Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Yeast Autolysate
2.3. Preparation of Flavoring Precursor
2.4. Preparation of Thermal Process Flavor
2.5. Sensory Analysis
2.6. Determination of Maillard Reaction Products Content
2.7. Analysis of the Profile of Volatile Organic Components
2.8. Toxicity Assessment
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reshna, K.R.; Gopi, S.; Balakrishnan, P. Introduction to Flavor and Fragrance in Food Processing; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2023; Volume 1433. [Google Scholar]
- Van Boekel, M.A.J.S. Formation of Flavour Compounds in the Maillard Reaction. Biotechnol. Adv. 2006, 24, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Wu, W.; Soladoye, O.P.; Aluko, R.E.; Bak, K.H.; Fu, Y.; Zhang, Y. Maillard Reaction of Food-Derived Peptides as a Potential Route to Generate Meat Flavor Compounds: A Review. Food Res. Int. 2022, 151, 110823. [Google Scholar] [CrossRef] [PubMed]
- Phongphisutthinant, R.; Wiriyacharee, P.; Boonyapranai, K.; Ounjaijean, S.; Taya, S.; Pitchakarn, P.; Pathomrungsiyounggul, P.; Utarat, P.; Wongwatcharayothin, W.; Somjai, C.; et al. Effect of Conventional Humid–Dry Heating through the Maillard Reaction on Chemical Changes and Enhancement of In Vitro Bioactivities from Soy Protein Isolate Hydrolysate–Yeast Cell Extract Conjugates. Foods 2024, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Kwak, E.J.; Lim, S.I. The Effect of Sugar, Amino Acid, Metal Ion, and NaCl on Model Maillard Reaction under PH Control. Amino Acids 2004, 27, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Pandey, N.; Samota, M.; Sharma, K.; Kale, S.; Kannaujia, P.; Sethi, S.; Chauhan, O.P. Browning Reactions in Foods. In Advances in Food Chemistry: Food Components, Processing and Preservation; Springer: Singapore, 2022. [Google Scholar]
- Liu, H.M.; Han, Y.F.; Wang, N.N.; Zheng, Y.Z.; Wang, X. De Formation and Antioxidant Activity of Maillard Reaction Products Derived from Different Sugar-Amino Acid Aqueous Model Systems of Sesame Roasting. J. Oleo Sci. 2020, 69, 391–401. [Google Scholar] [CrossRef]
- Han, Y.; You, M.; Wang, S.; Yuan, Q.; Gao, P.; Zhong, W.; Yin, J.; Hu, C.; He, D.; Wang, X. Enzymatic Methods for the Preparation of Fragrant Rapeseed Oil: Effect of Reducing Sugars on Flavor Production Using the Maillard Reaction. LWT 2023, 189, 115497. [Google Scholar] [CrossRef]
- Skog, K.; Jägerstad, M. Effects of Monosaccharides and Disaccharides on the Formation of Food Mutagens in Model Systems. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1990, 230, 263–272. [Google Scholar] [CrossRef]
- Bassam, S.M.; Noleto-Dias, C.; Farag, M.A. Dissecting Grilled Red and White Meat Flavor: Its Characteristics, Production Mechanisms, Influencing Factors and Chemical Hazards. Food Chem. 2022, 371, 131139. [Google Scholar] [CrossRef]
- Raza, A.; Song, H.; Raza, J.; Li, P.; Li, K.; Yao, J. Formation of Beef-like Odorants from Glutathione-Enriched Yeast Extract: Via Maillard Reaction. Food Funct. 2020, 11, 8583–8601. [Google Scholar] [CrossRef]
- Kacker, R.N.; Lagergren, E.S.; Filliben, J.J. Taguchi’s Orthogonal Arrays Are Classical Designs of Experiments. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 577–591. [Google Scholar] [CrossRef]
- Antony, J.; Bhat, S.; Mittal, A.; Jayaraman, R.; Gijo, E.V.; Cudney, E.A. Application of Taguchi Design of Experiments in the Food Industry: A Systematic Literature Review. Total Qual. Manag. Bus. Excell. 2024, 35, 687–712. [Google Scholar] [CrossRef]
- Moon, S.Y.; Li-Chan, E.C.Y. Development of Solid-Phase Microextraction Methodology for Analysis of Headspace Volatile Compounds in Simulated Beef Flavour. Food Chem. 2004, 88, 141–149. [Google Scholar] [CrossRef]
- ISO 5496:2006; Sensory Analysis—Methodology—Initiation and Training of Assessors in the Detection and Recognition of Odours. ISO (International Organization for Standardization): Geneva, Switzerland, 2006.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO (International Organization for Standardization): Geneva, Switzerland, 2010.
- Kowalska, J.; Miarka, D.; Marzec, A.; Ciurzyńska, A.; Janowicz, M.; Galus, S.; Kowalska, H. Sous-Vide as an Innovative and Alternative Method of Culinary Treatment of Chicken Breast in Terms of Product Quality and Safety. Appl. Sci. 2023, 13, 3906. [Google Scholar] [CrossRef]
- ISO 5492:2008; Sensory Analysis—Vocabulary. ISO (International Organization for Standardization): Geneva, Switzerland, 2008.
- Resano, H.; Sanjuán, A.I.; Cilla, I.; Roncalés, P.; Albisu, L.M. Sensory Attributes That Drive Consumer Acceptability of Dry-Cured Ham and Convergence with Trained Sensory Data. Meat Sci. 2010, 84, 344–351. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, C.; Liu, H.; Wei, X.; Gao, R.; Shi, H.; Zhang, D.; Wang, Z. Characterization of Key Aroma Compounds in Roasted Chicken Using SPME, SAFE, GC-O, GC–MS, AEDA, OAV, Recombination-Omission Tests, and Sensory Evaluation. Food Chem. X 2024, 21, 101167. [Google Scholar] [CrossRef]
- Alim, A.; Song, H.; Zou, T. Analysis of Meaty Aroma and Umami Taste in Thermally Treated Yeast Extract by Means of Sensory-Guided Screening. Eur. Food Res. Technol. 2020, 246, 2119–2133. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Nomi, Y.; Homma, T.; Kasai, M.; Otsuka, Y. Determination of Furosine and Fluorescence as Markers of the Maillard Reaction for the Evaluation of Meat Products during Actual Cooking Conditions. Food Sci. Technol. Res. 2012, 18, 67–76. [Google Scholar] [CrossRef]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2024, 52, W513–W520. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015; Available online: http://www.rstudio.com (accessed on 21 November 2024).
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Sun, A.; Chen, L.; Wu, W.; Soladoye, O.P.; Zhang, Y.; Fu, Y. The Potential Meat Flavoring Generated from Maillard Reaction Products of Wheat Gluten Protein Hydrolysates-Xylose: Impacts of Different Thermal Treatment Temperatures on Flavor. Food Res. Int. 2023, 165, 112512. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, J.; Cui, H.; Xia, S.; Zhang, X.; Yang, B. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate. Molecules 2018, 23, 247. [Google Scholar] [CrossRef] [PubMed]
- Madruga, M.S.; Stephen Elmore, J.; Dodson, A.T.; Mottram, D.S. Volatile Flavour Profile of Goat Meat Extracted by Three Widely Used Techniques. Food Chem. 2009, 115, 1081–1087. [Google Scholar] [CrossRef]
- Theng, A.H.P.; Osen, R.; Chiang, J.H. Influence of Reducing Sugars and Protein-to-Sugar Ratios on Volatile Profile, PH, and Browning Intensity of Maillard-Reacted Nutritional Yeast Hydrolysate. Int. J. Food Sci. Technol. 2024, 59, 6325–6339. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Kinetic Aspects of the Maillard Reaction: A Critical Review. Nahr. Food 2001, 45, 150–159. [Google Scholar] [CrossRef]
- Sirisena, S.; Chan, S.; Roberts, N.; Dal Maso, S.; Gras, S.L.; Martin, G.J.O. Influence of Yeast Growth Conditions and Proteolytic Enzymes on the Amino Acid Profiles of Yeast Hydrolysates: Implications for Taste and Nutrition. Food Chem. 2024, 437, 137906. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Song, H. Variation of Aroma Components during Frozen Storage of Cooked Beef Balls by SPME and SAFE Coupled with GC-O-MS. J. Food Process. Preserv. 2021, 45, e15036. [Google Scholar] [CrossRef]
- Wang, F.; Gao, Y.; Wang, H.; Xi, B.; He, X.; Yang, X.; Li, W. Analysis of Volatile Compounds and Flavor Fingerprint in Jingyuan Lamb of Different Ages Using Gas Chromatography–Ion Mobility Spectrometry (GC–IMS). Meat Sci. 2021, 175, 108449. [Google Scholar] [CrossRef]
- Rochat, S.; Chaintreau, A. Carbonyl Odorants Contributing to the In-Oven Roast Beef Top Note. J. Agric. Food Chem. 2005, 53, 9578–9585. [Google Scholar] [CrossRef]
- Machiels, D.; Van Ruth, S.M.; Posthumus, M.A.; Istasse, L. Gas Chromatography-Olfactometry Analysis of the Volatile Compounds of Two Commercial Irish Beef Meats. Talanta 2003, 60, 755–764. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A Fresh Look at Meat Flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma Compounds Identified in Cooked Meat: A Review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.H.; Fauconnier, M.L.; Mi, S. Characterization and Differentiation of Boiled Pork from Tibetan, Sanmenxia and Duroc × (Landrac × Yorkshire) Pigs by Volatiles Profiling and Chemometrics Analysis. Food Res. Int. 2020, 130, 108910. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Z.; Lan, W.; Sun, H.; Chen, K.; Zhao, L. Maillard Reaction Products of Hydrolyzed Copyinds Comatus Protein with Various Sugar-Amino Acid Combinations: Focusing on Their Meaty Aroma Notes and Salt Reduction Abilities. Food Biosci. 2024, 61, 104503. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, L.; Niu, Y.; Zhang, J.; Wang, D.; Zhou, C. Mushroom Alcohol(1-Octen-3-Ol)and Other 7 Aroma Compounds Selected from Chinese Dry-Cured Hams Can Enhance Saltiness Perception. Meat Sci. 2024, 208, 109398. [Google Scholar] [CrossRef]
Sugar | Concentration, mM | Temperature, °C | Sample Number |
---|---|---|---|
Fructose | 25 | 150 | 1 |
Fructose | 50 | 140 | 7 |
Fructose | 100 | 160 | 4 |
Xylose | 25 | 140 | 8 |
Xylose | 50 | 160 | 5 |
Xylose | 100 | 150 | 2 |
Glucose | 25 | 160 | 6 |
Glucose | 50 | 150 | 3 |
Glucose | 100 | 140 | 9 |
Substance | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | 0.098 ± 0.002 c | 0.062 ± 0.004 c | 0.244 ± 0.022 a | 0.495 ± 0.035 b | 0.505 ± 0.000 b | 0.339 ± 0.004 b | 0.255 ± 0.004 a | 0.374 ± 0.004 b | 0.458 ± 0.011 b |
2-Butanone | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.01 ± 0.001 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
3-Methyl-Butanal | 0.069 ± 0.009 a | 0.514 ± 0.017 b | 1.081 ± 0.013 c | 2.197 ± 0.249 d | 2.079 ± 0.052 d | 1.005 ± 0.027 c | 0.159 ± 0.019 b | 0.129 ± 0.015 b | 0.176 ± 0.019 b |
Ethanol | 5.662 ± 0.742 d | 4.935 ± 0.475 d | 10.837 ± 0.905 c | 9.146 ± 0.739 c | 8.236 ± 1.163 c | 9.146 ± 0.495 c | 8.5 ± 0.558 c | 13.571 ± 1.337 b | 18.926 ± 1.773 a |
2-Ethyl-Furan | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.008 ± 0.001 a | 0.000 ± 0.000 a | 0.007 ± 0.001 a |
Nitric acid, ethyl ether | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.044 ± 0.001 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
2,3-Butanedione | 0.047 ± 0.007 a | 0.067 ± 0.01 b | 0.097 ± 0.01 c | 0.078 ± 0.009 b | 0.138 ± 0.019 | 0.095 ± 0.002 c | 0.000 ± 0.000 a | 0.063 ± 0.000 b | 0.177 ± 0.021 d |
2,3-Pentanedione | 0.000 ± 0.000 a | 0.103 ± 0.001 c | 0.045 ± 0.004 b | 0.26 ± 0.026 d | 0.041 ± 0.004 b | 0.131 ± 0.013 c | 0.047 ± 0.003 b | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
Hexanal | 0.211 ± 0.007 a | 0.232 ± 0.025 a | 0.408 ± 0.035 b | 0.256 ± 0.011 a | 0.193 ± 0.008 a | 0.286 ± 0.017 a | 0.318 ± 0.042 b | 0.506 ± 0.063 b | 0.768 ± 0.104 c |
2-Methyl-Thiophene | 0.006 ± 0.001 a | 0.007 ± 0.001 a | 0.053 ± 0.005 b | 0.072 ± 0.005 c | 0.095 ± 0.002 d | 0.085 ± 0.008 c | 0.123 ± 0.007 e | 0.547 ± 0.047 f | 0.043 ± 0.000 b |
3-Methyl acetate 1-Butanol | 0.017 ± 0.000 b | 0.016 ± 0.002 b | 0.011 ± 0.000 b | 0.011 ± 0.001 b | 0.006 ± 0.001 a | 0.011 ± 0.000 b | 0.016 ± 0.002 b | 0.02 ± 0.000 c | 0.02 ± 0.002 c |
3-Penten-2-one | 0.002 ± 0.000 a | 0.031 ± 0.003 b | 0.049 ± 0.001 c | 0.054 ± 0.007 c | 0.035 ± 0.003 b | 0.037 ± 0.005 b | 0.022 ± 0.001 b | 0.018 ± 0.000 b | 0.037 ± 0.004 b |
2-Heptanone | 0.026 ± 0.002 a | 0.038 ± 0.004 a | 0.053 ± 0.005 b | 0.06 ± 0.004 b | 0.034 ± 0.001 a | 0.075 ± 0.007 b | 0.065 ± 0.006 b | 0.096 ± 0.006 | 0.115 ± 0.002 c |
Heptanal | 0.006 ± 0.001 a | 0.005 ± 0.001 a | 0.01 ± 0.001 b | 0.012 ± 0.001 b | 0.009 ± 0.000 a | 0.014 ± 0.000 b | 0.018 ± 0.001 b | 0.031 ± 0.003 c | 0.038 ± 0.001 c |
3-Methyl-1-Butanol | 0.792 ± 0.022 b | 0.687 ± 0.042 a | 1.346 ± 0.072 c | 0.662 ± 0.098 a | 0.521 ± 0.000 a | 0.736 ± 0.107 b | 0.796 ± 0.058 b | 1.316 ± 0.082 c | 1.931 ± 0.115 d |
2-Pentyl-Furan | 0.058 ± 0.008 c | 0.042 ± 0.005 c | 0.087 ± 0.009 c | 0.215 ± 0.011 b | 0.227 ± 0.005 b | 0.248 ± 0.02 b | 0.934 ± 0.025 a | 0.19 ± 0.008 b | 0.079 ± 0.008 c |
1-Pentanol | 0.011 ± 0.001 a | 0.009 ± 0.000 a | 0.016 ± 0.002 a | 0.037 ± 0.005 b | 0.023 ± 0.001 a | 0.043 ± 0.006 b | 0.05 ± 0.002 b | 0.079 ± 0.011 c | 0.116 ± 0.01 d |
2-Methylthiazole | 0.02 ± 0.001 c | 0.016 ± 0.000 b | 0.000 ± 0.000 a | 0.019 ± 0.000 c | 0.002 ± 0.000 a | 0.022 ± 0.003 c | 0.009 ± 0.001 a | 0.003 ± 0.000 a | 0.003 ± 0.000 a |
Thiazole | 0.095 ± 0.011 b | 0.195 ± 0.015 a | 0.071 ± 0.008 c | 0.263 ± 0.029 a | 0.118 ± 0.009 | 0.226 ± 0.03 a | 0.07 ± 0.003 c | 0.051 ± 0.001 d | 0.059 ± 0.006 d |
Hexyl ester of acetic acid | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.004 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
Methyl-Pyrazine | 0.009 ± 0.000 a | 0.202 ± 0.012 b | 0.002 ± 0.000 a | 0.868 ± 0.067 c | 0.928 ± 0.053 c | 0.284 ± 0.002 b | 0.062 ± 0.003 a | 0.031 ± 0.002 a | 0.001 ± 0.000 a |
4-Methylthiazole | 0.005 ± 0.000 a | 0.005 ± 0.000 a | 0.000 ± 0.000 a | 0.05 ± 0.004 b | 0.011 ± 0.000 c | 0.012 ± 0.001 c | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
3-Hydroxy-2-Butanone | 0.001 ± 0.000 c | 0.006 ± 0.000 c | 0.013 ± 0.001 c | 0.076 ± 0.007 b | 0.123 ± 0.014 b | 0.104 ± 0.006 b | 0.084 ± 0.001 b | 0.131 ± 0.015 b | 0.172 ± 0.01 a |
2-Heptanol | 0.011 ± 0.000 a | 0.01 ± 0.000 a | 0.02 ± 0.002 b | 0.011 ± 0.001 a | 0.015 ± 0.002 a | 0.022 ± 0.000 b | 0.028 ± 0.001 b | 0.043 ± 0.004 c | 0.045 ± 0.000 c |
2,5-Dimethyl-Thiazole | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.031 ± 0.001 b | 0.003 ± 0.000 a | 0.000 ± 0.000 a |
1-Hexanol | 0.381 ± 0.045 | 0.346 ± 0.001 | 0.686 ± 0.035 | 0.729 ± 0.052 | 0.539 ± 0.078 | 0.829 ± 0.047 | 0.896 ± 0.109 | 1.465 ± 0.188 | 2.033 ± 0.084 |
2,4,5-Trimethyl-Thiazole | 0.014 ± 0.001 b | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.006 ± 0.000 a | 0.000 ± 0.000 a | 0.001 ± 0.000 a | 0.029 ± 0.001 c | 0.022 ± 0.001 c | 0.015 ± 0.000 b |
Dimethyl trisulfide | 0.001 ± 0.000 a | 0.005 ± 0.001 a | 0.014 ± 0.001 ab | 0.03 ± 0.003 c | 0.036 ± 0.005 c | 0.021 ± 0.001 b | 0.005 ± 0.000 a | 0.004 ± 0.000 a | 0.008 ± 0.001 a |
1-Octen-3-ol | 0.014 ± 0.001 a | 0.011 ± 0.000 a | 0.025 ± 0.003 a | 0.047 ± 0.002 b | 0.039 ± 0.006 b | 0.05 ± 0.005 b | 0.057 ± 0.007 b | 0.088 ± 0.006 c | 0.113 ± 0.005 d |
1-Heptanol | 0.011 ± 0.001 a | 0.009 ± 0.001 a | 0.021 ± 0.001 a | 0.045 ± 0.001 b | 0.032 ± 0.000 a | 0.043 ± 0.001 b | 0.052 ± 0.002 b | 0.08 ± 0.007 c | 0.101 ± 0.014 d |
2-Pentyl-Thiophene | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.019 ± 0.002 b | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
2-Furancarboxaldehyde | 0.018 ± 0.002 f | 0.139 ± 0.017 e | 18.762 ± 1.781 b | 1.148 ± 0.001 d | 36.749 ± 2.82 a | 0.406 ± 0.054 e | 0.000 ± 0.000 c | 1.138 ± 0.027 d | 0.000 ± 0.000 c |
Benzaldehyde | 0.052 ± 0.006 d | 0.119 ± 0.01 c | 0.158 ± 0.007 b | 0.264 ± 0.023 a | 0.194 ± 0.009 a | 0.203 ± 0.004 a | 0.15 ± 0.007 b | 0.201 ± 0.01 a | 0.267 ± 0.002 a |
Benzonitrile | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.009 ± 0.001 b | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
2-Methyl-Propanoic acid | 0.004 ± 0.000 a | 0.007 ± 0.001 b | 0.001 ± 0.000 a | 0.01 ± 0.000 b | 0.009 ± 0.001 b | 0.008 ± 0.001 b | 0.008 ± 0.001 b | 0.012 ± 0.001 b | 0.017 ± 0.002 b |
1-Octanol | 0.004 ± 0.001 a | 0.004 ± 0.001 a | 0.009 ± 0.000 d | 0.019 ± 0.001 c | 0.019 ± 0.002 c | 0.021 ± 0.000 c | 0.024 ± 0.002 c | 0.036 ± 0.000 b | 0.043 ± 0.003 a |
1-Nonanol | 0.000 ± 0.000 a | 0.004 ± 0.000 b | 0.001 ± 0.000 ab | 0.003 ± 0.000 b | 0.000 ± 0.000 a | 0.003 ± 0.000 b | 0.003 ± 0.000 b | 0.005 ± 0.000 b | 0.008 ± 0.001 b |
2-Furanmethanol | 0.012 ± 0.001 a | 0.018 ± 0.000 a | 0.03 ± 0.003 b | 0.141 ± 0.015 c | 0.000 ± 0.000 d | 0.036 ± 0.005 b | 0.029 ± 0.004 b | 0.01 ± 0.000 a | 0.018 ± 0.001 a |
Benzeneacetaldehyde | 0.187 ± 0.026 d | 1.097 ± 0.079 a | 1.433 ± 0.127 b | 1.519 ± 0.167 b | 1.128 ± 0.137 a | 0.959 ± 0.081 a | 0.271 ± 0.000 c | 0.189 ± 0.008 d | 0.278 ± 0.032 c |
2-Acetylthiazole | 0.272 ± 0.008 b | 0.115 ± 0.014 a | 0.101 ± 0.009 a | 0.577 ± 0.05 c | 0.192 ± 0.027 a | 0.175 ± 0.01 a | 0.282 ± 0.006 b | 0.089 ± 0.004 a | 0.106 ± 0.006 a |
2-Thiophenecarboxaldehyde | 0.12 ± 0.013 a | 0.16 ± 0.014 a | 0.415 ± 0.046 ab | 0.369 ± 0.033 b | 1.271 ± 0.051 c | 0.186 ± 0.012 a | 0.148 ± 0.008 a | 0.189 ± 0.026 a | 0.114 ± 0.001 a |
Nitro-Benzene | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.028 ± 0.002 b | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
5-Methyl-2-thiophenecarboxaldehyde | 0.105 ± 0.01 c | 0.205 ± 0.012 b | 0.081 ± 0.002 c | 0.189 ± 0.009 b | 0.093 ± 0.001 c | 0.639 ± 0.061 a | 0.264 ± 0.027 b | 0.196 ± 0.024 b | 0.711 ± 0.047 a |
Benzeneethanol | 0.134 ± 0.014 c | 0.189 ± 0.003 b | 0.33 ± 0.019 b | 0.284 ± 0.028 b | 0.295 ± 0.01 b | 0.287 ± 0.041 b | 0.266 ± 0.007 b | 0.402 ± 0.011 a | 0.554 ± 0.014 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkisyan, V.; Bilyalova, A.; Vorobyeva, V.; Vorobyeva, I.; Malinkin, A.; Zotov, V.; Kochetkova, A. Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method. Foods 2025, 14, 116. https://doi.org/10.3390/foods14010116
Sarkisyan V, Bilyalova A, Vorobyeva V, Vorobyeva I, Malinkin A, Zotov V, Kochetkova A. Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method. Foods. 2025; 14(1):116. https://doi.org/10.3390/foods14010116
Chicago/Turabian StyleSarkisyan, Varuzhan, Anastasiya Bilyalova, Valentina Vorobyeva, Irina Vorobyeva, Alexey Malinkin, Vladimir Zotov, and Alla Kochetkova. 2025. "Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method" Foods 14, no. 1: 116. https://doi.org/10.3390/foods14010116
APA StyleSarkisyan, V., Bilyalova, A., Vorobyeva, V., Vorobyeva, I., Malinkin, A., Zotov, V., & Kochetkova, A. (2025). Optimization of the Meat Flavoring Production Process for Plant-Based Products Using the Taguchi Method. Foods, 14(1), 116. https://doi.org/10.3390/foods14010116