Analysis of Taste Quality Differences Between High and Low Grades of Ninghong Tea: From the Perspective of Sensory, Metabolite, and Taste Activity Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.1.1. Tea Samples
2.1.2. Chemicals
2.2. Quantitative Description Analysis
2.3. Non-_targeted Metabolomics Analysis
2.4. The Quantitative Analysis of Quality Components
2.5. Calculation of Taste Activity Value (TAV)
2.6. Data Statistics and Analysis
3. Results and Discussion
3.1. Taste Attributes of JH and CG and Their Differences
3.2. An Analysis of Nonvolatile Metabolites of JH and CG
3.3. Screening of Difference Metabolites of JH and CG
3.4. Analysis on the Difference and Content of Main Quality Components in JH and CG
3.5. Difference Analysis of TAV of Main Quality Components in JH and CG
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Shan, X.J.; Niu, L.C.; Chen, L.; Wang, J.J.; Zhou, Q.H.; Yuan, H.B.; Li, J.; Wu, T. The integration of metabolomics, electronic tongue, and chromatic difference reveals the correlations between the critical compounds and flavor characteristics of two grades of high-quality Dianhong congou black tea. Metabolites 2023, 13, 864. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Liang, Y.L.; Gao, C.X.; Wu, W.W.; Kong, J.M.; Zhou, Z.; Wang, Z.H.; Huang, Y.; Sun, W.J. The flavor characteristics and antioxidant capability of aged Jinhua white tea and the mechanisms of its dynamic evolution during long-term aging. Food Chem. 2024, 436, 137705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.S.; Tian, Y.; Yang, H.; Zeng, Y.J.; Yang, Y.; Yuan, Z.H.; Zhou, H.Y. Are there any differences in the quality of high-mountain green tea before and after the first new leaves unfold? A comprehensive study based on E-sensors, whole metabolomics and sensory evaluation. Food Chem. 2024, 457, 140119. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.S.; Li, J.L.; Li, H.X.; Xue, J.H.; Wang, M.; Jian, G.T.; Zhu, C.; Zeng, L.T. Differences in the quality of black tea (Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chem. X 2023, 20, 100998. [Google Scholar] [CrossRef]
- Yue, C.N.; Yang, P.X.; Qin, D.D.; Cai, H.L.; Wang, Z.H.; Li, C.; Wu, H.L. Identification of volatile components and analysis of aroma characteristics of Jiangxi Congou black tea. Int. J. Food Prop. 2020, 23, 2160–2173. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.F.; Qiu, J.Q.; Zhang, L.; Zhang, Y.T.; Qiu, X.H.; Huang, Z.X.; Xu, W. Comprehensive comparison on the chemical profile of Guang Chen Pi at different ripeness stages using un_targeted and pseudo_targeted metabolomics. J. Agric. Food Chem. 2020, 68, 8483–8495. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Mei, X.F.; Wang, Z.R.; Chen, X.H.; Zhang, R.; Chen, Q.L.; Kan, J.Q. Comprehensive identifcation of non-volatile bitter-tasting compounds in Zanthoxylum bungeanum Maxim. by un_targeted metabolomics combined with sensory-guided fractionation technique. Food Chem. 2021, 347, 129085. [Google Scholar] [CrossRef]
- Shi, J.; Ma, W.J.; Wang, C.P.; Wu, W.L.; Tian, J.; Zhang, Y.; Shi, Y.L.; Wang, J.T.; Peng, Q.H.; Lin, Z.; et al. Impact of various microbial-fermented methods on the chemical profile of dark tea using a single raw tea material. J. Agric. Food Chem. 2021, 69, 4210–4222. [Google Scholar] [CrossRef]
- Li, L.Q.; Li, M.H.; Cui, Q.Q.; Liu, Y.; Chen, Y.Y.; Wang, Y.J.; Zhang, Z.Z.; Chen, Q.S.; Ning, J. Rapid monitoring of black tea fermentation quality based on a solution-phase sensor array combined with UV-visible spectroscopy. Food Chem. 2021, 377, 131974. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, X.C.; Su, X.G.; Yang, Z.Y. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci. Technol. 2020, 106, 242–253. [Google Scholar] [CrossRef]
- Chen, Y.X.; Yu, M.G.; Xu, J.; Chen, X.C.; Shi, J.Y. Differentiation of eight tea (Camellia sinensis) cultivars in China by elemental fingerprint of their leaves. J. Sci. Food Agric. 2009, 89, 2350–2355. [Google Scholar] [CrossRef]
- Tan, J.F.; Dai, W.D.; Lu, M.L.; Lv, H.P.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.H.; Lin, Z. Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-_targeted metabolomics approach. Food Res. Int. 2016, 79, 106–113. [Google Scholar] [CrossRef]
- Shao, C.Y.; Deng, Z.Y.; Liu, J.; Li, Y.F.; Zhang, C.Y.; Yao, S.H.; Zuo, H.M.; Shi, Y.; Yuan, S.J.; Qin, L.J. Effects of preharvest shading on dynamic changes in metabolites, gene expression, and enzyme activity of three tea types during processing. J. Agric. Food Chem. 2022, 70, 14544–14558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Du, X.; Li, Y.Z.; Nie, C.N.; Wang, C.M.; Bian, J.L.; Luo, F. Are organic acids really related to the sour taste difference between Chinese black tea and green tea? Food Sci. Nutr. 2022, 10, 2071–2081. [Google Scholar] [CrossRef]
- Wang, Z.H.; Gao, C.X.; Zhao, J.M.; Zhang, J.L.; Zheng, Z.Q.; Huang, Y.; Sun, W.J. The metabolic mechanism of flavonoid glycosides and their contribution to the flavor evolution of white tea during prolonged withering. Food Chem. 2024, 439, 138133. [Google Scholar] [CrossRef]
- Li, H.H.; Luo, L.Y.; Wang, J.; Fu, D.H.; Zeng, L. Lexicon development and quantitative descriptive analysis of Hunan fuzhuan brick tea infusion. Food Res. Int. 2019, 120, 275–284. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Wen, B.B.; Wu, H.; Li, J.; Lin, H.Y.; Li, Q.; Li, Y.H.; Huang, J.A.; Liu, Z.H. The quality control of tea by near-infrared reflectance (NIR) spectroscopy and chemometrics. J. Spectrosc. 2019, 1, 8129648. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- DB/36T 1629-2022; Code of Practice for Processing of Xiushui Ninghong Tea. Jiangxi Provincial Administration for Market Regulation: Nanchang, China, 2022.
- Yue, C.N.; Wang, Z.H.; Peng, H.; Li, W.J.; Yang, P.X. UPLC–QTOF/MS-based non-_targeted metabolomics coupled with the quality component, QDA, to reveal the taste and metabolite characteristics of six types of Congou black tea. LWT 2023, 185, 115197. [Google Scholar] [CrossRef]
- GB/T 16291.1-2012; Sensory Analysis-General Guidance for the Selection, Training Andmonitoring of Assessors-Part 1: Selected Assessors. Standardization Administration of the People’s Republic of China: Beijing, China, 2012.
- Mao, S.H. Quality Analysis and Control of Congou Black Tea Based on Sensomics. Ph.D. Thesis, Southwest University, Chongqing, China, 2018. [Google Scholar]
- Li, X.Y. Relationship Between Sensory Character and Chemical Components of Congou’s Flavour. Master’s Thesis, Southwest University, Chongqing, China, 2015. [Google Scholar]
- GB/T 8313-2018; Tea—Determination of Total Polyphenols and Catechins Content in Tea. Standardization Administration of the People’s Republic of China: Beijing, China, 2018.
- GB/T 8314-2013; Tea—Determination of Free Amino Acids Content. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- GB/T 8305-2013; Tea—Determination of Water Extracts Content. Standardization Administration of the People’s Republic of China: Beijing, China, 2013.
- Zhang, Y.; Zhu, Y.; Lü, H.P.; Huang, H.; Shao, C.Y.; Peng, J.K.; Lin, Z. Comparative analysis of quality components in baked green tea made from tea plants grown at different altitudes. Food Sci. 2022, 43, 257–268. [Google Scholar]
- Wan, X.C. Tea Biochemistry, 3rd ed.; China Agricultural Press: Beijing, China, 2007; pp. 15–216. [Google Scholar]
- Zhang, L.; Santos, J.S.; Cruz, T.M.; Marques, M.B.; Carmo, M.; Azevedo, L.; Wang, Y.J.; Granato, D. Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities. Food Res. Int. 2019, 125, 108561. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Huang, R.; Ouyang, K.; Lu, A.X.; Chen, L.M.; Tong, H.R. Changes in the physicochemical properties of one bud and two leaves at different leaf positions during congou black tea processing. Food Sci. 2023, 44, 53–62. [Google Scholar]
- Zhou, Y.F.; Xu, S.; Yang, Y.H.; Zeng, H.Z.; Yu, L.J. Research progress on the effect of organic acids on tea quality and their detection methods in tea. Food Sci. Technol. 2021, 46, 254–259. [Google Scholar]
- Shi, L.J. Identification and Analysis of Phenolic and Organic acid Components in Yunnan Large Leaf Tea by Mass Spectrometry and Taste Characteristics. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Hilton, P.J.; Ellis, R.T. Estimation of the market value of Central African tea by theaflavin analysis. J. Sci. Food Agric. 1972, 23, 227–232. [Google Scholar] [CrossRef]
- Owuor, P.O.; Orchard, J.E.; McDowell, I.J. Changes in the quality parameters of clonal black tea due to fermentation time. J. Sci. Food Agric. 1994, 64, 319–326. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Lai, W.Y.; Xu, A.A.; Jin, J.; Wang, Y.F.; Xu, P. Characterizing relationships among chemicals, sensory attributes and in vitro bioactivities of black tea made from an anthocyanins-enriched tea cultivar. LWT 2020, 132, 109814. [Google Scholar] [CrossRef]
- Ravichandran, R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem. 2022, 78, 23–28. [Google Scholar] [CrossRef]
- Pan, K.; Fang, S.M.; Liu, Z.Y.; Yang, T.; Dai, Y.Q.; Tian, X.Q.; Yang, S.Q. Effects of processing on soluble sugar content of black tea from ancient tea tree based on GC-MS/MS. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2021, 50, 490–496. [Google Scholar]
- Zhang, Z.Z.; Shi, Z.P.; Wan, X.C. Changes of fatty acids and their effects on aroma of green tea during storage. China Tea Process. 1999, 2, 39–41. [Google Scholar]
- Wu, Y.H.; Jiang, X.L.; Zhang, S.X.; Dai, X.L.; Liu, Y.J.; Tan, H.R.; Gao, L.P.; Xia, T. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS. J. Chromatogr. B 2016, 1017, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Q.C.; Liu, D.C.; Yang, L.; Hu, W.; Kuang, L.Q.; Huang, Y.J.; Teng, J.; Liu, Y. Multi-omics and enzyme activity analysis of flavour substances formation: Major metabolic pathways alteration during Congou black tea processing. Food Chem. 2023, 403, 134263. [Google Scholar] [CrossRef] [PubMed]
- Chen, D. Study on the Changes of Main Chemical Substances and Theaflavins-Theanine Interaction in Black Tea During Storage. Master’s Thesis, Shaanxi University of Science and Technology, Xiʹan, China, 2022. [Google Scholar]
Sample | Ninghong Tea Grade | Fresh Leaf Grade | Productive Time | Manufacturer |
---|---|---|---|---|
JH1 | JH | Single bud, one bud, and one leaf at the beginning of development | April 2022 | Jiangxi Wu’an Tea Industry Co., Ltd., Xiushui County, China |
JH2 | April 2022 | Jiangxi Ninghong Co., Ltd., Xiushui County, China | ||
JH3 | April 2022 | Jiangxi Dachun Tea Industry Co., Ltd., Xiushui County, China | ||
CG1 | CG | One bud, one leaf, and one bud, two leaves | April 2022 | Jiangxi Dachun Tea Industry Co., Ltd., Xiushui County, China |
CG2 | April 2022 | Jiangxi Ninghong Co., Ltd., Xiushui County, China | ||
CG3 | April 2022 | Jiangxi Wu’an Tea Industry Co., Ltd., Xiushui County, China |
Descriptors | Define | Reference Substance |
---|---|---|
Umami | Basic taste, the taste produced by glutamate or aspartate, the representative substance of which is glutamic acid. | Sodium glutamate aqueous solution |
Sweetness | Basic taste, the response of sugars to taste organs. | Sucrose aqueous solution |
Bitterness | Basic taste, taste of caffeine or quinine, etc., representing the substance for caffeine. | Caffeine aqueous solution |
Astringency | A sense of traction, roughness, dryness, tension, and convergence in the mouth, tongue surface, and throat | KAl(SO4)2·12H2O aqueous solution |
Sour | Basic taste, stimulating taste produced by substances such as malic acid, lactic acid, and citric acid. | Citric acid aqueous solution |
Thickness | A sticky sensation. Tea infusion has a certain “elastic feeling” in the mouth. | Pectin solution |
Mellow | The tea infusion in the oral cavity is relatively smooth and harmonious without any heterogeneity. | — |
Off-odor | Including numb, rancid, aged, spicy, etc. | — |
Sweet aftertaste | After drinking tea, there is a sweet sensation in the throat and tongue. | — |
Overall taste | Comprehensive value of tea infusion taste. | — |
Compounds (mg/g) | JH1 | JH2 | JH3 | CG1 | CG2 | CG3 |
---|---|---|---|---|---|---|
Water extract | 434.20 ± 3.93 a | 430.22 ± 1.54 ab | 426.15 ± 2.82 bc | 420.84 ± 0.22 cd | 436.99 ± 0.88 a | 416.46 ± 3.45 d |
Tea polyphenol | 127.40 ± 0.15 d | 135.56 ± 1.09 c | 136.34 ± 1.46 b | 134.63 ± 2.79 c | 145.38 ± 1.00 a | 137.73 ± 1.97 b |
Total flavones | 31.36 ± 0.57 b | 32.05 ± 0.38 ab | 31.33 ± 0.03 b | 33.53 ± 0.71 a | 32.41 ± 0.34 ab | 31.73 ± 0.33 b |
Amino acid | 30.42 ± 0.41 b | 28.74 ± 0.21 b | 28.77 ± 0.50 b | 23.51 ± 1.18 c | 30.87 ± 0.31 a | 24.16 ± 0.22 c |
Caffeine | 39.23 ± 0.55 b | 40.25 ± 0.27 a | 44.51 ± 1.59 a | 42.12 ± 1.61 a | 41.1 ± 0.54 a | 41.18 ± 1.88 a |
Gallic acid | 6.01 ± 0.07 b | 5.48 ± 0.04 c | 5.94 ± 0.08 b | 5.67 ± 0.01 c | 5.55 ± 0.09 c | 6.80 ± 0.08 a |
Epigallocatechin | 0.41 ± 0.00 a | 0.37 ± 0.04 a | 0.39 ± 0.01 a | 0.51 ± 0.02 a | 0.54 ± 0.13 a | 0.50 ± 0.00 a |
Catechin | 6.03 ± 0.17 a | 6.28 ± 0.00 a | 6.13 ± 0.05 a | 3.15 ± 0.02 d | 4.84 ± 0.17 c | 5.53 ± 0.15 b |
Epicatechin | 2.45 ± 0.03 c | 3.55 ± 0.22 ab | 4.20 ± 0.50 a | 2.71 ± 0.09 bc | 4.13 ± 0.43 a | 3.39 ± 0.12 abc |
Epigallocatechin gallate | 5.30 ± 0.08 e | 6.43 ± 0.05 c | 7.23 ± 0.13 b | 5.56 ± 0.09 e | 8.24 ± 0.06 a | 5.95 ± 0.06 d |
Gallocatechin gallate | 5.62 ± 0.39 a | 5.22 ± 0.00 a | 5.76 ± 0.03 a | 2.08 ± 0.04 d | 2.83 ± 0.13 c | 3.84 ± 0.20 b |
Epicatechin gallate | 6.50 ± 0.08 a | 6.78 ± 0.01 a | 6.47 ± 0.07 a | 3.39 ± 0.01 d | 4.59 ± 0.12 c | 5.46 ± 0.09 b |
Catechingallate | 2.45 ± 0.01 a | 3.37 ± 0.01 a | 2.54 ± 0.02 a | 2.44 ± 0.01 a | 2.49 ± 0.01 a | 3.05 ± 0.70 a |
Saccharides | 21.89 ± 1.14 c | 32.01 ± 1.11 b | 19.03 ± 1.54 c | 43.58 ± 2.01 a | 32.74 ± 0.05 b | 35.49 ± 3.03 b |
Theaflavin | 1.16 ± 0.02 a | 1.11 ± 0.02 ab | 0.99 ± 0.04 cd | 1.05 ± 0.03 bc | 0.96 ± 0.00 cd | 0.91 ± 0.02 d |
Theaflavin-3-gallate | 2.40 ± 0.02 ab | 2.54 ± 0.03 a | 2.25 ± 0.09 bc | 2.58 ± 0.06 a | 2.55 ± 0.08 a | 2.19 ± 0.03 c |
Theaflavin-3,3′-digallate | 4.09 ± 0.26 c | 5.24 ± 0.16 a | 4.27 ± 0.11 bc | 4.73 ± 0.07 b | 4.68 ± 0.04 b | 3.33 ± 0.10 d |
Myricetin-3-O-rutinoside | 0.12 ± 0.03 ab | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.09 ± 0.01 ab | 0.11 ± 0.01 ab | 0.13 ± 0.00 a |
Myricetin-3-O-galactoside | 0.08 ± 0.01 b | 0.10 ± 0.00 ab | 0.10 ± 0.01 ab | 0.11 ± 0.01 a | 0.11 ± 0.00 a | 0.11 ± 0.00 a |
Myricetin-3-O-glucoside | 0.11 ± 0.10 a | 0.18 ± 0.00 a | 0.19 ± 0.00 a | 0.10 ± 0.09 a | 0.26 ± 0.00 a | 0.22 ± 0.00 a |
Quercetin-3-O-rutinoside | 0.11 ± 0.10 a | 0.18 ± 0.00 a | 0.19 ± 0.00 a | 0.10 ± 0.09 a | 0.26 ± 0.00 a | 0.22 ± 0.00 a |
Quercetin-3-O-glucoside | 0.78 ± 0.01 a | 0.59 ± 0.02 c | 0.56 ± 0.00 c | 0.48 ± 0.01 d | 0.46 ± 0.01 d | 0.71 ± 0.00 b |
Quercetin-3-O-galactoside | 2.10 ± 0.00 d | 2.66 ± 0.06 b | 1.97 ± 0.00 e | 2.55 ± 0.01 c | 2.88 ± 0.00 a | 2.89 ± 0.01 a |
Kaempferol-3-O-rutinoside | 0.39 ± 0.01 d | 0.45 ± 0.00 d | 0.29 ± 0.00 e | 0.72 ± 0.00 c | 0.87 ± 0.01 a | 0.76 ± 0.00 b |
Kaempferol-3-O-galactoside | 0.27 ± 0.00 b | 0.23 ± 0.00 c | 0.19 ± 0.00 e | 0.22 ± 0.00 d | 0.23 ± 0.00 c | 0.29 ± 0.00 a |
Kaempferol-3-O-glucoside | 0.38 ± 0.01 d | 0.64 ± 0.01 a | 0.36 ± 0.00 e | 0.49 ± 0.00 c | 0.63 ± 0.00 a | 0.51 ± 0.00 b |
Myricetin | 0.96 ± 0.00 b | 0.90 ± 0.02 c | 1.10 ± 0.01 a | 0.95 ± 0.02 b | 0.93 ± 0.00 bc | 0.78 ± 0.00 d |
Quercetin | 0.95 ± 0.26 a | 1.02 ± 0.03 a | 1.04 ± 0.03 a | 0.88 ± 0.03 a | 0.81 ± 0.02 a | 0.86 ± 0.00 a |
Kaempferol | 0.61 ± 0.04 ab | 0.42 ± 0.03 b | 0.95 ± 0.01 a | 0.95 ± 0.03 a | 0.79 ± 0.37 ab | 0.99 ± 0.00 a |
Compound | Threshold Value (μmol/L) | TAVs | Taste Characteristics | |||||
---|---|---|---|---|---|---|---|---|
JH1 | JH2 | JH3 | CG1 | CG2 | CG3 | |||
Epigallocatechin gallate | 87 | 1.33 | 1.61 | 1.81 | 1.39 | 2.07 | 1.49 | Strong astringency and rough oral sensation |
Gallocatechin gallate | 180 | 0.68 | 0.63 | 0.70 | 0.25 | 0.34 | 0.47 | |
Epicatechin gallate | 160 | 0.92 | 0.82 | 0.91 | 0.48 | 0.65 | 0.77 | |
Catechingallate | 250 | 0.22 | 0.30 | 0.23 | 0.22 | 0.23 | 0.28 | |
Epigallocatechin | 160 | 0.08 | 0.08 | 0.08 | 0.10 | 0.11 | 0.10 | Puckering astringency and rough oral sensation |
Catechin | 120 | 1.73 | 1.80 | 1.76 | 0.90 | 1.39 | 1.59 | |
Epicatechin | 230 | 0.37 | 0.53 | 0.63 | 0.41 | 0.62 | 0.51 | |
Theaflavin | 16 | 1.28 | 1.23 | 1.10 | 1.16 | 1.06 | 1.01 | |
Theaflavin-3-gallate | 15 | 2.23 | 2.36 | 2.09 | 2.40 | 2.37 | 2.04 | |
Theaflavin-3,3′-digallate | 13 | 3.62 | 4.64 | 3.78 | 4.19 | 4.14 | 2.95 | |
Myricetin-3-O-rutinoside | 10.5 | 0.18 | 0.11 | 0.11 | 0.14 | 0.17 | 0.20 | Mouth-drying and velvety-like astringency |
Myricetin-3-O-galactoside | 2.7 | 0.62 | 0.77 | 0.77 | 0.85 | 0.85 | 0.85 | |
Myricetin-3-O-glucoside | 2.1 | 1.09 | 1.79 | 1.88 | 0.99 | 2.58 | 2.18 | |
Quercetin-3-O-rutinoside | 0.00115 | 1567.67 | 2565.29 | 2707.80 | 1425.16 | 3705.41 | 3135.35 | |
Quercetin-3-O-glucoside | 0.65 | 25.86 | 19.56 | 18.56 | 15.91 | 15.25 | 23.54 | |
Quercetin-3-O-galactoside | 0.43 | 105.23 | 133.29 | 98.72 | 127.78 | 144.32 | 144.82 | |
Kaempferol-3-O-rutinoside | 0.25 | 26.26 | 30.29 | 19.52 | 48.47 | 58.57 | 51.16 | |
Kaempferol-3-O-galactoside | 6.7 | 0.90 | 0.77 | 0.63 | 0.73 | 0.77 | 0.97 | |
Kaempferol-3-O-glucoside | 0.67 | 12.66 | 21.32 | 11.99 | 16.32 | 20.98 | 16.99 | |
Gallic acid | 268.6 | 1.32 | 1.20 | 1.30 | 1.24 | 1.21 | 1.49 | |
Epigallocatechin | 350 | 0.04 | 0.03 | 0.04 | 0.05 | 0.05 | 0.05 | Bitterness |
Catechin | 290 | 0.72 | 0.75 | 0.73 | 0.37 | 0.57 | 0.66 | |
Epicatechin | 230 | 0.37 | 0.53 | 0.63 | 0.41 | 0.62 | 0.51 | |
Epigallocatechin gallate | 300 | 0.39 | 0.47 | 0.53 | 0.40 | 0.60 | 0.43 | |
Gallocatechin gallate | 180 | 0.68 | 0.63 | 0.70 | 0.25 | 0.34 | 0.47 | |
Epicatechin gallate | 350 | 0.42 | 0.37 | 0.42 | 0.22 | 0.30 | 0.35 | |
Caffeine | 500 | 4.04 | 4.15 | 4.58 | 4.34 | 4.23 | 4.24 | |
Gallic acid | 823 | 0.43 | 0.39 | 0.42 | 0.40 | 0.40 | 0.49 | |
Gallic acid | 1099 | 0.32 | 0.29 | 0.32 | 0.30 | 0.30 | 0.36 | Sourness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Wang, Z.; Peng, H.; Jiang, L.; Yang, P.; Li, W. Analysis of Taste Quality Differences Between High and Low Grades of Ninghong Tea: From the Perspective of Sensory, Metabolite, and Taste Activity Values. Foods 2024, 13, 3957. https://doi.org/10.3390/foods13233957
Yue C, Wang Z, Peng H, Jiang L, Yang P, Li W. Analysis of Taste Quality Differences Between High and Low Grades of Ninghong Tea: From the Perspective of Sensory, Metabolite, and Taste Activity Values. Foods. 2024; 13(23):3957. https://doi.org/10.3390/foods13233957
Chicago/Turabian StyleYue, Cuinan, Zhihui Wang, Hua Peng, Lianghui Jiang, Puxiang Yang, and Wenjin Li. 2024. "Analysis of Taste Quality Differences Between High and Low Grades of Ninghong Tea: From the Perspective of Sensory, Metabolite, and Taste Activity Values" Foods 13, no. 23: 3957. https://doi.org/10.3390/foods13233957
APA StyleYue, C., Wang, Z., Peng, H., Jiang, L., Yang, P., & Li, W. (2024). Analysis of Taste Quality Differences Between High and Low Grades of Ninghong Tea: From the Perspective of Sensory, Metabolite, and Taste Activity Values. Foods, 13(23), 3957. https://doi.org/10.3390/foods13233957