Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Hydration Behavior by TD-NMR Relaxometry
Spin–Spin Relaxation Time (T2)
Self-Diffusion Coefficient
Use of Magic Sandwich Echo (MSE) Sequence for Crystallinity Measurements
2.2.2. Statistical Analysis
3. Results and Discussion
3.1. Spin-Spin Relaxation Times (T2)
3.1.1. Effect of Sugar Concentration on the Relaxivity of Solutions
3.1.2. Change in T2 Relaxation Times with Time
3.2. Self-Diffusion of Water in Different Sugar Solutions
3.3. Crystallinity of Sugars by Magic Sandwich Echo (MSE) Sequence and X-ray Diffraction (XRD)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kent, J.; Bommaraju, T.; Barnicki, S. Handbook of Industrial Chemistry and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-52285-2. [Google Scholar] [CrossRef]
- Aristilde, L.; Galdi, S.M.; Kelch, S.E.; Aoki, T.G. Sugar-Influenced Water Diffusion, Interaction, and Retention in Clay Interlayer Nanopores Probed by Theoretical Simulations and Experimental Spectroscopies. Adv. Water Resour. 2017, 106, 24–38. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.Z.; Song, Y.C.; Weng, L.D.; Zhang, N. Formation of Water and Glucose Clusters by Hydrogen Bonds in Glucose Aqueous Solutions. Comput. Theor. Chem. 2012, 984, 85–92. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Rogé, B.; Génotelle, J.; Mathlouthi, M. Relationships between Hydration Number, Water Activity and Density of Aqueous Sugar Solutions. Food Chem. 2008, 106, 1443–1453. [Google Scholar] [CrossRef]
- Ben Gaïda, L.; Dussap, C.G.; Gros, J.B. Variable Hydration of Small Carbohydrates for Predicting Equilibrium Properties in Diluted and Concentrated Solutions. Food Chem. 2006, 96, 387–401. [Google Scholar] [CrossRef]
- Ramadugu, S.K.; Chung, Y.H.; Xia, J.; Margulis, C.J. When Sugars Get Wet. A Comprehensive Study of the Behavior of Water on the Surface of Oligosaccharides. J. Phys. Chem. B 2009, 113, 11003–11015. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Miyawaki, O. Analysis of Hydration Parameter for Sugars Determined from Viscosity and Its Relationship with Solution Parameters. Food Chem. 2016, 190, 594–598. [Google Scholar] [CrossRef]
- Imberti, S.; McLain, S.E.; Rhys, N.H.; Bruni, F.; Ricci, M.A. Role of Water in Sucrose, Lactose, and Sucralose Taste: The Sweeter, the Wetter? ACS Omega 2019, 4, 22392–22398. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, M.; Inoue, M.; Hayakawa, S.; O’Charoen, S.; Ogawa, M. Effects of Rare Sugar D-Allulose on Heat-Induced Gelation of Surimi Prepared from Marine Fish. J. Sci. Food Agric. 2017, 97, 5014–5020. [Google Scholar] [CrossRef]
- Mu, W.; Zhang, W.; Feng, Y.; Jiang, B.; Zhou, L. Recent Advances on Applications and Biotechnological Production of D-Psicose. Appl. Microbiol. Biotechnol. 2012, 94, 1461–1467. [Google Scholar] [CrossRef]
- Williams, P.D.; Oztop, M.H.; Mccarthy, M.J.; Mccarthy, K.L.; Lo, Y.M. Characterization of Water Distribution in Xanthan-Curdlan Hydrogel Complex Using Magnetic Resonance Imaging, Nuclear Magnetic Resonance Relaxometry, Rheology, and Scanning Electron Microscopy. J. Food Sci. 2011, 76, 472–478. [Google Scholar] [CrossRef]
- Musse, M.; Cambert, M.; Mariette, F. NMR Study of Water Distribution inside Tomato Cells: Effects of Water Stress. Appl. Magn. Reson. 2010, 38, 455–469. [Google Scholar] [CrossRef]
- Hatzakis, E. Nuclear Magnetic Resonance (NMR) Spectroscopy in Food Science: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ates, E.G.; Domenici, V.; Florek-Wojciechowska, M.; Gradišek, A.; Kruk, D.; Maltar-Strmečki, N.; Oztop, M.; Ozvural, E.B.; Rollet, A.L. Field-Dependent NMR Relaxometry for Food Science: Applications and Perspectives. Trends Food Sci. Technol. 2021, 110, 513–524. [Google Scholar] [CrossRef]
- Ozel, B.; Oztop, M.H. A Quick Look to the Use of Time Domain Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging for Food Quality Applications. Curr. Opin. Food Sci. 2021, 41, 122–129. [Google Scholar] [CrossRef]
- Tas, O.; Ertugrul, U.; Grunin, L.; Oztop, M.H. An Investigation of Functional Quality Characteristics and Water Interactions of Navy Bean, Chickpea, Pea, and Lentil Flours. Legum. Sci. 2022, 4, e136. [Google Scholar] [CrossRef]
- Kirtil, E.; Cikrikci, S.; McCarthy, M.J.; Oztop, M.H. Recent Advances in Time Domain NMR & MRI Sensors and Their Food Applications. Curr. Opin. Food Sci. 2017, 17, 9–15. [Google Scholar] [CrossRef]
- Counsell, S.J.; Herlihy, A.H.; Allsop, J.M.; Hajnal, J.V.; Edwards, A.D.; Rutherford, M.A.; Kennea, N.L.; Harrison, M.C.; Cowan, F.M.; Edwards, B. T2 Relaxation Values in the Developing Preterm Brain. Am. J. Neuroradiol. 2003, 24, 1654–1660. [Google Scholar]
- Garbacz, P.; Price, W.S. 1H NMR Diffusion Studies of Water Self-Diffusion in Supercooled Aqueous Sodium Chloride Solutions. J. Phys. Chem. A 2014, 118, 3307–3312. [Google Scholar] [CrossRef]
- Métais, A.; Mariette, F. Determination of Water Self-Diffusion Coefficient in Complex Food Products by Low Field 1H PFG-NMR: Comparison between the Standard Spin-Echo Sequence and the T1-Weighted Spin-Echo Sequence. J. Magn. Reson. 2003, 165, 265–275. [Google Scholar] [CrossRef]
- Tiwari, S.; Talreja, S. Powder X-Ray Crystallography A Powerful Tool of Analysis and Powder X-ray Crystallography APowerful Tool of Analysis. Int. J. Anal. Exp. Modal Anal. 2020, 12, 109–116. [Google Scholar]
- Porter, T.; Hartel, R.W. Quantifying Sucrose Crystal Content in Fondant. Manuf. Confect. 2013, 93, 61–64. [Google Scholar]
- Lenz, P.A.; Hartel, R.W. Predicting Sucrose Crystallization in Confections. Manuf. Confect. 2005, 55–64. [Google Scholar]
- Dejong, A.E.; Hartel, R.W. Determination of Sorbitol Crystal Content and Crystallization Rate Using TD-NMR. J. Food Eng. 2016, 178, 117–123. [Google Scholar] [CrossRef]
- Grunin, L.; Oztop, M.H.; Guner, S.; Baltaci, S.F. Exploring the Crystallinity of Different Powder Sugars through Solid Echo and Magic Sandwich Echo Sequences. Magn. Reson. Chem. 2019, 57, 607–615. [Google Scholar] [CrossRef]
- Guner, S.; Grunin, L.; Sumnu, S.G.; Oztop, M.H. Use of Solid Echo Sequence to Monitor Crystallization Kinetics of Mono and Di-Saccharides. Food Biophys. 2021, 16, 502–511. [Google Scholar] [CrossRef]
- Hafner, S.; Demco, D.E.; Kimmich, R. Magic Echoes and NMR Imaging of Solids. Solid State Nucl. Magn. Reson. 1996, 6, 275–293. [Google Scholar] [CrossRef]
- Maus, A.; Hertlein, C.; Saalwächter, K. A Robust Proton NMR Method to Investigate Hard/Soft Ratios, Crystallinity, and Component Mobility in Polymers. Macromol. Chem. Phys. 2006, 207, 1150–1158. [Google Scholar] [CrossRef]
- SØrland, G.H.; Hafskjold, B.; Herstad, O. A Stimulated-Echo Method for Diffusion Measurements in Heterogeneous Media Using Pulsed Field Gradients. J. Magn. Reson. 1997, 124, 172–176. [Google Scholar] [CrossRef]
- Ardelean, I.; Kimmich, R. Diffusion Measurements Using the Nonlinear Stimulated Echo. J. Magn. Reson. 2000, 143, 101–105. [Google Scholar] [CrossRef]
- Tas, O.; Ertugrul, U.; Oztop, M.H.; Mazı, B.G. Glycation of Soy Protein Isolate with Two Ketoses: D-Allulose and Fructose. Int. J. Food Sci. Technol. 2021, 56, 5461–5470. [Google Scholar] [CrossRef]
- Ertugrul, U.; Namli, S.; Tas, O.; Kocadaglı, T.; Gokmen, V.; Sumnu, S.G.; Oztop, M.H. Pea Protein Properties Are Altered Following Glycation by Microwave Heating. LWT 2021, 150, 111939. [Google Scholar] [CrossRef]
- Kirtil, E.; Oztop, M.H. 1H Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging and Applications in Food Science and Processing. Food Eng. Rev. 2016, 8, 1–22. [Google Scholar] [CrossRef]
- Botta, M. Second Coordination Sphere Water Molecules and Relaxivity of Gadolinium(III) Complexes: Implications for MRI Contrast Agents. Eur. J. Inorg. Chem. 2000, 2000, 399–407. [Google Scholar] [CrossRef]
- Liao, S.H.; Wu, P.C. A Study of Spin-Lattice Relaxation Rates of Glucose, Fructose, Sucrose and Cherries Using High-T c SQUID-Based NMR in Ultralow Magnetic Fields. Supercond. Sci. Technol. 2017, 30, 8. [Google Scholar] [CrossRef]
- Zairov, R.; Khakimullina, G.; Podyachev, S.; Nizameev, I.; Safiullin, G.; Amirov, R.; Vomiero, A.; Mustafina, A. Hydration Number: Crucial Role in Nuclear Magnetic Relaxivity of Gd(III) Chelate-Based Nanoparticles. Sci. Rep. 2017, 7, 14010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelsen, S.B.; Pérez, S. Internal Motions and Hydration of Sucrose in a Diluted Water Solution. J. Mol. Graph. Model. 1997, 15, 122–131. [Google Scholar] [CrossRef]
- Starzak, M.; Peacock, S.D.; Mathlouthi, M. Hydration Number and Water Activity Models for the Sucrose-Water System: A Critical Review. Crit. Rev. Food Sci. Nutr. 2000, 40, 327–367. [Google Scholar] [CrossRef]
- Shah, S.A.; Lanjewar, R.; Lanjewar, M. Solution Behavior of Sugars and Pseudo-Sugar in Water at 298 K. Pharm. Sin. 2017, 8, 28–32. [Google Scholar]
- Ikeda, S.; Gohtani, S.; Fukada, K.; Amo, Y. Dielectric Relaxation and Water Activity in Aqueous Solution of D-Psicose. Japan J. Food Eng. 2011, 12, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Pocan, P.; Ilhan, E.; Oztop, M.H. Effect of D-Psicose Substitution on Gelatin Based Soft Candies: A TD-NMR Study. Magn. Reson. Chem. 2019, 57, 661–673. [Google Scholar] [CrossRef]
- Kabayama, M.A.; Patterson, D.; Piche, L. The Thermodynamics of Mutarotation of Some Sugars. Can. J. Chem. 1958, 36, 557–562. [Google Scholar] [CrossRef]
- Srisa-Nga, S.; Flood, A.E. Mutarotation Rates and Equilibrium of Simple Carbohydrates. Asia-Pac. J. Chem. Eng. 2005, 2004, 1–10. [Google Scholar]
- Hishiike, T.; Ogawa, M.; Hayakawa, S.; Nakajima, D.; O’Charoen, S.; Ooshima, H.; Sun, Y. Transepithelial Transports of Rare Sugar D-Psicose in Human Intestine. J. Agric. Food Chem. 2013, 61, 7381–7386. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.J.; van der Zwan, G.; Antonov, L. Tautomerism: Introduction, History, and Recent Developments in Experimental and Theoretical Methods. In Tautomerism: Methods and Theories; Wiley: Hoboken, NJ, USA, 2013; pp. 1–24. [Google Scholar] [CrossRef]
- Fukada, K.; Ishii, T.; Tanaka, K.; Yamaji, M.; Yamaoka, Y.; Kobashi, K.; Izumori, K. Crystal Structure, Solubility, and Mutarotation of the Rare Monosaccharide D-Psicose. Bull. Chem. Soc. Jpn. 2010, 83, 1193–1197. [Google Scholar] [CrossRef]
- Montanuci, F.D.; Jorge, L.M.M.; Jorge, R.M.M. Effect of Time and Temperature on the Hydration Process of Barley Grains. Heat Mass Transf. Und Stoffuebertragung 2015, 51, 363–372. [Google Scholar] [CrossRef]
- Uedaira, H.; Uedaira, H. Sugar-Water Interaction from Diffusion Measurements Hisashi Uedaira 1 ’ 2 and Hatsuho Uedaira 3. J. Solut. Chem. 1985, 14, 27–34. [Google Scholar] [CrossRef]
- Bensouissi, A.; Roge, B.; Mathlouthi, M. Effect of Conformation and Water Interactions of Sucrose, Maltitol, Mannitol and Xylitol on Their Metastable Zone Width and Ease of Nucleation. Food Chem. 2010, 122, 443–446. [Google Scholar] [CrossRef]
- Dashnau, J.L.; Sharp, K.A.; Vanderkooi, J.M. Carbohydrate Intramolecular Hydrogen Bonding Cooperativity and Its Effect on Water Structure. J. Phys. Chem. B 2005, 109, 24152–24159. [Google Scholar] [CrossRef]
- Shin, J.W.; Dong, F.; Grisham, M.E.; Rocca, J.J.; Bernstein, E.R. Extreme Ultraviolet Photoionization of Aldoses and Ketoses. Chem. Phys. Lett. 2011, 506, 161–166. [Google Scholar] [CrossRef]
- Kruk, D.; Meier, R.; Rössler, E.A. Nuclear Magnetic Resonance Relaxometry as a Method of Measuring Translational Diffusion Coefficients in Liquids. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2012, 85, 020201. [Google Scholar] [CrossRef]
- Mogi, N.; Sugai, E.; Fuse, Y.; Funazukuri, T. Infinite Dilution Binary Diffusion Coefficients for Six Sugars at 0.1 MPa and Temperatures from (273.2 to 353.2) K. J. Chem. Eng. Data 2007, 52, 40–43. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Ortona, O.; Simões, S.M.N.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Valente, A.J.M.; Lobo, V.M.M.; Burrows, H.D. Binary Mutual Diffusion Coefficients of Aqueous Solutions of Sucrose, Lactose, Glucose, and Fructose in the Temperature Range from (298.15 to 328.15) K. J. Chem. Eng. Data 2006, 51, 1836–1840. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Truong, T. Glass Transition and Crystallization in Foods; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081003350. [Google Scholar]
Sugar Type | 1/T2 (s−1) | R2 |
---|---|---|
Glucose | 1/T2 = 0.0146x + 0.370 b | 0.967 |
Fructose | 1/T2 = 0.0130x + 0.379 c | 0.969 |
Allulose | 1/T2 = 0.0107x + 0.398 d | 0.989 |
Sucrose | 1/T2 = 0.0155x + 0.373 a | 0.968 |
Region I | R2 | Region II | R2 | |
---|---|---|---|---|
Glucose | T2 = −0.478x + 824 b | 0.976 | T2 = −0.163x + 783.341 c | 0.929 |
Fructose | T2 = −0.461x + 690 c | 0.959 | T2 = −0.217x + 672.072 b | 0.963 |
Allulose | T2 = −0.162x + 773 d | 0.916 | T2 = −0.280x + 802.703 a | 0.934 |
Sucrose | T2 = −0.587x + 591 a | 0.995 | T2 = −0.048x + 521.911 d | 0.811 |
Sugar Type | M2 (10−8 Tesla2) (Solid) | M2 (10−8 Tesla2) (Hydrated) | Relative Total Crystallinity (%) |
---|---|---|---|
Glucose | 16.11 ± 0.04 c | 13.64 ± 0.03 c | 76.72 ± 0.14 c |
Fructose | 15.18 ± 0.03 d | 14.24 ± 0.02 b | 75.73 ± 0.16 d |
Allulose | 16.39 ± 0.04 b | 14.41 ± 0.04 a | 79.71 ± 0.11 b |
Sucrose | 16.47 ± 0.06 a | 13.15 ± 0.02 d | 81.30 ± 0.21 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tas, O.; Ertugrul, U.; Grunin, L.; Oztop, M.H. Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR. Foods 2022, 11, 1148. https://doi.org/10.3390/foods11081148
Tas O, Ertugrul U, Grunin L, Oztop MH. Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR. Foods. 2022; 11(8):1148. https://doi.org/10.3390/foods11081148
Chicago/Turabian StyleTas, Ozan, Ulku Ertugrul, Leonid Grunin, and Mecit Halil Oztop. 2022. "Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR" Foods 11, no. 8: 1148. https://doi.org/10.3390/foods11081148
APA StyleTas, O., Ertugrul, U., Grunin, L., & Oztop, M. H. (2022). Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR. Foods, 11(8), 1148. https://doi.org/10.3390/foods11081148