Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Protein Extraction and Enzyme Reaction
2.3. Amino Acid Composition
2.4. pH Measurement
2.5. Color
2.6. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.7. Differential Scanning Calorimetry (DSC)
2.8. Foaming Capacity and Stability
2.9. Emulsifying Capacity and Stability
2.10. Statistical Analysis
3. Results and Discussion
3.1. Changes in Amino Acid Composition
3.2. Changes in pH and Color Values
3.3. Changes in SDS-PAGE Profiles
3.4. Changes in DSC Profiles
3.5. Foaming Capacity and Foam Stability
3.6. Emulsifying Capacity and Emulsion Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, T.K.; Yong, H.I.; Kim, Y.B.; Kim, H.W.; Choi, Y.S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Res. 2019, 39, 521–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halloran, A.; Roos, N.; Eilenberg, J.; Cerutti, A.; Bruun, S. Life cycle assessment of edible insects for food protein: A review. Agron. Sustain. Dev. 2016, 36, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobermann, D.; Swift, J.A.; Field, L.M. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Suh, H.J.; Kang, S.C. Antioxidant activity of aqueous methanol extracts of Protaetia brevitarsis Lewis (Coleoptera: Scarabaedia) at different growth stages. Nat. Prod. Res. 2012, 26, 510–517. [Google Scholar] [CrossRef]
- Chung, M.Y.; Gwon, E.Y.; Hwang, J.S.; Goo, T.W.; Yun, E. Analysis of general composition and harmful material of Protaetia brevitarsis. J. Life Sci. 2013, 23, 664–668. [Google Scholar] [CrossRef] [Green Version]
- Ortolan, F.; Steel, C.J. Protein characteristics that affect the quality of vital wheat gluten to be used in baking: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Vanga, S.K.; Orsat, V.; Raghavan, V. Application of molecular dynamic simulation to study food proteins: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2779–2789. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.H.; Ji, D.S.; Lee, C.H. Effects of heating time and temperature on functional properties of proteins of yellow mealworm larvae (Tenebrio molitor L.). Food Sci. Anim. Res. 2019, 39, 296–308. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Jeong, C.H.; Han, S.G.; Kim, Y.B.; Paik, H.D.; Choi, Y.S. Technical Functional Properties of Water- and Salt-soluble Proteins Extracted from Edible Insects. Food Sci. Anim. Res. 2019, 39, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Shi, A.M.; Jiao, B.; Liu, H.Z.; Zhu, S.; Shen, M.J.; Feng, X.L.; Hu, H.; Liu, L.; Faisal, S.; Wang, Q. Effects of proteolysis and transglutaminase crosslinking on physicochemical characteristics of walnut protein isolate. LWT 2018, 97, 662–667. [Google Scholar] [CrossRef]
- Gaspar, A.L.C.; de Góes-Favoni, S.P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chem. 2015, 171, 315–322. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Kruger, N.J. The Bradford method for protein quantitation. In The Protein Protocols Handbook. Springer Protocols Handbooks; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 17–24. [Google Scholar]
- Liu, C.; Damodaran, S.; Heinonen, M. Effects of microbial transglutaminase treatment on physiochemical properties and emulsifying functionality of faba bean protein isolate. LWT 2019, 99, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.; Liu, S.; Miao, S.; Adhikari, B.; Wang, X.; Chen, J. Effects of transglutaminase pre-crosslinking on salt-induced gelation of soy protein isolate emulsion. J. Food Eng. 2019, 263, 280–287. [Google Scholar] [CrossRef]
- FAO/WHO/UNU. Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; Food and Agriculture Organization/World Health Organization/the United Nations University: Geneva, Switzerland, 1985; p. 206. [Google Scholar]
- Kim, T.K.; Yong, H.I.; Chun, H.H.; Lee, M.A.; Kim, Y.B.; Choi, Y.S. Changes of Amino Acid Composition and Protein Technical Functionality of Edible Insects by Extracting Steps. J Asia-Pac. Entomol. 2020, 23, 298–305. [Google Scholar] [CrossRef]
- Cho, Y.J.; Lee, E.J.; Lee, J.S.; Lee, S.Y.; Yun, Y.C.; Hong, G.P. Pressure Induced Structural Changes of Proteins Affecting the Ice Nucleation Temperature of Pork Loins. Food Sci. Anim. Resour. 2019, 39, 1008–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, S.W.; Song, D.H.; Ham, Y.K.; Kim, T.K.; Choi, Y.S.; Kim, H.W. Interaction of porcine myofibrillar proteins and various gelatins: Impacts on gel properties. Food Sci. Anim. Resour. 2019, 39, 229–239. [Google Scholar] [CrossRef]
- Mishyna, M.; Martinez, J.J.I.; Chen, J.; Benjamin, O. Extraction, characterization and functional properties of soluble proteins from edible grasshopper (Schistocerca gregaria) and honey bee (Apis mellifera). Food Res. Int. 2019, 116, 697–706. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Andersen, S.O. Characteristic properties of proteins from pre-ecdysial cuticle of larvae and pupae of the mealworm Tenebrio molitor. Insect Biochem. Mol. Biol. 2002, 32, 1077–1087. [Google Scholar] [CrossRef]
- Wittkopp, P.J.; Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. In Proceedings of Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2009; pp. 65–71. [Google Scholar]
- Kim, T.K.; Hwang, K.E.; Ham, Y.K.; Kim, H.W.; Paik, H.D.; Kim, Y.B.; Choi, Y.S. Interactions between raw meat irradiated by various kinds of ionizing radiation and transglutaminase treatment in meat emulsion systems. Radiat. Phys. Chem. 2020, 166, 108452. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, J.; Yan, X.; Ma, W.; Wu, D.; Du, M. Effect of partial replacement of water-soluble cod proteins by soy proteins on the heat-induced aggregation and gelation properties of mixed protein systems. Food Hydrocoll. 2020, 100, 105417. [Google Scholar] [CrossRef]
- Vera, A.; Tapia, C.; Abugoch, L. Effect of high-intensity ultrasound treatment in combination with transglutaminase and nanoparticles on structural, mechanical, and physicochemical properties of quinoa proteins/chitosan edible films. Int. J. Biol. Macromol. 2020, 144, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, Y.; Wang, J.; Wei, S.; Li, S. Effects of low fat addition on chicken myofibrillar protein gelation properties. Food Hydrocoll. 2019, 90, 126–131. [Google Scholar] [CrossRef]
- Zhao, X.; Vázquez-Gutiérrez, J.L.; Johansson, D.P.; Landberg, R.; Langton, M. Yellow mealworm protein for food purposes-Extraction and functional properties. PLoS ONE 2016, 11, e0147791. [Google Scholar] [CrossRef] [Green Version]
Amino Acid Profile (mg/g) | Control 1) | Incubation Time (min) | FAO/WHO/UNU 2) (1985) | ||||
---|---|---|---|---|---|---|---|
10 | 20 | 30 | 60 | 90 | |||
Essential amino acid (EAA) | |||||||
Histidine | 12.52 ± 0.30 c | 14.73 ± 0.39 b | 14.26 ± 0.54 b | 14.42 ± 0.03 b | 15.63 ± 0.19 a | 14.94 ± 0.21 ab | 15 |
Isoleucine | 20.57 ± 0.94 | 19.92 ± 0.33 | 20.86 ± 1.78 | 20.69 ± 0.40 | 20.91 ± 0.92 | 22.21 ± 1.40 | 30 |
Leucine | 38.74 ± 1.20 b | 44.47 ± 0.03 a | 44.45 ± 1.26 a | 43.15 ± 0.18 a | 45.34 ± 2.37 a | 46.40 ± 2.82 a | 59 |
Lysine | 7.34 ± 0.17 b | 11.88 ± 0.29 a | 12.10 ± 0.42 a | 11.86 ± 0.38 a | 12.12 ± 0.43 a | 12.11 ± 0.49 a | 45 |
Methionine + Cysteine | 1.12 ± 0.08 | 2.31 ± 0.49 | 1.40 ± 0.11 | 1.85 ± 0.71 | 2.28 ± 0.26 | 2.03 ± 0.72 | 22 |
Phenylalanine + Tyrosine | 61.97 ± 2.74 | 60.41 ± 5.50 | 63.08 ± 1.06 | 58.12 ± 3.48 | 62.64 ± 1.14 | 64.09 ± 4.42 | 38 |
Threonine | 9.24 ± 0.46 b | 12.54 ± 0.38 a | 12.92 ± 0.38 a | 13.42 ± 0.77 a | 13.79 ± 0.08 a | 13.44 ± 0.69 a | 23 |
Valine | 6.74 ± 1.10 c | 9.86 ± 0.25 b | 9.34 ± 0.96 b | 11.01 ± 0.04 a | 11.24 ± 0.04 a | 11.23 ± 0.27 a | 39 |
Sum of EAA | 158.25 ± 5.58 b | 176.13 ± 7.60 a | 178.42 ± 1.65 a | 174.52 ± 5.85 a | 183.96 ± 4.84 a | 186.46 ± 4.85 a | 271 |
Non-essential amino acid | |||||||
Alanine | 13.49 ± 0.33 | 13.99 ± 1.10 | 13.09 ± 0.06 | 12.39 ± 0.31 | 13.57 ± 0.61 | 13.22 ± 0.03 | |
Arginine | 1.69 ± 0.30 b | 4.64 ± 0.78 a | 4.53 ± 1.17 a | 4.54 ± 0.53 a | 4.98 ± 0.78 a | 5.65 ± 0.79 a | |
Aspartic acid | 10.35 ± 0.68 c | 15.48 ± 0.63 a | 14.53 ± 0.37 a | 13.69 ± 0.40 b | 15.50 ± 0.90 a | 15.98 ± 1.00 a | |
Glutamic acid | 35.03 ± 0.82 b | 46.29 ± 0.45 a | 44.30 ± 1.49 a | 43.12 ± 1.01 a | 45.84 ± 1.23 a | 44.98 ± 1.90 a | |
Proline | 3.38 ± 0.28 d | 5.76 ± 0.88 c | 7.01 ± 0.40 c | 9.25 ± 0.74 b | 11.47 ± 0.17 a | 11.78 ± 0.06 a | |
Glycine | 8.90 ± 0.59 | 7.81 ± 1.08 | 7.23 ± 0.35 | 7.59 ± 0.10 | 7.64 ± 0.12 | 7.56 ± 0.42 | |
Serine | 18.71 ± 0.60 b | 22.60 ± 0.53 a | 21.69 ± 0.04 a | 22.50 ± 0.69 a | 23.10 ± 1.03 a | 21.48 ± 1.33 a | |
Sum of total AA | 249.78 ± 6.82 b | 292.69 ± 11.49 a | 290.78 ± 0.19 a | 287.59 ± 6.80 a | 306.07 ± 7.77 a | 307.12 ± 10.27 a | |
Protein quality | 18.39 ± 0.31 b | 22.77 ± 0.97 a | 21.77 ± 0.37 a | 22.36 ± 1.45 a | 23.70 ± 0.12 a | 23.44 ± 0.76 a |
Traits | Control 1) | Incubation Time (min) | ||||
---|---|---|---|---|---|---|
10 | 20 | 30 | 60 | 90 | ||
pH | 7.16 ± 0.03 b | 7.61 ± 0.06 a | 7.62 ± 0.07 a | 7.63 ± 0.08 a | 7.62 ± 0.10 a | 7.63 ± 0.08 a |
CIE L* 2) | 15.39 ± 0.03 d | 16.20 ± 0.01 c | 16.28 ± 0.10 bc | 16.30 ± 0.09 ab | 16.29 ± 0.09 ab | 16.37 ± 0.02 a |
CIE a* | 2.08 ± 0.10 a | 1.75 ± 0.13 b | 1.79 ± 0.10 b | 1.86 ± 0.15 b | 1.79 ± 0.11 b | 1.80 ± 0.11 b |
CIE b* | 0.48 ± 0.10 c | 0.49 ± 0.07 bc | 0.49 ± 0.05 bc | 0.45 ± 0.05 bc | 0.56 ± 0.05 ab | 0.62 ± 0.04 a |
Traits | Control 1) | Incubation Time (min) | ||||
---|---|---|---|---|---|---|
10 | 20 | 30 | 60 | 90 | ||
Onset temperature 2) | 36.03 ± 0.03 d | 40.03 ± 0.01 d | 49.50 ± 1.89 c | 55.06 ± 3.91 b | 58.44 ± 0.71 ab | 60.72 ± 1.29 a |
Peak temperature | 47.86 ± 1.20 d | 52.37 ± 3.28 c | 57.66 ± 1.41 b | 60.28 ± 1.77 ab | 62.35 ± 0.71 a | 63.82 ± 0.01 a |
End temperature | 61.33 ± 0.61 d | 63.88 ± 0.22 c | 66.85 ± 0.12 b | 67.53 ± 0.03 b | 68.89 ± 0.81 a | 68.56 ± 0.07 a |
∆ H | 2.52 ± 0.72 a | 0.89 ± 0.01 b | 0.73 ± 0.10 b | 0.60 ± 0.02 b | 0.33 ± 0.08 b | 0.22 ± 0.08 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-K.; Yong, H.I.; Jang, H.W.; Kim, Y.-B.; Choi, Y.-S. Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase. Foods 2020, 9, 591. https://doi.org/10.3390/foods9050591
Kim T-K, Yong HI, Jang HW, Kim Y-B, Choi Y-S. Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase. Foods. 2020; 9(5):591. https://doi.org/10.3390/foods9050591
Chicago/Turabian StyleKim, Tae-Kyung, Hae In Yong, Hae Won Jang, Young-Boong Kim, and Yun-Sang Choi. 2020. "Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase" Foods 9, no. 5: 591. https://doi.org/10.3390/foods9050591
APA StyleKim, T. -K., Yong, H. I., Jang, H. W., Kim, Y. -B., & Choi, Y. -S. (2020). Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase. Foods, 9(5), 591. https://doi.org/10.3390/foods9050591