Monitoring of the Dry-Curing Process in Iberian Ham Through the Evaluation of Fat Volatile Organic Compounds by Gas Chromatography–Ion Mobility Spectrometry and Non-Destructive Sampling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Standards
2.2. Instrumentation and Method
2.3. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. VOCs Profile in Post-Salting and in Drying-Maturation Stages
3.2. VOCs as Indicators for the End of the Post-Salting Stage
3.3. Evaluation of VOCs as Indicators of the End of Drying-Maturation Stage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventanas, S.; Ventanas, J.; Ruiz, J.; Estévez, M. Iberian Pigs for the Development of High-Quality Cured Products. Recent Res. Dev. Agric. Food Chem. 2005, 6, 1–27. [Google Scholar]
- Ministerio de Agricultura. Alimentación y Medio Ambiente Real Decreto 4/2014, de 10 de Enero, Por El Que Se Aprueba La Norma de Calidad Para La Carne, El Jamón, La Paleta y La Caña de Lomo Ibérico. Boletín Oficial del Estado (BOE) 2014, 10, 1569–1585. [Google Scholar]
- Ventanas, J. Tecnología Del Jamón Ibérico; Mundi-Prensa: Madrid, Spain, 2001; Volume 45. [Google Scholar]
- Gilles, G. Dry Cured Ham Quality as Related to Lipid Quality of Raw Material and Lipid Changes during Processing: A Review. Grasas y Aceites 2009, 60, 297–307. [Google Scholar] [CrossRef]
- Toldrá, F. Proteolysis and Lipolysis in Flavour Development of Dry-Cured Meat Products. Meat Sci. 1998, 49, S101–S110. [Google Scholar] [CrossRef] [PubMed]
- Motilva, M.J.; Toldrá, F.; Nieto, P.; Flores, J. Muscle Lipolysis Phenomena in the Processing of Dry-Cured Ham. Food Chem. 1993, 48, 121–125. [Google Scholar] [CrossRef]
- Toldrá, F. The Role of Muscle Enzymes in Dry-Cured Meat Products with Different Drying Conditions. Trends Food Sci. Technol. 2006, 17, 164–168. [Google Scholar] [CrossRef]
- Martín-Gómez, A.; Segura-Borrego, M.P.; Ríos-Reina, R.; Cardador, M.J.; Callejón, R.M.; Morales, M.L.; Rodríguez-Estévez, V.; Arce, L. Discrimination of Defective Dry-Cured Iberian Ham Determining Volatile Compounds by Non-Destructive Sampling and Gas Chromatography. LWT 2022, 154, 112785. [Google Scholar] [CrossRef]
- Antequera, T.; López-Bote, C.J.; Córdoba, J.J.; García, C.; Asensio, M.A.; Ventanas, J.; García-Regueiro, J.A.; Díaz, I. Lipid Oxidative Changes in the Processing of Iberian Pig Hams. Food Chem. 1992, 45, 105–110. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Vicario, I.M.; Constante, E.G.; León-Camacho, M. Changes in the Concentrations of Free Fatty Acid, Monoacylglycerol, and Diacylglycerol in the Subcutaneous Fat of Iberian Ham during the Dry-Curing Process. J. Agric. Food Chem. 2007, 55, 10953–10961. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Chemical Changes in Volatile Aldehydes and Ketones from Subcutaneous Fat during Ripening of Iberian Dry-Cured Ham. Prediction of the Curing Time. Food Res. Int. 2014, 55, 381–390. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Changes in Polar and Non-Polar Lipid Fractions of Subcutaneous Fat from Iberian Ham during Dry-Curing Process. Prediction of the Curing Time. Food Res. Int. 2013, 54, 213–222. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Evolution of Volatile Hydrocarbons from Subcutaneous Fat during Ripening of Iberian Dry-Cured Ham. A Tool to Differentiate between Ripening Periods of the Process. Food Res. Int. 2015, 67, 299–307. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Study of Volatile Alcohols and Esters from the Subcutaneous Fat during Ripening of Iberian Dry-Cured Ham. A Tool for Predicting the Dry-Curing Time. Grasas y Aceites 2016, 67, e166. [Google Scholar] [CrossRef]
- Li, P.; Zhou, H.; Wang, Z.; Al-Dalali, S.; Nie, W.; Xu, F.; Li, C.; Li, P.; Cai, K.; Xu, B. Analysis of Flavor Formation during the Production of Jinhua Dry-Cured Ham Using Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS). Meat Sci. 2022, 194, 108992. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gómez, A.; Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; Arce, L. Use of a Non-Destructive Sampling Method for Characterization of Iberian Cured Ham Breed and Feeding Regime Using GC-IMS. Meat Sci. 2019, 152, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gómez, A.; Rodríguez-Hernández, P.; Cardador, M.J.; Vega-Márquez, B.; Rodríguez-Estévez, V.; Arce, L. Guidelines to Build PLS-DA Chemometric Classification Models Using a GC-IMS Method: Dry-Cured Ham as a Case of Study. Talanta Open 2023, 7, 100175. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, P.; Martín-Gómez, A.; Cardador, M.J.; Amaro, M.A.; Arce, L.; Rodríguez-Estévez, V. Geographical Origin, Curing Plant and Commercial Category Discrimination of Cured Iberian Hams through Volatilome Analysis at Industry Level. Meat Sci. 2023, 195, 108989. [Google Scholar] [CrossRef] [PubMed]
- Profillidis, V.A.; Botzoris, G.N. Statistical Methods for Transport Demand Modeling. In Modeling of Transport Demand; Profillidis, V.A., Botzoris, G.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 163–224. [Google Scholar] [CrossRef]
- Jurado, Á.; Carrapiso, A.I.; Ventanas, J.; García, C. Changes in SPME-Extracted Volatile Compounds from Iberian Ham during Ripening. Grasas y Aceites 2009, 60, 262–270. [Google Scholar] [CrossRef]
- Andrés, A.I.; Cava, R.; Ruiz, J. Monitoring Volatile Compounds during Dry-Cured Ham Ripening by Solid-Phase Microextraction Coupled to a New Direct-Extraction Device. J. Chromatogr. A 2002, 963, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Del Pulgar, J.S.; García, C.; Reina, R.; Carrapiso, A.I. Study of the Volatile Compounds and Odor-Active Compounds of Dry-Cured Iberian Ham Extracted by SPME. Food Sci. Technol. Int. 2013, 19, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Narváez-Rivas, M.; Gallardo, E.; León-Camacho, M. Analysis of Volatile Compounds from Iberian Hams: A Review. Grasas y Aceites 2012, 63, 432–454. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Ávila, M.; Garde, S.; Nuñez, M.; Picon, A. Influence of Physicochemical Characteristics and High Pressure Processing on the Volatile Fraction of Iberian Dry-Cured Ham. Meat Sci. 2017, 131, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Carrapiso, A.I.; Martín, L.; Jurado, Á.; García, C. Characterisation of the Most Odour-Active Compounds of Bone Tainted Dry-Cured Iberian Ham. Meat Sci. 2010, 85, 54–58. [Google Scholar] [CrossRef] [PubMed]
- García, C.; Martín, A.; Timón, M.L.; Córdoba, J.J. Microbial Populations and Volatile Compounds in the‘Bone Taint’ Spoilage of Dry Cured Ham. Lett. Appl. Microbiol. 2000, 30, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ventanas, J.; Córdoba, J.J.; Antequera, T.; Garcia, C.; López-Bote, C.; Asensio, M.A. Hydrolysis and Maillard Reactions during Ripening of Iberian Ham. J. Food Sci. 1992, 57, 813–815. [Google Scholar] [CrossRef]
- Vestergaard, C.S.; Schivazappa, C.; Virgili, R. Lipolysis in Dry-Cured Ham Maturation. Meat Sci. 2000, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Isaza-Maya, Y.L.; Restrepo-Molina, D.A.; López-Vargas, J.H. Oxidación Lipídica y Antioxidantes Naturales En Derivados Cárnicos. J. Eng. Technol. 2013, 2, 50–66. [Google Scholar]
- Martín, L.; Timón, M.L.; Petrón, M.J.; Ventanas, J.; Antequera, T. Evolution of Volatile Aldehydes in Iberian Ham Matured under Different Processing Conditions. Meat Sci. 2000, 54, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Kandler, O. Carbohydrate Metabolism in Lactic Acid Bacteria. Antonie Van Leeuwenhoek 1983, 49, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Córdoba, J.J.; Aranda, E.; Córdoba, M.G.; Asensio, M.A. Contribution of a Selected Fungal Population to the Volatile Compounds on Dry-Cured Ham. Int. J. Food Microbiol. 2006, 110, 8–18. [Google Scholar] [CrossRef]
- Ramírez, R.; Cava, R. Volatile Profiles of Dry-Cured Meat Products from Three Different Iberian x Duroc Genotypes. J. Agric. Food Chem. 2007, 55, 1923–1931. [Google Scholar] [CrossRef]
- Blank, I.; Devaud, S.; Fay, L.B.; Cerny, C.; Steiner, M.; Zurbriggen, B. Odor-Active Compounds of Dry-Cured Meat: Italian-Type Salami and Parma Ham. ACS Symp. Ser. 2001, 794, 9–20. [Google Scholar] [CrossRef]
- Song, H.; Cadwallader, K.R.; Singh, T.K. Odour-Active Compounds of Jinhua Ham. Flavour. Fragr. J. 2008, 23, 1–6. [Google Scholar] [CrossRef]
- Song, H.; Cadwallader, K.R. Aroma Components of American Country Ham. J. Food Sci. 2008, 73, C29–C35. [Google Scholar] [CrossRef] [PubMed]
- Arnau, J. Tecnología de Elaboración Del Jamón Curado. Microbiol. Sem. 1993, 9, 3–9. [Google Scholar]
- Rodríguez-Estévez, V.; García, A.; Peña, F.; Gómez, A.G. Foraging of Iberian Fattening Pigs Grazing Natural Pasture in the Dehesa. Livest. Sci. 2009, 120, 135–143. [Google Scholar] [CrossRef]
- Rodríguez-Estévez, V.; García, A.; Gómez, A.G. Characteristics of the Acorns Selected by Free Range Iberian Pigs during the Montanera Season. Livest. Sci. 2009, 122, 169–176. [Google Scholar] [CrossRef]
- Luo, J.; Yu, Q.; Han, G.; Zhang, X.; Shi, H.; Cao, H. Identification of Off-Flavor Compounds and Deodorizing of Cattle by-Products. J. Food Biochem. 2022, 46, e14443. [Google Scholar] [CrossRef] [PubMed]
- Marco, A.; Navarro, J.L.; Flores, M. Quantitation of Selected Odor-Active Constituents in Dry Fermented Sausages Prepared with Different Curing Salts. J. Agric. Food Chem. 2007, 55, 3058–3065. [Google Scholar] [CrossRef]
- Martín, A.; Benito, M.J.; Aranda, E.; Ruiz-Moyano, S.; Córdoba, J.J.; Córdoba, M.G. Characterization by Volatile Compounds of Microbial Deep Spoilage in Iberian Dry-Cured Ham. J. Food Sci. 2010, 75, M360–M365. [Google Scholar] [CrossRef] [PubMed]
Post-Salting | Drying-Maturation | |||||||
---|---|---|---|---|---|---|---|---|
Compound | RI | DT (ms) | r | p | Trend | r | p | Trend |
Aldehydes | ||||||||
butanal (M) | 602 | 11.2 | 0.638 | *** | ↑↑ | 0.240 | *** | = |
3-methylbutanal (M+D) | 656 | - | 0.866 | *** | ↑↑↑↑ | −0.291 | *** | = |
3-methylbutanal (M) | 11.7 | 0.830 | *** | ↑↑↑↑ | 0.233 | *** | = | |
3-methylbutanal (D) | 14.2 | 0.878 | *** | ↑↑↑↑ | −0.353 | *** | = | |
2-methylbutanal (M) | 667 | 11.6 | N.F. | −0.070 | - | = | ||
pentanal (M+D) | 700 | - | 0.860 | *** | ↑↑↑↑ | −0.336 | *** | = |
pentanal (M) | 11.9 | 0.807 | *** | ↑↑↑↑ | −0.250 | *** | = | |
pentanal (D) | 14.4 | 0.873 | *** | ↑↑↑↑ | −0.344 | *** | = | |
hexanal (M+D) | 805 | - | 0.826 | *** | ↑↑↑↑ | −0.111 | - | = |
hexanal (M) | 12.6 | −0.169 | - | = | 0.258 | *** | = | |
hexanal (D) | 15.8 | 0.898 | *** | ↑↑↑↑ | −0.145 | * | = | |
heptanal (M+D) | 909 | - | 0.681 | *** | ↑↑ | −0.476 | *** | = |
heptanal (M) | 13.3 | 0.502 | *** | ↑ | −0.454 | *** | = | |
heptanal (D) | 17.0 | 0.739 | *** | ↑↑↑ | −0.468 | **** | = | |
(E)-hepten-2-al (M+D) | 966 | - | 0.796 | *** | ↑↑↑ | −0.609 | *** | ↓↓ |
(E)-hepten-2-al (M) | 12.5 | 0.652 | *** | ↑↑ | −0.609 | *** | ↓↓ | |
(E)-hepten-2-al (D) | 16.7 | 0.856 | *** | ↑↑↑↑ | N.F. | |||
(E,E)-heptadien-2,4-al (M+D) | 1006 | - | 0.646 | *** | ↑↑ | N.F. | ||
(E,E)-heptadien-2,4-al (M) | 12.0 | 0.265 | ** | = | ||||
(E,E)-heptadien-2,4-al (D) | 16.3 | 0.748 | *** | ↑↑↑ | ||||
octanal (M+D) | 1012 | - | 0.638 | *** | ↑↑ | −0.287 | *** | = |
octanal (M) | 14.1 | 0.446 | *** | = | −0.252 | *** | = | |
octanal (D) | 18.3 | 0.743 | *** | ↑↑↑ | −0.295 | *** | = | |
(E)-octen-2-al (M+D) | 1068 | - | 0.878 | *** | ↑↑↑↑ | −0.569 | *** | ↓ |
(E)-octen-2-al (M) | 13.3 | 0.766 | *** | ↑↑↑ | −0.573 | *** | ↓ | |
(E)-octen-2-al (D) | 18.2 | 0.893 | *** | ↑↑↑↑ | −0.554 | *** | ↓ | |
nonanal (M+D) | 1109 | - | 0.121 | - | = | −0.289 | *** | = |
nonanal (M) | 14.8 | −0.162 | - | = | −0.296 | *** | = | |
nonanal (D) | 19.5 | 0.319 | *** | = | −0.273 | *** | = | |
(E)-nonen-2-al (M+D) | 1141 | - | 0.591 | *** | ↑ | −0.549 | *** | ↓ |
(E)-nonen-2-al (M) | 14.1 | 0.164 | - | = | −0.549 | *** | ↓ | |
(E)-nonen-2-al (D) | 19.7 | 0.727 | *** | ↑↑↑ | −0.543 | *** | ↓ | |
(Z)-2-decenal (M+D) | 1192 | - | 0.647 | *** | ↑↑ | −0.588 | *** | ↓ |
(Z)-2-decenal (M) | 12.1 | 0.481 | *** | = | −0.526 | *** | ↓ | |
(Z)-2-decenal (D) | 17.2 | 0.687 | *** | ↑↑ | −0.602 | *** | ↓↓ | |
decanal (M+D) | 1206 | - | N.F. | −0.265 | *** | = | ||
decanal (M) | 15.4 | −0.263 | *** | = | ||||
decanal (D) | 20.7 | −0.259 | *** | = | ||||
Alcohols | ||||||||
propan-1-ol (M) | 538 | 11.2 | 0.163 | - | = | N.F. | ||
2-methylbutan-1-ol (M+D) | 745 | - | 0.668 | *** | ↑↑ | N.F. | ||
2-methylbutan-1-ol (M) | 12.4 | 0.735 | *** | ↑↑↑ | ||||
2-methylbutan-1-ol (D) | 14.6 | −0.002 | - | = | ||||
pentan-1-ol (M+D) | 774 | - | 0.721 | *** | ↑↑↑ | −0.197 | *** | = |
pentan-1-ol (M) | 12.6 | 0.648 | *** | ↑↑ | −0.239 | *** | = | |
pentan-1-ol (D) | 15.1 | 0.815 | *** | ↑↑↑↑ | −0.140 | ** | = | |
2,3-butanediol (M) | 789 | 13.9 | −0.195 | - | = | N.F. | ||
(E)-2-hexen-1-ol (M+D) | 860 | - | 0.855 | *** | ↑↑↑↑ | N.F. | ||
(E)-2-hexen-1-ol (M) | 11.8 | 0.708 | *** | ↑↑↑ | ||||
(E)-2-hexen-1-ol (D) | 15.1 | 0.897 | *** | ↑↑↑↑ | ||||
heptan-1-ol (M+D) | 982 | - | 0.820 | *** | ↑↑↑↑ | −0.276 | *** | = |
heptan-1-ol (M) | 14.0 | 0.820 | *** | ↑↑↑↑ | −0.295 | *** | = | |
heptan-1-ol (D) | 17.6 | N.F. | −0.227 | *** | = | |||
1-octen-3-ol (M) | 989 | 11.6 | 0.704 | *** | ↑↑↑ | −0.430 | *** | = |
octan-1-ol (M+D) | 1083 | - | 0.741 | *** | ↑↑↑ | −0.295 | *** | = |
octan-1-ol (M) | 14.7 | 0.741 | *** | ↑↑↑ | −0.319 | *** | = | |
octan-1-ol (D) | 18.8 | N.F. | −0.136 | ** | = | |||
Esters | ||||||||
acetic acid ethyl ester (M) | 601 | 10.9 | 0.422 | *** | = | N.F. | ||
Aromatics | ||||||||
2-ethylfuran (M+D) | 711 | - | 0.102 | - | = | N.F. | ||
2-ethylfuran (M) | 10.5 | −0.440 | *** | = | ||||
2-ethylfuran (D) | 13.1 | 0.692 | *** | ↑↑ | ||||
aniline (M+D) | 807 | - | 0.744 | *** | ↑↑↑ | N.F. | ||
aniline (M) | 11.6 | −0.227 | - | = | ||||
aniline (D) | 14.2 | 0.892 | *** | ↑↑↑↑ | ||||
2,5-dimethylpyrazine (M) | 916 | 11.0 | 0.854 | *** | ↑↑↑↑ | N.F. | ||
benzaldehyde (M+D) | 969 | - | 0.537 | *** | ↑ | −0.459 | *** | = |
benzaldehyde (M) | 11.5 | 0.537 | *** | ↑ | −0.471 | *** | = | |
benzaldehyde (D) | 14.7 | N.F. | −0.404 | *** | = | |||
benzene acetaldehyde (M) | 1049 | 12.6 | 0.669 | *** | ↑↑ | N.F. | ||
2-3H-furanone 5-ethylhydro (M+D) | 1064 | - | N.F. | −0.424 | *** | = | ||
2-3H-furanone 5-ethylhydro (M) | 11.9 | −0.295 | *** | = | ||||
2-3H-furanone 5-ethylhydro (D) | 15.3 | −0.565 | *** | ↓ | ||||
Ketones | ||||||||
1-hydroxypropan-2-one (M+D) | 656 | - | −0.414 | *** | = | N.F. | ||
1-hydroxypropan-2-one (M) | 10.5 | −0.664 | *** | ↓↓ | ||||
1-hydroxypropan-2-one (D) | 12.2 | 0.034 | - | = | ||||
pentan-2-one (D) | 689 | 13.7 | N.F. | −0.210 | *** | = | ||
pentane-2,3-dione (M+D) | 698 | - | 0.685 | *** | ↑↑ | N.F. | ||
pentane-2,3-dione (M) | 12.2 | 0.368 | *** | = | ||||
pentane-2,3-dione (D) | 13.0 | 0.604 | *** | ↑↑ | ||||
3-hydroxybutan-2-one (D) | 716 | 13.4 | 0.158 | - | = | N.F. | ||
hexan-2-one (M+D) | 791 | - | −0.191 | - | = | 0.056 | - | = |
hexan-2-one (M) | 11.7 | −0.191 | - | = | N.F. | |||
hexan-2-one (D) | 15.0 | N.F. | 0.056 | - | = | |||
heptan-2-one (M+D) | 891 | - | 0.647 | *** | ↑↑ | −0.214 | *** | = |
heptan-2-one (M) | 12.6 | 0.647 | *** | ↑↑ | −0.285 | *** | = | |
heptan-2-one (D) | 16.3 | N.F. | −0.193 | *** | = | |||
1-octen-3-one (M+D) | 987 | - | N.F. | −0.562 | *** | ↓ | ||
1-octen-3-one (M) | 12.8 | −0.493 | *** | = | ||||
1-octen-3-one (D) | 16.8 | −0.585 | *** | ↓ | ||||
octan-2-one (M+D) | 993 | - | N.F. | −0.082 | - | = | ||
octan-2-one (M) | 13.4 | 0.111 | - | = | ||||
octan-2-one (D) | 17.6 | −0.181 | *** | = | ||||
nonan-2-one (M+D) | 1098 | - | N.F. | −0.205 | *** | = | ||
nonan-2-one (M) | 14.1 | −0.146 | ** | = | ||||
nonan-2-one (D) | 18.8 | −0.242 | *** | = | ||||
Acids | ||||||||
acetic acid (M+D) | 601 | - | 0.138 | - | = | −0.558 | *** | ↓ |
acetic acid (M) | 10.6 | −0.290 | * | = | N.F. | |||
acetic acid (D) | 11.6 | 0.265 | * | = | −0.558 | *** | ↓ | |
propanoic acid (M+D) | 691 | - | 0.241 | * | = | −0.127 | * | = |
propanoic acid (M) | 11.2 | 0.183 | - | = | −0.181 | ** | = | |
propanoic acid (D) | 12.7 | 0.180 | - | = | −0.039 | - | = | |
isovaleric acid (M) | 859 | 12.2 | −0.631 | *** | ↓↓ | N.F. | ||
2-methylbutanoic acid (M) | 865 | 12.0 | −0.025 | - | = | N.F. | ||
hexanoic acid (M) | 997 | 13.0 | −0.120 | = | = | N.F. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Hernández, P.; Martín-Gómez, A.; Rivero-Talavera, M.; Cardador, M.J.; Rodríguez-Estévez, V.; Arce, L. Monitoring of the Dry-Curing Process in Iberian Ham Through the Evaluation of Fat Volatile Organic Compounds by Gas Chromatography–Ion Mobility Spectrometry and Non-Destructive Sampling. Foods 2025, 14, 49. https://doi.org/10.3390/foods14010049
Rodríguez-Hernández P, Martín-Gómez A, Rivero-Talavera M, Cardador MJ, Rodríguez-Estévez V, Arce L. Monitoring of the Dry-Curing Process in Iberian Ham Through the Evaluation of Fat Volatile Organic Compounds by Gas Chromatography–Ion Mobility Spectrometry and Non-Destructive Sampling. Foods. 2025; 14(1):49. https://doi.org/10.3390/foods14010049
Chicago/Turabian StyleRodríguez-Hernández, Pablo, Andrés Martín-Gómez, Miriam Rivero-Talavera, María José Cardador, Vicente Rodríguez-Estévez, and Lourdes Arce. 2025. "Monitoring of the Dry-Curing Process in Iberian Ham Through the Evaluation of Fat Volatile Organic Compounds by Gas Chromatography–Ion Mobility Spectrometry and Non-Destructive Sampling" Foods 14, no. 1: 49. https://doi.org/10.3390/foods14010049
APA StyleRodríguez-Hernández, P., Martín-Gómez, A., Rivero-Talavera, M., Cardador, M. J., Rodríguez-Estévez, V., & Arce, L. (2025). Monitoring of the Dry-Curing Process in Iberian Ham Through the Evaluation of Fat Volatile Organic Compounds by Gas Chromatography–Ion Mobility Spectrometry and Non-Destructive Sampling. Foods, 14(1), 49. https://doi.org/10.3390/foods14010049