Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Synthesis of AuNPs–PEI–MWCNTs Nanocomposites
2.3. Fabrication of the Immunosensor
2.4. Characterization of AuNPs–PEI–MWCNTs Nanocomposites
2.4.1. FE-TEM Characterization
2.4.2. Spectral Characterization of UV-Vis Absorption
2.5. Electrochemical Measurements
2.6. Preparation and Measurement of Sesame Ses i 4 and Ses i 5
2.7. Statistical Analysis
3. Results
3.1. Characterizations of AuNPs–PEI–MWCNTs
3.2. CV Characterization of AuNPs–PEI–MWCNTs
3.3. CV Characterization of Immunosensor Manufacturing
3.4. Optimization of Detection Conditions
3.5. Performance Analysis of Immunosensor
3.6. Analysis of Anti-Interference Ability, and Stability of Immunosensor
3.7. Allergenicity Analysis of Ses i 4 and Ses i 5 in Roasted Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, A.; Bahna, S.L. Hypersensitivities to sesame and other common edible seeds. Allergy 2016, 71, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Leduc, V.; Moneret-Vautrin, D.A.; Tzen, J.T.C.; Morisset, M.; Guerin, L.; Kanny, G. Identification of oleosins as major allergens in sesame seed allergic patients. Allergy 2006, 61, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Costa, J.; Mafra, I. Sesame as a source of food allergens: Clinical relevance, molecular characterization, cross-reactivity, stability toward processing and detection strategies. Crit. Rev. Food Sci. Nutr. 2022, 64, 4746–4762. [Google Scholar] [CrossRef] [PubMed]
- Majsiak, E.; Choina, M.; Miśkiewicz, K.; Doniec, Z.; Kurzawa, R. Oleosins: A Short Allergy Review. In Medical Research and Innovation; Pokorski, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 51–55. [Google Scholar] [CrossRef]
- Marchand, C.; Astier, C.; Thouvenot, B.; Roitel, O.; Kanny, G.; Bihain, B.E.; Barre, A.; Rougé, P.; Jacquenet, S. IgE epitopes are within the hydrophobic domain of sesame oleosin Ses i 4. Rev. Française D’allergologie 2022, 62, 646–653. [Google Scholar] [CrossRef]
- Schwager, C.; Kull, S.; Behrends, J.; Röckendorf, N.; Schocker, F.; Frey, A.; Homann, A.; Becker, W.-M.; Jappe, U. Peanut oleosins associated with severe peanut allergy—Importance of lipophilic allergens for comprehensive allergy diagnostics. J. Allergy Clin. Immunol. 2017, 140, 1331–1338.e1338. [Google Scholar] [CrossRef]
- Ma, X.; Li, H.; Zhang, J.; Ge, Y.; He, L.; Kang, W.; Huang, W.; Sun, J.-L.; Chen, Y. Effect of Roasting on the Conformational Structure and IgE Binding of Sesame Allergens. J. Agric. Food Chem. 2022, 70, 9442–9450. [Google Scholar] [CrossRef]
- Ehlers, A.M.; Rossnagel, M.; Brix, B.; Blankestijn, M.A.; Le, T.-M.; Suer, W.; Otten, H.G.; Knulst, A.C. Sesame oleosins are minor allergens. Clin. Transl. Allergy 2019, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, M.; Pierboni, E.; Rondini, C.; Altissimi, S.; Haouet, N. Sesame, Pistachio, and Macadamia Nut: Development and Validation of New Allergenic Systems for Fast Real-Time PCR Application. Foods 2020, 9, 1085. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, J.; Wu, W.; Fei, J.; Lv, B.; Yu, X.; Wen, K.; Shen, J.; Wang, Z. Investigation of Antibody Tolerance in Methanol for Analytical Purposes: Methanol Effect Patterns and Molecular Mechanisms. Adv. Sci. 2024, 11, 2402050. [Google Scholar] [CrossRef] [PubMed]
- Sheng, K.; Jiang, H.; Fang, Y.; Wang, L.; Jiang, D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci. Technol. 2022, 121, 93–104. [Google Scholar] [CrossRef]
- Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles. Talanta 2022, 238, 122990. [Google Scholar] [CrossRef] [PubMed]
- Renata, C.; Joana, C.; Inês, S.; Ana, T.S.C.B.; Patrícia, M.; Isabel, M.; Silva, A.F.; Carlos, M.P. Electrochemical and optical biosensing platforms for the immunorecognition of hazelnut Cor a 14 allergen. Food Chem. 2021, 361, 130122. [Google Scholar] [CrossRef]
- Sobhan, A.; Oh, J.-H.; Park, M.-K.; Kim, S.W.; Park, C.; Lee, J. Single walled carbon nanotube based biosensor for detection of peanut allergy-inducing protein ara h1. Korean J. Chem. Eng. 2018, 35, 172–178. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Sang, M.; Guo, Q.; Li, Z.; Zhou, Q.; Sun, X.; Zhao, W. _target-Induced Electrochemical Sensor Based on Foldable Aptamer and MoS2@MWCNTs–PEI for Enhanced Detection of AFB1 in Peanuts. Langmuir 2023, 39, 16422–16431. [Google Scholar] [CrossRef]
- Kusuma, S.A.F.; Harmonis, J.A.; Pratiwi, R.; Hasanah, A.N. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. Sensors 2023, 23, 8172. [Google Scholar] [CrossRef] [PubMed]
- Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. Direct Electrochemical Determination of Peroxide-Type Explosives Using Well-Dispersed Multi-Walled Carbon Nanotubes/Polyethyleneimine-Modified Glassy Carbon Electrodes. Anal. Chem. 2021, 93, 11451–11460. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, K.; Driskell, J.D. Quantifying Bound and Active Antibodies Conjugated to Gold Nanoparticles: A Comprehensive and Robust Approach To Evaluate Immobilization Chemistry. ACS Omega 2018, 3, 8253–8259. [Google Scholar] [CrossRef] [PubMed]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Zhou, Y.; Wang, P.; Wang, X.; Wang, Z.; Wang, L.; Fu, Z. A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta 2016, 153, 401–406. [Google Scholar] [CrossRef]
- Jung, Y.; Jeong, J.Y.; Chung, B.H. Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008, 133, 697–701. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Y.; He, S.; Wu, Z.; Yue, J.; Sun, H.; Cao, X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens. Bioelectron. 2019, 143, 111607. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Gao, K.; Pan, T.; Wu, Y.; Di, D.; Li, X.; Sun, H.; Zhang, Y. Exploring the allergenic potential of sesame oleosins: Isolation and bioinformatics analysis. Int. J. Biol. Macromol. 2024, 280, 135997. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.-C.; Jung, C.Y.; Kim, W.J. Synthesis of Pt/PEI–MWCNT composite materials on polyethyleneimine-functionalized MWNTs as supports. Mater. Res. Bull. 2011, 46, 2433–2440. [Google Scholar] [CrossRef]
- Muñoz, E.; Suh, D.S.; Collins, S.; Selvidge, M.; Dalton, A.B.; Kim, B.G.; Razal, J.M.; Ussery, G.; Rinzler, A.G.; Martínez, M.T.; et al. Highly Conducting Carbon Nanotube/Polyethyleneimine Composite Fibers. Adv. Mater. 2005, 17, 1064–1067. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Sun, Y.; Liu, Z.; Wang, N. Liquid crystal biosensor based on AuNPs signal amplification for detection of human chorionic gonadotropin. Talanta 2024, 266, 125025. [Google Scholar] [CrossRef]
- Sreelakshmi, K.R.; Mohan, C.O.; Anas, K.K.; Renjith, R.K.; Remya, S.; Ashraf, P.M. Synthesis and stability of chitosan gold nanocomposites: Effect of time of heating and concentration of reactant. Int. J. Food Sci. Technol. 2021, 57, 1333–1339. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Ma, J.; Zhou, X.; Sun, X.; Jing, H.; Lin, M.; Zhou, C. Enzyme-catalyzed electrochemical aptasensor for ultrasensitive detection of soluble PD-L1 in breast cancer based on decorated covalent organic frameworks and carbon nanotubes. Anal. Chim. Acta 2023, 1282, 341927. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.P.; Andrade, C.A.S.; Montenegro, R.A.; Melo, F.L.; Oliveira, M.D.L. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J. Colloid Interface Sci. 2014, 433, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, H.; Cui, C.; Zhang, W.; Zuo, Y. Recombinant protein G/Au nanoparticles/graphene oxide modified electrodes used as an electrochemical biosensor for Brucella Testing in milk. J. Food Sci. Technol. 2022, 59, 4653–4662. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, J.; Zhao, K.; Deng, A.; Li, J. An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens. Bioelectron. 2018, 101, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-J.; Niu, D.-J.; Xie, W.-Z.; Wang, W. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal. Chim. Acta 2010, 659, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Renata, C.; Joana, C.; Patrícia, M.; Ana, T.S.C.B.; Isabel, M.; Silva, A.F.; Carlos, M.P. Molecularly imprinted polymer as a synthetic antibody for the biorecognition of hazelnut Cor a 14-allergen. Anal. Chim. Acta 2022, 1191, 339310. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Wang, Q.; Lv, W.; Zhang, W.; Xu, D. Recent developments and prospects in the extraction, composition, stability, food applications, and in vitro digestion of plant oil bodies. J. Am. Oil Chem. Soc. 2022, 99, 635–653. [Google Scholar] [CrossRef]
- Ouyang, R.; Feng, M.; Liu, J.; Wang, C.; Wang, Z.; Hu, X.; Miao, Y.; Zhou, S. Hydrangea-like TiO2/Bi2MoO6 porous nanoflowers triggering highly sensitive electrochemical immunosensing to tumor marker. Microchim. Acta 2024, 191, 262. [Google Scholar] [CrossRef] [PubMed]
- Francesca, M.; Donatella, A.; Roberto, P.; Marisa, M.D. A highly sensitive impedimetric label free immunosensor for Ochratoxin measurement in cocoa beans. Food Chem. 2016, 212, 688–694. [Google Scholar] [CrossRef]
- Ma, X.; Li, H.; Zhang, J.; Huang, W.; Han, J.; Ge, Y.; Sun, J.; Chen, Y. Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control 2020, 107, 106744. [Google Scholar] [CrossRef]
- Nachshon, L.; Westerhout, J.; Blom, W.M.; Remington, B.; Levy, M.B.; Goldberg, M.R.; Epstein-Rigbi, N.; Katz, Y.; Elizur, A. Sesame eliciting and safe doses in a large sesame allergic population. Allergy 2023, 78, 3212–3220. [Google Scholar] [CrossRef]
- Linghu, X.; Wang, S.; Liu, W.; Wang, R.; Lu, Y. Immunocolorimetric assay based on amplified gold nanoparticles and magnetic separation beads for detection of sesame allergens in food. Anal. Methods 2022, 14, 4803–4812. [Google Scholar] [CrossRef]
- Xiaopan, L.; Rui, W.; Yang, L. Sesame Allergens Detection by Colloidal Gold Immunochromatographic Test Strips. J. Tianjin Univ. Sci. Technol. 2022, 37, 1–7. [Google Scholar] [CrossRef]
- Guo, Y.-S. Establishment of Enzyme-Linked Immunosorbent Assay for Detecting Sesame Allergens Ses i 4 and Ses i 5 in Oil Products; National Chung Hsing University Department of Food Science and Biotechnology: Taiwan, China, 2016. [Google Scholar]
- Wang, J.; Li, W.; Wang, Y.; Pavase, T.; Zhang, J.; Li, Z.; Lin, H. The influence of pre-treatment methods and matrix effect on sesame (Sesamum indicum) sandwich ELISA detection. Food Agric. Immunol. 2021, 32, 540–556. [Google Scholar] [CrossRef]
- Linghu, X.; Qiu, J.; Wang, S.; Lu, Y. Fluorescence immunoassay based on magnetic separation and ZnCdSe/ZnS quantum dots as a signal marker for intelligent detection of sesame allergen in foods. Talanta 2023, 256, 124323. [Google Scholar] [CrossRef]
- Köppel, R.; van Velsen-Zimmerli, F.; Bucher, T. Two quantitative hexaplex real-time PCR systems for the detection and quantification of DNA from twelve allergens in food. Eur. Food Res. Technol. 2012, 235, 843–852. [Google Scholar] [CrossRef]
- Zhang, W.X.; Li, Z.; Zhang, J.H.; He, C.; Ning, X.H. NiS2 @MWCNTs as a promising anode material for lithium and sodium-ion batteries with superior cycling stability. J. Alloys Compd. 2024, 971, 172669. [Google Scholar] [CrossRef]
- Durmaz, G.; Gökmen, V. Impacts of roasting oily seeds and nuts on their extracted oils. Lipid Technol. 2010, 22, 179–182. [Google Scholar] [CrossRef]
- Catarina, D.; Joana, C.; Isabel, M.; Daniela, F.; Ana, T.S.C.B.; Silva, A.F.; Carlos, M.P.; Renata, C. Electrochemical immunosensor for point-of-care detection of soybean Gly m TI allergen in foods. Talanta 2024, 268, 125284. [Google Scholar] [CrossRef]
- Yumiko, W.; Kenichi, A.; Tasuku, M.; Masatoshi, S.; Shiroo, M.; Shinichi, M.; Tsutomu, H. Novel ELISA for the detection of raw and processed egg using extraction buffer containing a surfactant and a reducing agent. J. Immunol. Methods 2005, 300, 115–123. [Google Scholar] [CrossRef]
Detection Method | Linear Range | LOD | Sample | Performance Time | References | ||
---|---|---|---|---|---|---|---|
Immunocolorimetric assay | 50–800 μg/L | 45.53 μg/L | Sesame proteins | 20 min | [40] | ||
Colloidal Gold Immunochromatographic Test Strips | — | 1000 μg/ L | Ses i 1 Ses i 2 Ses i 4 Ses i 5 | 20 min | [41] | ||
Direct ELISA | 18.80–300.73 ng/mL | 0.15 ng/mL | Ses i 5 | 5–6 h | [42] | ||
Sandwich ELISA | 9.40–150.37 ng/mL | 0.37 ng/mL | Ses i 5 | ||||
Sandwich ELISA | 10–100 ng/L | 1 ng/L | Sesame proteins | Overnight + 4 h | [43] | ||
Fluorescence immunoassay | 8–640 μg/L | 10.15 μg/L | Sesame proteins | 20 min | [44] | ||
Hexaplex real-time PCR | — | 0.1% (w/w) | 15.5 kDa oleosin gene fragment | NR | [45] | ||
LC-MS/MS | 0.1–140 fmol/μL | 400 fmol/L | Ses i 4 | NR | [38] | ||
4 fmol/μL | Ses i 5 | ||||||
Commercial kits | — | 8 ng/L | 8 ng/L | Ses i 4 | Ses i 5 | 1.5–2 h | Mskbio Co. |
Electrochemical immunosensor | 50–800 ng/L | 0.616 ng/L | 0.307 ng/L | Ses i 4 | Ses i 5 | 60 min | This work |
Roasting Program | Ses i 4 | Ses i 5 | ||||
---|---|---|---|---|---|---|
Immunosensor (ng/L) | ELISA (ng/L) | Δ (ng/L) | Immunosensor (ng/L) | ELISA (ng/L) | Δ (ng/L) | |
120 °C–10 min | 360.60 | 357.37 | 3.23 | 285.44 | 291.41 | −5.96 |
120 °C-20 min | 243.17 | 243.08 | 0.09 | 256.29 | 255.86 | 0.43 |
120 °C-30 min | 176.87 | 179.87 | −3.01 | 199.33 | 204.65 | −5.32 |
150 °C-10 min | 158.22 | 162.83 | −4.61 | 188.64 | 192.91 | −4.27 |
150 °C-20 min | 148.43 | 139.63 | 8.80 | 144.22 | 152.38 | −8.15 |
150 °C-30 min | 115.44 | 106.48 | 8.96 | 130.72 | 140.25 | −9.53 |
180 °C-10 min | 128.01 | 125.89 | 2.11 | 143.05 | 155.78 | −12.74 |
180 °C-20 min | 102.68 | 97.96 | 4.72 | 116.51 | 132.30 | −15.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Pan, T.; He, S.; Sun, H.; Cao, X.; Ye, Y. Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5. Foods 2025, 14, 115. https://doi.org/10.3390/foods14010115
Li H, Pan T, He S, Sun H, Cao X, Ye Y. Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5. Foods. 2025; 14(1):115. https://doi.org/10.3390/foods14010115
Chicago/Turabian StyleLi, Huimei, Tian’ge Pan, Shudong He, Hanju Sun, Xiaodong Cao, and Yongkang Ye. 2025. "Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5" Foods 14, no. 1: 115. https://doi.org/10.3390/foods14010115
APA StyleLi, H., Pan, T., He, S., Sun, H., Cao, X., & Ye, Y. (2025). Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5. Foods, 14(1), 115. https://doi.org/10.3390/foods14010115