Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Apparatus and Measurements
2.3. Preparation of UiO-OH, UiO-OH@Tb, Tb-MOF, and Tb-OH
2.4. Ratiometric Fluorescence Detection of MG with UiO-OH@Tb
2.5. Determination of MG in Real Fish Samples
2.6. Detection of MG by Smartphone
2.7. Statistical Analyses
3. Results and Discussion
3.1. Characterizations of UiO-OH@Tb
3.2. Fluorescence Properties of UiO-OH@Tb
3.3. Detection of MG by UiO-OH@Tb
3.4. Selectivity of UiO-OH@Tb to MG
3.5. Sensing Mechanism of the Sensor
3.6. Application of UiO-OH@Tb on Real Foods
3.7. Smartphone Detection of MG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, K.Y.; Zhang, L. Designed Eu(III)-functionalized nanoscale MOF probe based on fluorescence resonance energy transfer for the reversible sensing of trace Malachite green. Food Chem. 2021, 354, 129584. [Google Scholar] [CrossRef]
- Yue, X.Y.; Li, Y.; Xu, S.; Li, J.G.; Li, M.; Jiang, L.Y.; Jie, M.S.; Bai, Y.H. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green. Food Chem. 2022, 371, 131164. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Song, J.Q.; Ye, H.; Zhao, L.S. A pH-dependent N, P co-doped carbon dots as fluorescent probe for malachite green assay and its visual application based on fluorescent hydrogel kit. Colloids Surf. B-Biointerfaces 2023, 221, 112985. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.H.; Kaykhaii, M.; Keikha, A.J.; Mirmoradzehi, E.; Sargazi, G. Application of response surface methodology for optimization of metal-organic framework based pipette-tip solid phase extraction of organic dyes from seawater and their determination with HPLC. BMC Chem. 2019, 13, 59. [Google Scholar] [CrossRef]
- Ekmen, E.; Bilici, M.; Turan, E.; Tamer, U.; Zengin, A. Surface molecularly-imprinted magnetic nanoparticles coupled with SERS sensing platform for selective detection of malachite green. Sens. Actuators B-Chem. 2020, 325, 128787. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Adhikari, B.; Chen, A.C. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2018, 143, 4537–4554. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.P.; Gao, Z.J.; Luo, J.F. Fluorescence detection of malachite green in fish tissue using red emissive Se,N,Cl-doped carbon dots. Food Chem. 2021, 335, 127677. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Na, L.H.; Li, Y.M.; Bai, W.F.; Zhang, J.P.; Jin, L. N,S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish. Food Chem. 2022, 390, 133156. [Google Scholar] [CrossRef]
- Fu, W.; Fu, X.; Li, Z.; Liu, Z.; Li, X. Advances in smartphone assisted sensors for on-site detection of food safety based on fluorescence on-off-on mode: A review. Chem. Eng. J. 2024, 489, 151225. [Google Scholar] [CrossRef]
- Chi, J.; Song, Y.Y.; Feng, L. A ratiometric fluorescent paper sensor based on dye-embedded MOF for high-sensitive detection of arginine. Biosens. Bioelectron. 2023, 241, 115666. [Google Scholar] [CrossRef]
- Ameen, S.S.M.; Qasim, F.O.; Alhasan, H.S.; Aziz, K.H.; Omer, K.M. Intrinsic Dual-State Emission Zinc-Based MOF Rodlike Nanostructures with Applications in Smartphone Readout Visual-Based Detection for Tetracycline: MOF-Based Color Tonality. Acs Appl. Mater. Interfaces 2023, 15, 46098–46107. [Google Scholar] [CrossRef]
- Fu, J.L.; Zhou, S.; Zhao, P.F.; Wu, X.D.; Tang, S.S.; Chen, S.; Yang, Z.X.; Zhang, Z.H. A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments. Biosens. Bioelectron. 2022, 198, 113848. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.L.; Mei, Q.S.; Tao, Z.H.; Wu, H.T.; Zhao, M.Y.; Wang, S.; Liu, Y.Q. A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens. Bioelectron. 2020, 148, 111791. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-J.; Tian, J.-X.; Fang, Y.-Z.; Chen, T.-L.; Yu, R.; He, J.-Y.; Zhang, Z.-Y.; Xiao, Q. Terbium metal-organic framework/bovine serum albumin capped gold nanoclusters-based dual-emission reverse change ratio fluorescence nanoplatform for fluorimetric and colorimetric sensing of heparin and chondroitin sulfate. Sens. Actuators B Chem. 2022, 356, 131331. [Google Scholar] [CrossRef]
- Jiang, L.; Li, C.; Hou, X. Smartphone-based dual inverse signal MOFs fluorescence sensing for intelligent on-site visual detection of malachite green. Talanta 2024, 274, 126039. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, J.Y.; Huang, Z.J.; Qian, C.; Tian, Y.H.; Duan, Y.X. An Eu-doped Zr-metal-organic framework for simultaneous detection and removal of antibiotic tetracycline. J. Environ. Chem. Eng. 2021, 9, 106012. [Google Scholar] [CrossRef]
- Kasper, T.; Pavan, M.; Müller-Buschbaum, K. On the validity of rapid optical sensing of dioxygen by means of sensitivity, stability, and reversibility for archetype MOFs post-synthetically modified with Eu3+. J. Mater. Chem. A 2024, 12, 769–780. [Google Scholar] [CrossRef]
- Wang, W.W.; Song, S.J.; Wang, P.; He, M.; Fang, Z.; Yuan, X.L.; Li, H.; Li, C.Y.; Wang, X.; Wei, Y.C.; et al. Chemical Bonding of g-C3N4/UiO-66(Zr/Ce) from Zr and Ce Single Atoms for Efficient Photocatalytic Reduction of CO2 under Visible Light. ACS Catal. 2023, 13, 4597–4610. [Google Scholar] [CrossRef]
- Hildebrandt, N.; Wegner, K.D.; Algar, W.R. Luminescent terbium complexes: Superior Forster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord. Chem. Rev. 2014, 273, 125–138. [Google Scholar] [CrossRef]
- Xie, H.H.; Han, L.; Tang, S.F. Terbium doping and energy level modification of zirconium organic frameworks as probes for the improved determination of histamine and visual inspection of food freshness. Food Chem. 2024, 433, 137314. [Google Scholar] [CrossRef]
- Peng, X.X.; Bao, G.M.; Zhong, Y.F.; Zhang, L.; Zeng, K.B.; He, J.X.; Xiao, W.; Xia, Y.F.; Fan, Q.; Yuan, H.Q. Highly sensitive and rapid detection of thiabendazole residues in oranges based on a luminescent Tb3+-functionalized MOF. Food Chem. 2021, 343, 128504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; He, Y.X.; Wu, Y.; Zhang, J.Y.; Li, S.Q.; Zhang, Z.W. Highly sensitive ratiometric fluorescence detection of tetracycline residues in food samples based on Eu/Zr-MOF. Food Chem. 2024, 436, 137717. [Google Scholar] [CrossRef]
- Wang, H.M.; Fang, X.N.; Xia, Y.; Yin, X.B. Dual-Ligand Terbium Metal-Organic Framework for Visual Ratiometric Fluorescence Sensing of Nitrites in Pickles. Acs Food Sci. Technol. 2022, 2, 1911–1920. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Ji, B.-T.; Chen, J.-H.; Gao, L.-L.; Sun, Y.; Deng, Z.-P.; Zhao, B.; Li, J.-G. Ratiometric emission of Tb(III)-functionalized Cd-based layered MOFs for portable visual detection of trace amounts of diquat in apples, potatoes and corn. Food Chem. 2024, 449, 139259. [Google Scholar] [CrossRef]
- SeethaLekshmi, S.; Ramya, A.R.; Reddy, M.L.P.; Varughese, S. Lanthanide complex-derived white-light emitting solids: A survey on design strategies. J. Photochem. Photobiol. C—Photochem. Rev. 2017, 33, 109–131. [Google Scholar] [CrossRef]
- Wang, X.R.; Jiang, Y.P.; Tissot, A.; Serre, C. Luminescent sensing platforms based on lanthanide metal-organic frameworks: Current strategies and perspectives. Coord. Chem. Rev. 2023, 497, 215454. [Google Scholar] [CrossRef]
- Li, R.; Wang, W.; El-Sayed, E.-S.M.; Su, K.; He, P.; Yuan, D. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal-organic framework. Sens. Actuators B Chem. 2020, 330, 129314. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhou, R.H.; Tang, D.D.; Hou, X.D.; Wu, P. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. Trac-Trends Anal. Chem. 2019, 110, 183–190. [Google Scholar] [CrossRef]
- Xia, Y.F.; Yuan, H.Q.; Qiao, C.; Li, W.; Wang, R.; Chen, P.Y.; Li, Y.X.; Bao, G.M. Multifunctional Eu3+-MOF for simultaneous quantification of malachite green and leuco-malachite green and efficient adsorption of malachite green. J. Hazard. Mater. 2024, 465, 133386. [Google Scholar] [CrossRef]
- Yue, X.Y.; Fu, L.; Li, Y.; Xu, S.; Lin, X.; Bai, Y.H. Lanthanide bimetallic MOF-based fluorescent sensor for sensitive and visual detection of sulfamerazine and malachite. Food Chem. 2023, 410, 135390. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, T.L.; Guo, H.Q.; Gao, X.; Yan, Y.; Zhou, X.; Zhao, M.Y.; Qin, H.J.; Liu, Y.Q. An ion-coordination hydrogel based sensor array for point-of-care identification and removal of multiple tetracyclines. Biosens. Bioelectron. 2023, 231, 115266. [Google Scholar] [CrossRef]
- Abbasi, A.; Hanif, S.; Shakir, M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg(ii) and fluorescence turn-off sensor for S2− and malachite green detection. RSC Adv. 2020, 10, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Gavrilenko, N.A.; Volgina, T.N.; Pugachev, E.V.; Gavrilenko, M.A. Visual determination of malachite green in sea fish samples. Food Chem. 2019, 274, 242–245. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, M.; Ma, X.H.; Yang, J.D.; Wu, D.; Yang, J.; Hu, T.P. RhB-encapsulated metal-organic cage as a dual-emission fluorescence sensor for detection of malachite green and glycine. Spectrochim. Acta Part A—Mol. Biomol. Spectrosc. 2022, 279, 121346. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Long, H.C.; Chen, X.Y.; Jiang, Y.Y.; Zhang, L.; Le, T. A novel Zn/Eu-MOF for the highly sensitive, reversible and visualized sensing of ofloxacin residues in pork, beef and fish. Food Chem. 2023, 422, 136250. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Y.; Chen, D.; Li, X.M.; Wang, C.X.; Li, T.T.; Ma, J.X.; Guo, G.Q.; Guo, Q.L. Promising energy transfer system between fuorine and nitrogen Co-doped graphene quantum dots and Rhodamine B for ratiometric and visual detection of doxycycline in food. Food Chem. 2022, 388, 132936. [Google Scholar] [CrossRef] [PubMed]
Samples | Spiked (μM) | This Work | HPLC | |||
---|---|---|---|---|---|---|
Found ± SD (μM) | Recovery ± SD (%) | RSD (%) | Recovery (%) | RSD (%) | ||
Crucian | 0 | - | - | - | - | - |
5 | 5.49 ± 0.11 | 109.80 ± 2.18 | 2.11 | 98.76 | 2.42 | |
10 | 9.59 ± 0.01 | 95.91 ± 0.09 | 1.17 | 98.82 | 1.27 | |
20 | 20.45 ± 0.14 | 102.25 ± 0.70 | 1.63 | 97.57 | 1.48 | |
Perch | 0 | - | - | - | - | - |
5 | 4.89 ± 0.13 | 97.72 ± 2.59 | 3.21 | 97.43 | 2.18 | |
10 | 10.09 ± 0.14 | 100.90 ± 1.41 | 1.84 | 100.86 | 1.35 | |
20 | 20.48 ± 2.41 | 102.42 ± 2.41 | 2.47 | 109.29 | 2.04 |
Method | Samples | Linear Range | LOD | Recovery (%) | RSD (%) | References |
---|---|---|---|---|---|---|
Fluorescence | Water | 7–80 μM | 1.6 μM | 100.4–101 | - | [32] |
Fluorescence | Water, fish | 1–50 μM | 0.74 μM | 95.6–101.5 | <4.5 | [3] |
Colorimetric | Fish, water | 1.4–86.5 μM | 2.9 μM | 95–103 | 6.2–12.5 | [33] |
Fluorescence | Fish | 2–180 μM | 1.12 μM | 80–95.93 | 0.82–6.45 | [30] |
Fluorescence | Fish | 1–12 μM | 0.2879 μM | 99.7–106.3 | 2.87–4.32 | [34] |
Fluorescence | Fish | 0–200 μM | 0.19 μM | 95.91–109.80 | 1.17–3.21 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Jiang, Y.; Chen, X.; Long, H.; Zhang, M.; Tang, Z.; He, Y.; Zhang, L.; Le, T. Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish. Foods 2024, 13, 2855. https://doi.org/10.3390/foods13172855
Zhou Y, Jiang Y, Chen X, Long H, Zhang M, Tang Z, He Y, Zhang L, Le T. Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish. Foods. 2024; 13(17):2855. https://doi.org/10.3390/foods13172855
Chicago/Turabian StyleZhou, Yue, Yuanyuan Jiang, Xiangyu Chen, Hongchen Long, Mao Zhang, Zili Tang, Yufang He, Lei Zhang, and Tao Le. 2024. "Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish" Foods 13, no. 17: 2855. https://doi.org/10.3390/foods13172855
APA StyleZhou, Y., Jiang, Y., Chen, X., Long, H., Zhang, M., Tang, Z., He, Y., Zhang, L., & Le, T. (2024). Enhanced Sensitivity and Accuracy of Tb3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish. Foods, 13(17), 2855. https://doi.org/10.3390/foods13172855