Effect of Yogurt Fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 Derived from a Mongolian Traditional Dairy Product on Rats with High-Fat-Diet-Induced Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Fermentation
2.2. Yogurt Preparation
2.3. pH, Titratable Acidity, and LAB Density
2.4. Viscosity and Syneresis
2.5. Animals and Treatments
2.6. Analysis of Blood Serum and Organ Weight
2.7. Measurement of Adipocytes
2.8. Statistical Analysis
3. Results and Discussion
3.1. pH, Titratable Acidity, and the Number of LAB
3.2. Viscosity and Syneresis
3.3. Body Weight and Food Intake
3.4. Weight of Organs and Fat
3.5. Serum Biochemistry
3.6. Adipocyte Tissue Size
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourlioux, P.; Koletzko, B.; Guarner, F.; Braesco, V. The intestine and its microflora are partners for the protection of the host: Report in Danone symposium the intelligent intestine. Am. J. Clin. Nutr. 2003, 78, 675–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, G. Functional Food, Biochemical and Processing Aspects; Taylo and Francis, GP. LLC.: Roca Raton, FL, USA, 1998; pp. 357–374. [Google Scholar]
- Cho, Y.H.; Shin, H.J.; Chang, C.H.; Nam, M.S. Studies on the development of the yogurt decreasing blood glucose. Korean J. Food Sci. Anim. Resour. 2006, 26, 257–262. [Google Scholar]
- Axelsson, R. Lactic Acid Bacteria: Microbiology and Functional Aspects; Salminen, S., von Wright, A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1998; pp. 1–53. [Google Scholar]
- Parvez, S.; Malik, K.A.; Kang, S.A.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.I.; Gibson, G.R. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit. Rev. Biochem. Mol. Biol. 2002, 37, 259–281. [Google Scholar] [CrossRef] [PubMed]
- Usman; Hosono, A. Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J. Dairy Sci. 2000, 83, 1705–1711. [Google Scholar] [CrossRef]
- Wickelgren, I. Obesity: How big a problem? Science 1998, 280, 1364–1367. [Google Scholar] [CrossRef]
- Haslam, D.W.; James, W.P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Jin, D.; Xu, Y.; Mei, X.; Meng, Q.; Gao, Y.; Li, B.; Tu, Y. Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats. J. Funct. Foods 2013, 5, 1142–1150. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Kaser, A. Obesity and the microbiota. Gastroenterology 2009, 136, 1476–1483. [Google Scholar] [CrossRef]
- Dhurandhar, N.V. A framework for identification of infections that contribute to human obesity. Lancet Infect. Dis. 2011, 11, 963–969. [Google Scholar] [CrossRef]
- DiBaise, J.K.; Zhang, H.; Crowell, M.D.; Krajmalnik-Brown, R.; Decker, G.A.; Rittmann, B.E. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc. 2008, 83, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. Jpn. J. Lact. Acid Bact. 2011, 22, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Uchida, K.; Hirata, M.; Motoshima, H.; Urashima, T.; Arai, I. Microbiota of ‘airag’, ‘tarag’ and other kinds of fermented dairy products from nomad in Mongolia. Anim. Sci. J. 2007, 78, 650–658. [Google Scholar] [CrossRef]
- Watanabe, K.; Fujimoto, J.; Sasamoto, M.; Dugersuren, J.; Tumursuh, T.; Demberel, S. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 2008, 24, 1313–1325. [Google Scholar] [CrossRef]
- Miyamoto, M.; Seto, Y.; Nakajima, H.; Burenjargal, S.; Gombojav, A.; Demberel, S.; Miyamoto, T. Denaturing gradient gel electrophoresis analysis of lactic acid bacteria and yeasts in traditional Mongolian fermented milk. Food Sci. Technol. Res. 2010, 16, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Yamasaki, K.; Takeshita, M.; Kikuchi, Y.; Tsend-Ayush, C.; Dashnayam, B.; Ahhmed, A.M.; Kawahara, S.; Muguruma, M. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim. Sci. J. 2011, 82, 571–579. [Google Scholar] [CrossRef]
- Yu, J.; Wang, W.H.; Menghe, B.L.; Jiri, M.T.; Wang, H.M.; Liu, W.J.; Bao, Q.H.; Lu, Q.; Zhang, J.C.; Wang, F.; et al. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci. 2011, 94, 3229–3241. [Google Scholar] [CrossRef] [Green Version]
- Mikelsaar, M.; Zilmer, M. Lactobacillus fermentum ME-3—An antimicrobial and antioxidative probiotic. Microb. Ecol. Health Dis. 2009, 21, 1–27. [Google Scholar]
- Keogh, M.K.; O’kennedy, B.T. Rheology of stirred yogurt as affected by added milk fat, protein and hydrocolloids. J. Food Sci. 1998, 63, 108–112. [Google Scholar] [CrossRef]
- Hirsch, J.; Gallian, E. Methods of determining adipose cell size in man and animals. J. Lipid Res. 1968, 9, 110–119. [Google Scholar]
- Van Goor, H.; Gerrits, P.O.; Grond, J. The application of lipid-soluble stains in plastic-embedded sections. Histochemistry 1986, 85, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Zhao, Y. Wine grape pomace as antioxidant dietary fiber for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Hwang, H.J. Quality characteristics of curd yogurt with rubus coreanum miquel Juice. Korean J. Culin. Res. 2006, 12, 195–205. [Google Scholar]
- Şenel, E.; Atamer, M.; Gürsoy, A.; Öztekin, F.Ş. Changes in some properties of strained (Süzme) goat’s yoghurt during storage. Small Rumin. Res. 2011, 99, 171–177. [Google Scholar] [CrossRef]
- Davis, J.G. Laboratory control of yogurt. Dairy Ind. 1970, 35, 139–144. [Google Scholar]
- Kroger, M.; Weaver, J.C. Confusion about yogurt–compositional and otherwise. J. Milk Food Technol. 1973, 36, 388–391. [Google Scholar] [CrossRef]
- Visser, J.; Minihan, A.; Smits, P.; Tjan, S.B.; Heertje, I. Effects of pH and temperature on the milk salt system. Neth. Milk Dairy J. 1986, 40, 351–368. [Google Scholar]
- Marchesseau, S.; Gastaldi, E.; Lagaude, A.; Cuq, J.-L. Influence of pH on protein interactions and microstructure of process cheese. J. Dairy Sci. 1997, 80, 1483–1489. [Google Scholar] [CrossRef]
- Pastorino, A.J.; Hansen, C.L.; Mcmahon, D.J. Effect of pH on the chemical composition and structure-function relationships of cheddar cheese. J. Dairy Sci. 2003, 86, 2751–2760. [Google Scholar] [CrossRef] [Green Version]
- Bouzar, F.; Cerning, J.; Desmazeaud, M. Exopolysaccharide producing and texture promoting abilities of mixed strain starter cultures in yogurt producing. J. Dairy Sci. 1997, 80, 2310–2317. [Google Scholar] [CrossRef]
- Park, S.Y.; Seoung, K.S.; Lim, S.D. Anti-obesity Effect of Yogurt Fermented by Lactobacillus plantarum Q180 in Diet-induced Obese Rats. Korean J. Food Sci. Anim. Resour. 2016, 36, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Liu, F. Up- and down-regulation of adiponectin expression and multimerization: Mechanisms and therapeutic implication. Biochimie 2012, 94, 2126–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, K.Y.; Halo, P.; Leibel, R.L.; Zhang, Y. Effects of obesity on the relationship of leptin mRNA expression and adipocyte size in anatomically distinct fat depots in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R112–R119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaym, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Marques, B.G.; Hausman, D.B.; Martin, R.J. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
Ingredients (g) | CON | Treatments |
---|---|---|
Milk | 850 | 850 |
Powdered skim milk | 40 | 40 |
Sugar | 15 | 15 |
Pectin | 2 | 2 |
Distilled water | 105 | 105 |
Starter | 0.2 (g) | 10 (mL) |
Total | 1012.2 | 1022 |
Ingredient 1) | Standard Diet (AIN-93G Purified Diet) | High-Fat Diet (Rodent Diet with 45% kcal% Fat) | ||
---|---|---|---|---|
gm% | kcal% | gm% | kcal% | |
Protein | 20.0 | 20.3 | 24.0 | 20.0 |
Carbohydrate | 64.0 | 63.9 | 41.0 | 35.0 |
Fat | 7.0 | 15.8 | 24.0 | 45.0 |
Total kcal/gm | 3.9 | 4.7 | ||
Casein, 30 Mesh | 200 | 800 | 233.1 | 932 |
L-cystine | 3 | 12 | 3.5 | 14 |
Corn Starch | 397 | 1590 | 84.8 | 339 |
Maltodextrin | 132 | 528 | 116.5 | 466 |
Sucrose | 100 | 400 | 201.4 | 805 |
Cellulose | 50 | 0 | 58.3 | 0 |
Soybean Oil | 60 | 630 | 29.1 | 262 |
Lard 2) | 0 | 0 | 206.8 | 1862 |
t-Butylhydroquinone | 0.014 | 0 | 0 | 0 |
Mineral Mix | 35 | 0 | 11.7 | 0 |
Dicalcium Phosphate | 0 | 0 | 15.1 | 0 |
Calcium carbonate | 0 | 0 | 6.4 | 0 |
Potassium citrate, 1H2O | 0 | 0 | 19.2 | 0 |
Vitamin Mix | 10 | 40 | 11.7 | 47 |
Choline Bitartrate | 2.5 | 0 | 2.3 | 0 |
FD&C Red Dye #40 | 0 | 0 | 0.1 | 0 |
Total | 1000 | 4000 | 1000 | 4727.6 |
CON | TSI2 | S2 | MIX | |
---|---|---|---|---|
Before fermentation pH | 6.60 ± 0.01 c | 6.62 ± 0.01 bc | 6.64 ± 0.03 ab | 6.66 ± 0.02 a |
Immediately after fermentation pH | 4.45 ± 0.01 ns | 4.48 ± 0.01 | 4.53 ± 0.13 | 4.56 ± 0.11 |
After stabilizing pH | 4.17 ± 0.02 b | 4.29 ± 0.02 a | 4.28 ± 0.03 a | 4.26 ± 0.01 a |
CON | TSI2 | S2 | MIX | |
---|---|---|---|---|
Titratable acidity (%) | 1.01 ± 0.00 a | 0.91 ± 0.04 b | 0.88 ± 0.04 b | 0.90 ± 0.01 b |
Lactic acid bacteria (Log CFU/g) | 9.43 ± 0.33 ns | 9.40 ± 0.34 | 9.28 ± 0.27 | 10.07 ± 0.53 |
CON | TSI2 | S2 | MIX | |
---|---|---|---|---|
Viscosity (cp) | 827.00 ± 24.52 a | 420.75 ± 94.24 b | 377.50 ± 49.18 b | 316.51 ± 44.37 b |
Syneresis (%) | 58.00 ± 0.58 b | 69.43 ± 0.37 a | 71.33 ± 2.54 a | 73.35 ± 1.97 a |
NOR 1) | HF | TSI | S2 | MIX | |
---|---|---|---|---|---|
Body Weight (g/rat) | |||||
Initial | 249.8 ± 7.0 NS | 249.8 ± 6.3 | 250.2 ± 6.0 | 249.5 ± 6.1 | 250.0 ± 6.3 |
Final | 420.8 ± 4.1 a | 487.5 ± 16.2 b | 497.7 ± 26.9 b | 485.7 ± 29.8 b | 483.0 ± 15.3 b |
Weight gain | 153.0 ± 3.52 | 237.7 ± 10.1 | 247.5 ± 21.1 | 236.2 ± 24.7 | 233.0 ± 9.3 |
Weight gain rate (%) 2) | 0 | 55.3 | 61.8 | 54.4 | 52.3 |
Weight loss rate (%) 3) | 55.3 | 0 | −4.0 | 0.6 | 2.0 |
Food Intake | |||||
Total (g/rat) | 1008.0 ± 0.0 NS | 1009.2 ± 99.1 | 1009.8 ± 72.1 | 1007.0 ± 40.8 | 1008.5 ± 75.9 |
Daily (g/daily/rat) | 18.0 ± 0.0 NS | 18.0 ± 1.5 | 18.0 ± 1.1 | 18.0 ± 0.6 | 17.9 ± 1.2 |
FER 4) | 15.2 ± 0.3 a | 23.7 ± 1.4 b | 24.5 ± 0.7 b | 23.4 ± 1.8 b | 23.2 ± 1.0 b |
NOR | HF | TSI | S2 | MIX | |
---|---|---|---|---|---|
Liver | 8.93 ± 0.12 a | 13.29 ± 1.98 bc | 12.23 ± 1.01 bc | 11.78 ± 0.69 b | 13.70 ± 0.48 c |
Kidney | 2.27 ± 0.06 a | 2.55 ± 0.15 b | 2.49 ± 0.21 ab | 2.39 ± 0.11 ab | 2.48 ± 0.13 ab |
Spleen | 0.71 ± 0.03 b | 0.66 ± 0.06 ab | 0.62 ± 0.05 ab | 0.62 ± 0.06 a | 0.68 ± 0.07 ab |
Abdominal fat | 9.71 ± 1.85 a | 18.36 ± 3.10 b | 16.71 ± 1.71 b | 16.96 ± 3.26 b | 18.53 ± 3.87 b |
Epididymal fat | 8.21 ± 1.83 a | 13.42 ± 4.34 b | 14.38 ± 1.95 b | 13.11 ± 3.60 ab | 16.96 ± 2.28 b |
NOR | HF | TSI | S2 | MIX | |
---|---|---|---|---|---|
Total cholesterol | 57.2 ± 6.68 a | 72.8 ± 10.85 ab | 70.3 ± 20.72 ab | 81.7 ± 9.83 b | 76.3 ± 5.85 ab |
HDL-cholesterol | 55.5 ± 8.07 a | 56.2 ± 5.16 ab | 78.7 ± 12.48 c | 71.2 ± 11.99 bc | 63.7 ± 1.86 abc |
LDL-cholesterol | 11.0 ± 2.37 ab | 9.5 ± 0.55 a | 14.5 ± 4.04 b | 10.0 ± 2.61 a | 10.8 ± 2.32 ab |
Triglyceride | 75.8 ± 8.91 a | 125.0 ± 58.85 ab | 103.7 ± 12.80 ab | 130.2 ± 35.07 ab | 160.7 ± 65.55 b |
Glucose | 70.0 ± 11.05 a | 129.5 ± 14.39 b | 125.7 ± 19.37 b | 154.8 ± 10.55 c | 157.5 ± 12.31 c |
Leptin | 1304.5 ± 219.75 a | 3921.6 ± 937.88 b | 3453.7 ± 1119.57 b | 3964.3 ± 1779.8 b | 4132.8 ± 432.31 b |
Adiponectin | 19,974.9 ± 3276.02 c | 12033.7 ± 2219.51 a | 17447.2 ± 3840.83 bc | 12587.7 ± 1969.12 a | 12,923.3 ± 2301.64 ab |
AST | 169.5 ± 13.74 c | 99.0 ± 22.86 ab | 123.8 ± 23.89 bc | 99.0 ± 22.16 ab | 78.0 ± 16.88 a |
ALT | 35.7 ± 7.75 b | 34.2 ± 4.4 b | 32.2 ± 3.19 ab | 25.5 ± 4.23 a | 27.8 ± 3.71 ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, W.-Y.; Hong, G.-E.; Lee, H.-J.; Yeon, S.-J.; Paik, H.-D.; Hosaka, Y.Z.; Lee, C.-H. Effect of Yogurt Fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 Derived from a Mongolian Traditional Dairy Product on Rats with High-Fat-Diet-Induced Obesity. Foods 2020, 9, 594. https://doi.org/10.3390/foods9050594
Cho W-Y, Hong G-E, Lee H-J, Yeon S-J, Paik H-D, Hosaka YZ, Lee C-H. Effect of Yogurt Fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 Derived from a Mongolian Traditional Dairy Product on Rats with High-Fat-Diet-Induced Obesity. Foods. 2020; 9(5):594. https://doi.org/10.3390/foods9050594
Chicago/Turabian StyleCho, Won-Young, Go-Eun Hong, Ha-Jung Lee, Su-Jung Yeon, Hyun-Dong Paik, Yoshinao Z. Hosaka, and Chi-Ho Lee. 2020. "Effect of Yogurt Fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 Derived from a Mongolian Traditional Dairy Product on Rats with High-Fat-Diet-Induced Obesity" Foods 9, no. 5: 594. https://doi.org/10.3390/foods9050594
APA StyleCho, W. -Y., Hong, G. -E., Lee, H. -J., Yeon, S. -J., Paik, H. -D., Hosaka, Y. Z., & Lee, C. -H. (2020). Effect of Yogurt Fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 Derived from a Mongolian Traditional Dairy Product on Rats with High-Fat-Diet-Induced Obesity. Foods, 9(5), 594. https://doi.org/10.3390/foods9050594