
- The dentist wants to fill tooth 36.
- Please hold off the cheek with the mouth mirror and the tongue with the big aspirator tip.
- You may try out the position once.
- Now, perform the task.
2.7. IMU-Based MoCap
- Head
- Sternum
- Shoulder (left and right)
- Upper arm (left and right)
- Forearm (left and right)
- Hand (left and right)
- Pelvis
2.8. Rapid Upper Limb Assessment Score
- (1)
- Part-score A was determined based on the arms and wrists, muscle activity (repetition or static posture > 1 min), and forces (<2 kg, 2–10 kg, >10 kg; repetitive or static);
- (2)
- Part-score B was determined by the neck, trunk, legs, muscle activity (see above), and forces (see above); and
- (3)
- The final score (C) was based on part-scores A and B, and reflects the MSD risk level—the final scores ranged from 1 to 7, where a score of 1 and 2 indicated low risk, scores of 3 or 4 indicated a potential necessity for intervention or procedural modifications, scores of 5 or 6 implied an impending need for alterations, and a score of 7 denoted a pressing requirement for a change in work procedures [36]. The use of IMUs makes it possible to map the joint angles over the entire work process [18].
2.9. Ergonomics Lecture and Training Intervention
- Education on ergonomics—Dental assistant students attended a multifaceted ergonomic lecture covering the fundamental principles of ergonomics, ergonomic risk factors specific to the role of the dental assistant, and components of an ergonomic intervention program, presenting a balanced posture according to Lindegård et al. [37], in which three exercises are performed daily, focusing on the shoulders and neck.
- Workstation adjustment—During each session, the dental assistant students’ working conditions were assessed directly on the job, which may be the most effective in achieving practical results [8], while ergonomic risk factors were also identified. The participants were guided to adapt their workstations based on the ergonomic risk factors prevalent in the role of dental assistants, which involved providing instructions on proper posture and equipment alignment to ensure optimal working conditions.
2.10. Data Processing and Analysis
- A: Upper and lower arms and wrists + muscle activity (none = 0; repetition or static posture > 1 min = 1) and force (<2 kg = 0; 2–10 kg temporary = 1, 2–10 kg static or repetitive = 2; >10 kg repetitive or sudden = 3). Muscle activity was set to 0, and force was set to 1 in both measurements.
- B: Neck, trunk, legs + muscle activity (see A above) and force (see A above). Muscle activity was set to 1, and force was set to 0 in both measurements.
3. Results
3.1. Rapid Upper Limb Assessment (RULA) Scores
3.2. Detected Musculosceletal Disorders (MSDs)
4. Discussion
4.1. Main Findings and Contributions
4.2. Methods
4.3. Strengths and Limitations
4.4. Relevance to Industry
4.5. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayes, M.J.; Cockrell, D.; Smith, D.R. A systematic review of musculoskeletal disorders among dental professionals. Int. J. Dent. Hyg. 2009, 7, 159–165. [Google Scholar] [CrossRef]
- Dable, R.A.; Wasnik, P.B.; Yeshwante, B.J.; Musani, S.I.; Patil, A.K.; Nagmode, S.N. Postural assessment of students evaluating the need of ergonomic seat and magnification in dentistry. J. Indian Prosthodont. Soc. 2014, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Lietz, J.; Ulusoy, N.; Nienhaus, A. Prevention of musculoskeletal diseases and pain among dental professionals through ergonomic interventions: A systematic literature review. Int. J. Environ. Res. Public Health 2020, 17, 3482. [Google Scholar] [CrossRef]
- Ohlendorf, D.; Naser, A.; Haas, Y.; Haenel, J.; Fraeulin, L.; Holzgreve, F.; Erbe, C.; Betz, W.; Wanke, E.M.; Brueggmann, D.; et al. Prevalence of musculoskeletal disorders among dentists and dental students in Germany. Int. J. Environ. Res. Public Health 2020, 17, 8740. [Google Scholar] [CrossRef] [PubMed]
- Holzgreve, F.; Weis, T.; Grams, I.; Germann, U.; Wanke, E.M. Prävalenz von Muskel-Skelett-Erkrankungen in der Zahnmedizin. Zentralblatt Arbeitsmedizin Arbeitsschutz Ergon. 2022, 72, 140–146. [Google Scholar] [CrossRef]
- Gupta, A.; Bhat, M.; Mohammed, T.; Bansal, N.; Gupta, G. Ergonomics in dentistry. Int. J. Clin. Pediatr. Dent. 2014, 7, 30. [Google Scholar] [CrossRef]
- Torén, A. Muscle activity and range of motion during active trunk rotation in a sitting posture. Appl. Ergon. 2001, 32, 583–591. [Google Scholar] [CrossRef]
- Koni, A.; Kufersin, M.; Ronchese, F.; Travan, M.; Cadenaro, M.; Filon, F.L. Approach to prevention of musculoskeletal symptoms in dental students: An interventional study. Med. Lav. 2018, 109, 276–284. [Google Scholar] [CrossRef]
- Dehghan, N.; Aghilinejad, M.; Nassiri-Kashani, M.H.; Amiri, Z.; Talebi, A. The effect of a multifaceted ergonomic intervention program on reducing musculoskeletal disorders in dentists. Med. J. Islam. Repub. Iran 2016, 30, 472. [Google Scholar]
- Farrokhnia, T.; Rezai, M.; Vaziri, M.-H.; Vaziri, F. Investigating the effect of educational intervention on musculoskeletal disorders in dentists. Middle East J. Fam. Med. 2018, 7, 307. [Google Scholar] [CrossRef]
- Maillet, J.P.; Millar, A.M.; Burke, J.M.; Maillet, M.A.; Maillet, W.A.; Neish, N.R. Effect of magnification loupes on dental hygiene student posture. J. Dent. Educ. 2008, 72, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Hallaj, S.; Razi, S.S.M. Design and evaluation of an arm support for prevention of msds in dentists. In Advances in Ergonomics in Design, Proceedings of the AHFE 2016 International Conference on Ergonomics in Design, Walt Disney World®, FL, USA, 27–31 July 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- La Delfa, N.J.; Grondin, D.E.; Cox, J.; Potvin, J.R.; Howarth, S.J. The biomechanical demands of manual scaling on the shoulders & neck of dental hygienists. Ergonomics 2017, 60, 127–137. [Google Scholar] [PubMed]
- Lindegård, A.; Gustafsson, M.; Hansson, G.-Å. Effects of prismatic glasses including optometric correction on head and neck kinematics, perceived exertion and comfort during dental work in the oral cavity—A randomised controlled intervention. Appl. Ergon. 2012, 43, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.J.; Smith, D.R.; Taylor, J.A. Musculoskeletal disorders in a 3 year longitudinal cohort of dental hygiene students. Am. Dent. Hyg. Assoc. 2014, 88, 36–41. [Google Scholar]
- Hayes, M.J.; Osmotherly, P.G.; Taylor, J.A.; Smith, D.R.; Ho, A. The effect of wearing loupes on upper extremity musculoskeletal disorders among dental hygienists. Int. J. Dent. Hyg. 2014, 12, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Sommerich, C.M.; Mirka, G.A.; George, M.C. An investigation of ergonomic interventions in dental hygiene work. Appl. Ergon. 2002, 33, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Grubinger, C.; Holzgreve, F.; Fraeulin, L.; Betz, W.; Erbe, C.; Brueggmann, D.; Wanke, E.M.; Nienhaus, A.; Groneberg, D.A.; Ohlendorf, D. Combining ergonomic risk assessment (RULA) with inertial motion capture technology in dentistry—Using the Benefits from Two Worlds. Sensors 2021, 21, 4077. [Google Scholar] [CrossRef]
- Kee, D. Systematic comparison of OWAS, RULA, and REBA based on a literature review. Int. J. Environ. Res. Public Health 2022, 19, 595. [Google Scholar] [CrossRef] [PubMed]
- Maltry, L.; Holzgreve, F.; Maurer, C.; Wanke, E.M.; Ohlendorf, D. Improved ergonomic risk assessment through the combination of inertial sensors and observational methods exemplified by RULA. Zentralblatt Arbeitsmedizin Arbeitsschutz Ergon. 2020, 70, 236–239. [Google Scholar] [CrossRef]
- Kee, D. Comparison of OWAS, RULA and REBA for assessing potential work-related musculoskeletal disorders. Int. J. Ind. Ergon. 2021, 83, 103140. [Google Scholar] [CrossRef]
- Kim, W.; Sung, J.; Saakes, D.; Huang, C.; Xiong, S. Ergonomic postural assessment using a new open-source human pose estimation technology (OpenPose). Int. J. Ind. Ergon. 2021, 84, 103164. [Google Scholar] [CrossRef]
- Lowe, B.D.; Dempsey, P.G.; Jones, E.M. Ergonomics assessment methods used by ergonomics professionals. Appl. Ergon. 2019, 81, 102882. [Google Scholar] [CrossRef]
- Vignais, N.; Miezal, M.; Bleser, G.; Mura, K.; Gorecky, D.; Marin, F. Innovative system for real-time ergonomic feedback in industrial manufacturing. Appl. Ergon. 2013, 44, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Ohlendorf, D.; Fraeulin, L.; Haenel, J.; Betz, W.; Erbe, C.; Holzgreve, F.; Wanke, E.M.; Brueggmann, D.; Nienhaus, A.; Maurer-Grubinger, C.; et al. Ergonomic comparison of four dental workplace concepts using inertial motion capture for dentists and dental assistants. Int. J. Environ. Res. Public Health 2021, 18, 10453. [Google Scholar] [CrossRef] [PubMed]
- Yiu, X.Y.; Maguire, A.; Johnson, M.; Wåhlin, C.; Johnston, V. A 10-week exercise intervention can improve work posture but not neck/shoulder symptoms in dental health students: A pilot cohort study. Work 2020, 67, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-S.; Jo, E.-D.; Han, G.-S. Effects of stretching intervention on musculoskeletal pain in dental professionals. J. Occup. Health 2023, 65, e12413. [Google Scholar] [CrossRef]
- Kuorinka, I.; Jonsson, B.; Kilbom, A.; Vinterberg, H.; Biering-Sørensen, F.; Andersson, G.; Jørgensen, K. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl. Ergon. 1987, 18, 233–237. [Google Scholar] [CrossRef]
- Liebers, F.; Freyer, M.; Dulon, M.; Freitag, S.; Michaelis, M.; Latza, U.; Hegewald, J. Neuer deutschsprachiger Fragebogen zur standardisierten Erfassung von Muskel-Skelett-Beschwerden im Betrieb. Zentralblatt Arbeitsmedizin Arbeitsschutz Ergon. 2024, 74, 13–25. [Google Scholar] [CrossRef]
- Liebers, F.; Freyer, M.; Freitag, M.; Dulon, J.; U Hegewald, L. Fragebogen zu Muskel-Skelett-Beschwerden (FB*MSB); Bundesanstalt für Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany; Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege: Hamburg, Germany, 2022; p. 27. [Google Scholar]
- Bijur, P.E.; Silver, W.; Gallagher, E.J. Reliability of the visual analog scale for measurement of acute pain. Acad. Emerg. Med. 2001, 8, 1153–1157. [Google Scholar] [CrossRef]
- Jensen, M.P.; Chen, C.; Brugger, A.M. Interpretation of visual analog scale ratings and change scores: A reanalysis of two clinical trials of postoperative pain. J. Pain 2003, 4, 407–414. [Google Scholar] [CrossRef]
- Humadi, A.; Nazarahari, M.; Ahmad, R.; Rouhani, H. In-field instrumented ergonomic risk assessment: Inertial measurement units versus Kinect V2. Int. J. Ind. Ergon. 2021, 84, 103147. [Google Scholar] [CrossRef]
- Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors; Tech. Rep.; Xsens Motion Technologies BV: Enschede, The Netherlands, 2009; Volume 1, pp. 1–7. [Google Scholar]
- Humadi, A.; Nazarahari, M.; Ahmad, R.; Rouhani, H. Instrumented ergonomic risk assessment using wearable inertial measurement units: Impact of joint angle convention. IEEE Access 2020, 9, 7293–7305. [Google Scholar] [CrossRef]
- Unfallversicherung, D.G. DGUV Grundsätze für Arbeitsmedizinische Vorsorgeuntersuchungen, 5th ed.; Aufl, Gentner: Stuttgart, Germany, 2010. [Google Scholar]
- Pîrvu, C.; Pătraşcu, I.; Pîrvu, D.; Ionescu, C. The dentist’s operating posture–ergonomic aspects. J. Med. Life 2014, 7, 177. [Google Scholar] [PubMed]
- Simon, S.; Dully, J.; Dindorf, C.; Bartaguiz, E.; Becker, S.; Fröhlich, M. Impact of Fatigue on Ergonomic Risk Scores and Foot Kinetics: A Field Study Employing Inertial and In-Shoe Plantar Pressure Measurement Devices. Sensors 2024, 24, 1175. [Google Scholar] [CrossRef]
- McAtamney, L.; Corlett, E.N. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Vasey, M.W.; Thayer, J.F. The continuing problem of false positives in repeated measures ANOVA in psychophysiology: A multivariate solution. Psychophysiology 1987, 24, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Berkovits, I.; Hancock, G.R.; Nevitt, J. Bootstrap resampling approaches for repeated measure designs: Relative robustness to sphericity and normality violations. Educ. Psychol. Meas. 2000, 60, 877–892. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988; Volume 2, 567p. [Google Scholar]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Referat Berufliche Bildung, Weiterbildung und Sport. Rahmenlehrplan für den Ausbildungsberuf: Zahnmedizinischer Fachangestellter und Zahnmedizinische Fachangestellte; Referat Berufliche Bildung, Weiterbildung und Sport: Berlin, Germany, 2021. [Google Scholar]
- Poitras, I.; Dupuis, F.; Bielmann, M.; Campeau-Lecours, A.; Mercier, C.; Bouyer, L.J.; Roy, J.-S. Validity and reliability of wearable sensors for joint angle estimation: A systematic review. Sensors 2019, 19, 1555. [Google Scholar] [CrossRef]
- Nye, W.H.; Partido, B.B.; DeWitt, J.; Kearney, R.C. Prevention and reduction of musculoskeletal pain through chair-side stretching among dental hygiene students. Am. Dent. Hyg. Assoc. 2021, 95, 84–91. [Google Scholar]
Intervention Group (IG) (n = 9) | Control Group (CG) (n = 9) | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Age (years) | 18.67 | 5.43 | 20.33 | 8.22 |
Height (cm) | 165.18 | 6.81 | 164.01 | 3.60 |
Weight (kg) | 64.37 | 14.09 | 65.40 | 19.51 |
BMI (kg/m2) * | 19.52 | 4.48 | 19.88 | 5.53 |
RULA_pre | RULA_post | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | |
IG | 4.75 | 0.82 | 3.00 | 6.00 | 3.50 | 0.96 | 3.00 | 5.00 |
CG | 5.00 | 1.29 | 3.00 | 7.00 | 3.86 | 0.90 | 3.00 | 5.00 |
IMU-Based MoCap RULA Score | Robust rmANOVAs (ToM × Body Region) | ||
---|---|---|---|
Upper arm | Pre | 3.00 ± 0.53 | p = 0.002 |
Post | 1.98 ± 0.41 | ||
Lower arm | Pre | 2.33 ± 0.39 | p = 0.504 |
Post | 2.39 ± 0.20 | ||
Wrist | Pre | 3.20 ± 0.48 | p = 0.005 |
Post | 2.77 ± 0.25 | ||
Neck | Pre | 3.33 ± 1.14 | p = 0.196 |
Post | 2.75 ± 0.90 | ||
Trunk | Pre | 1.99 ± 0.69 | p = 0.394 |
Post | 1.95 ± 0.40 | ||
Total RULA | Pre | 4.87 ± 1.13 | p = 0.017 |
Post | 3.67 ± 0.90 |
Body Region | Discomfort Rating | Nordic Questionnaire | |||||
---|---|---|---|---|---|---|---|
Post1 = 5 Weeks Post2 = 18 Weeks (Follow Up) | Visual Analog Scale | 4-Week Prevalence (%) | 7-Day Prevalence (%) | ||||
IG | CG | IG | CG | IG | CG | ||
Neck/Cervical spine | Pre | 4.43 ± 3.95 | 6.14 ± 3.53 | 75.00 | 71.43 | 62.50 | 71.43 |
Post1 | 4.29 ± 2.93 | 5.14 ± 3.19 | 50.00 | 71.43 | 50.00 | 57.14 | |
Post2 | 2.71 ± 3.50 | 5.57 ± 3.74 | 42.90 | 57.10 | 28.60 | 57.10 | |
Shoulder/Arms | Pre | 4.00 ± 3.65 | 3.00 ± 3.65 | 62.50 | 57.10 | 62.50 | 57.10 |
Post1 | 2.72 ± 2.43 | 2.43 ± 2.82 | 25.00 | 71.40 | 25.00 | 57.10 | |
Post2 | 1.71 ± 3.30 | 4.14 ± 3.72 | 28.60 | 28.60 | 28.60 | 14.30 | |
Elbows/Lower arms | Pre | 0.71 ± 1.89 | 0.00 ± 0.00 | 0.00 | 28.60 | 0.00 | 28.60 |
Post1 | 2.43 ± 3.25 | 1.00 ± 2.65 | 12.50 | 42.90 | 12.50 | 42.90 | |
Post2 | 0.43 ± 0.79 | 1.57 ± 2.23 | 0.00 | 14.30 | 0.00 | 14.30 | |
Wrist/Hands | Pre | 1.86 ± 2.91 | 2.57 ± 3.36 | 37.50 | 42.90 | 25.00 | 42.90 |
Post1 | 2.86 ± 2.54 | 2.29 ± 2.98 | 25.00 | 42.90 | 12.50 | 42.90 | |
Post2 | 1.29 ± 1.98 | 2.57 ± 1.13 | 42.90 | 42.90 | 14.30 | 42.90 | |
Thoracal spine | Pre | 6.57 ± 3.55 | 6.00 ± 2.71 | 50.00 | 100.00 | 62.50 | 100.00 |
Post1 | 4.00 ± 2.94 | 2.00 ± 3.00 | 37.50 | 57.10 | 12.50 | 42.90 | |
Post2 | 0.29 ± 0.49 | 4.71 ± 2.75 | 14.30 | 57.10 | 14.30 | 57.10 | |
Lumbar spine | Pre | 7.00 ± 2.77 | 6.57 ± 2.57 | 87.50 | 100.00 | 75.00 | 100.00 |
Post1 | 6.57 ± 2.99 | 5.00 ± 3.32 | 87.50 | 100.00 | 62.50 | 71.40 | |
Post2 | 3.00 ± 2.31 | 6.71 ± 3.86 | 42.90 | 85.70 | 14.30 | 71.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, S.; Laurendi, L.; Meining, J.; Dully, J.; Dindorf, C.; Maurer, L.; Fröhlich, M. Measuring the Effect of an Ergonomic Lecture on the Rapid Upper Limb Assessment Scores of Dental Assistant Students Using Inertial Sensor-Based Motion Capture—A Randomized Controlled Study. Healthcare 2024, 12, 1670. https://doi.org/10.3390/healthcare12161670
Simon S, Laurendi L, Meining J, Dully J, Dindorf C, Maurer L, Fröhlich M. Measuring the Effect of an Ergonomic Lecture on the Rapid Upper Limb Assessment Scores of Dental Assistant Students Using Inertial Sensor-Based Motion Capture—A Randomized Controlled Study. Healthcare. 2024; 12(16):1670. https://doi.org/10.3390/healthcare12161670
Chicago/Turabian StyleSimon, Steven, Laura Laurendi, Jonna Meining, Jonas Dully, Carlo Dindorf, Lukas Maurer, and Michael Fröhlich. 2024. "Measuring the Effect of an Ergonomic Lecture on the Rapid Upper Limb Assessment Scores of Dental Assistant Students Using Inertial Sensor-Based Motion Capture—A Randomized Controlled Study" Healthcare 12, no. 16: 1670. https://doi.org/10.3390/healthcare12161670
APA StyleSimon, S., Laurendi, L., Meining, J., Dully, J., Dindorf, C., Maurer, L., & Fröhlich, M. (2024). Measuring the Effect of an Ergonomic Lecture on the Rapid Upper Limb Assessment Scores of Dental Assistant Students Using Inertial Sensor-Based Motion Capture—A Randomized Controlled Study. Healthcare, 12(16), 1670. https://doi.org/10.3390/healthcare12161670