Early Desertification Risk in Advanced Economies: Summarizing Past, Present and Future Trends in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources, Elementary Variables, and Partial Indicators
2.3. Deriving Scenarios for 2030
2.4. Data Analysis
3. Results
3.1. The Latent Increase in Land Degradation Exposure of Italian Regions
3.2. Profiling the Evolution over Time of the ESAI Scores in Italy
3.3. Reaching Zero Net Land Degradation _targets: The Condition of Italian Provinces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbari, M.; Alizadeh Noughani, M. Early warning systems for desertification hazard: A review of integrated system models and risk management. Model. Earth Syst. Environ. 2024, 22, 4611–4626. [Google Scholar] [CrossRef]
- Amiraslani, F.; Dragovich, D. Combating desertification in Iran over the last 50 years: An overview of changing approaches. J. Environ. Manag. 2011, 92, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Seifollahi-Aghmiuni, S.; Kalantari, Z.; Egidi, G.; Gaburova, L.; Salvati, L. Urbanisation-Driven Land Degradation and Socioeconomic Challenges in Peri-Urban Areas: Insights from Southern Europe. Ambio 2022, 51, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Grilli, E.; Carvalho, S.C.; Chiti, T.; Coppola, E.; D’Ascoli, R.; La Mantia, T.; Castaldi, S. Critical range of soil organic carbon in southern Europe lands under desertification risk. J. Environ. Manag. 2021, 287, 112285. [Google Scholar] [CrossRef] [PubMed]
- Vardopoulos, I.; D’Agata, A.; Escrivà Saneugenio, F.; Salvati, L. Sprawl and the City: Realizing a Sustainable Mediterranean Urbanization; Nova Science Publishers: Hauppauge, NY, USA, 2024; ISBN 9798895300060. [Google Scholar]
- Briassoulis, H. Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in multi-level governance contexts. Land Degrad. Dev. 2011, 22, 313–325. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 2015, 13, 28–36. [Google Scholar] [CrossRef]
- Becerril-Piña, R.; Mastachi-Loza, C.A.; González-Sosa, E.; Díaz-Delgado, C.; Bâ, K.M. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid Environ. 2015, 120, 4–13. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- Barbero-Sierra, C.; Marques, M.J.; Ruíz-Pérez, M. The case of urban sprawl in Spain as an active and irreversible driving force for desertification. J. Arid Environ. 2013, 90, 95–102. [Google Scholar] [CrossRef]
- Doukas, Y.E.; Salvati, L.; Vardopoulos, I. Unraveling the European Agricultural Policy Sustainable Development Trajectory. Land 2023, 12, 1749. [Google Scholar] [CrossRef]
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Prăvălie, R.; Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Chappell, A.; Birsan, M.V. A unifying modelling of multiple land degradation pathways in Europe. Nat. Commun. 2024, 15, 3862. [Google Scholar] [CrossRef] [PubMed]
- Vinci, S.; Vardopoulos, I.; Salvati, L. A Tale of a Shrinking City? Exploring the Complex Interplay of Socio-Demographic Dynamics in the Recent Development of Attica, Greece. Cities 2023, 132, 104089. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Săvulescu, I.; Sîrodoev, I.; Bandoc, G.; Sfîcă, L. Spatial assessment of land sensitivity to degradation across Romania. A quantitative approach based on the modified MEDALUS methodology. Catena 2020, 187, 104407. [Google Scholar] [CrossRef]
- Tsangaris, S.; Xepapadeas, A.; Yannacopoulos, A.N.; Salvati, L. Spatial Externalities, R&D Spillovers, and Endogenous Technological Change. Reg. Sci. Urban Econ. 2024, 109, 104055. [Google Scholar]
- Imeson, A. Desertification, Land Degradation and Sustainability; Wiley: London, UK, 2012. [Google Scholar]
- D’Agata, A.; Ciaschini, C.; Mosconi, E.M.; Rodrigo-Comino, J.; Vardopoulos, I.; Scarpitta, D.; Alhuseen, A.M.A.; Salvati, L. The Latent Shift from Monocentric to Polycentric Settlement Models. In Urban Crisis: Social and Economic Implications for Southern Europe; Sateriano, A., Ed.; Nova Science: Hauppauge, NY, USA, 2024; ISBN 9798891132429. [Google Scholar]
- De Fioravante, P.; Strollo, A.; Cavalli, A.; Cimini, A.; Smiraglia, D.; Assennato, F.; Munafò, M. Ecosystem Mapping and Accounting in Italy Based on Copernicus and National Data through Integration of EAGLE and SEEA-EA Frameworks. Land 2023, 12, 286. [Google Scholar] [CrossRef]
- Uzuner, Ç.; Dengiz, O. Desertification risk assessment in Turkey based on environmentally sensitive areas. Ecol. Indic. 2020, 114, 106295. [Google Scholar] [CrossRef]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Tsesmelis, D.E.; Oikonomou, P.D.; Kairis, O.; Kosmas, C.; Fassouli, V.; Quaranta, G. A desertification risk assessment decision support tool (DRAST). Catena 2020, 187, 104413. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Escrivà Saneugenio, F.; Sateriano, A.; Salvati, L. Homage (and Criticism) to the Mediterranean City. Regional Sustainability and Economic Resilience; River Publishers: New York, NY, USA, 2024; ISBN 9788770041775. [Google Scholar]
- Akbari, M.; Memarian, H.; Neamatollahi, E.; Jafari Shalamzari, M.; Alizadeh Noughani, M.; Zakeri, D. Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran. Environ. Dev. Sustain. 2021, 23, 2503–2523. [Google Scholar] [CrossRef]
- Türkeş, M.; Öztaş, T.; Tercan, E.; Erpul, G.; Karagöz, A.; Dengiz, O.; Avcıoğlu, B. Desertification vulnerability and risk assessment for Turkey via an analytical hierarchy process model. Land Degrad. Dev. 2020, 31, 205–214. [Google Scholar] [CrossRef]
- Egidi, G.; Quaranta, G.; Salvia, R.; Salvati, L.; Včeláková, R.; Cudlín, P. Urban sprawl and desertification risk: Unraveling the latent nexus in a Mediterranean country. J. Environ. Plan. Manag. 2021, 65, 441–460. [Google Scholar] [CrossRef]
- Rutigliano, F.A.; Marzaioli, R.; Grilli, E.; Coppola, E.; Castaldi, S. Microbial, physical and chemical indicators together reveal soil health changes related to land cover types in the southern European sites under desertification risk. Pedobiologia 2023, 99, 150894. [Google Scholar] [CrossRef]
- Egidi, G.; Salvati, L.; Vinci, S. The long way to tipperary: City size and worldwide urban population trends, 1950–2030. Sustain. Cities Soc. 2020, 60, 102148. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Alcalá, F.J.; Martínez, S. SAT: A software for assessing the risk of desertification in Spain. Sci. Program. 2020, 1, 7563928. [Google Scholar] [CrossRef]
- Ferrara, A.; Kosmas, C.; Salvati, L.; Padula, A.; Mancino, G.; Nolè, A. Updating the MEDALUS-ESA Framework for Worldwide Land Degradation and Desertification Assessment. Land Degrad. Dev. 2020, 31, 1593–1607. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, S.C.; Silva, R.; Rocha, A. Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios. Clim. Chang. 2022, 174, 28. [Google Scholar] [CrossRef]
- Grainger, A. The role of science in implementing international environmental agreements: The case of desertification. Land Degrad. Dev. 2009, 20, 410–430. [Google Scholar] [CrossRef]
- Hammad, A.A.; Tumeizi, A. Land degradation: Socioeconomic and environmental causes and consequences in the eastern Mediterranean. Land Degrad. Dev. 2012, 23, 216–226. [Google Scholar] [CrossRef]
- Kirkby, M. Desertification and development: Some broader contexts. J. Arid. Environ. 2021, 193, 104575. [Google Scholar] [CrossRef]
- Salvati, L.; Venezian Scarascia, M.E.; Sabbi, A.; Zitti, M.; Perini, L. Breve excursus sul clima italiano con riferimenti al settore agricolo. Boll. Della Soc. Geogr. Ital. 2011, 3, 295–310. [Google Scholar]
- Martínez-Valderrama, J.; Del Barrio, G.; Sanjuán, M.E.; Guirado, E.; Maestre, F.T. Desertification in Spain: A sound diagnosis without solutions and new scenarios. Land 2022, 11, 272. [Google Scholar] [CrossRef]
- Hubacek, K.; Van Den Bergh, J.C.J.M. Changing concepts of ‘land’ in economic theory: From single to multi-disciplinary approaches. Ecol. Econ. 2006, 56, 5–27. [Google Scholar] [CrossRef]
- Ibáñez, J.; Valderrama, J.M.; Puigdefábregas, J. Assessing desertification risk using system stability condition analysis. Ecol. Model. 2008, 213, 180–190. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Kosmas, C.; Tsara, M.; Karavitis, C.A. Identification of indicators for desertification Effects of using treated municipal waste water for irrigation of olive trees in Greece. Ann. Arid Zones 2003, 42, 393–416. [Google Scholar]
- Sterk, G.; Stoorvogel, J.J. Desertification–scientific versus political realities. Land 2020, 9, 156. [Google Scholar] [CrossRef]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Bajocco, S.; De Angelis, A.; Salvati, L. A satellite-based green index as a proxy for vegetation cover quality in a Mediterranean region. Ecol. Indic. 2012, 23, 578–587. [Google Scholar] [CrossRef]
- Juntti, M.; Wilson, G.A. Conceptualizing desertification in Southern Europe: Stakeholder interpretations and multiple policy agendas. Eur. Environ. 2005, 15, 228–249. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Alliouche, A.; Kouba, Y. Modelling the spatiotemporal dynamics of land susceptibility to desertification in Algeria. Catena 2023, 232, 107437. [Google Scholar] [CrossRef]
- Sgroi, F. Social agriculture is a strategy to prevent the phenomenon of abandonment in mountain areas and areas at risk of desertification. J. Agric. Food Res. 2022, 10, 100454. [Google Scholar] [CrossRef]
- Lanfredi, M.; Egidi, G.; Bianchini, L.; Salvati, L. One size does not fit all: A tale of polycentric development and land degradation in Italy. Ecol. Econ. 2022, 192, 107256. [Google Scholar] [CrossRef]
- Kulik, K.N.; Belyaev, A.I.; Pugacheva, A.M. The Role of Protective Afforestation in Drought and Desertification Control in Agro-Landscapes. Arid Ecosyst. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Latorre, J.G.; García-Latorre, J.; Sanchez-Picón, A. Dealing with aridity: Socio-economic structures and environmental changes in an arid Mediterranean region. Land Use Policy 2001, 18, 53–64. [Google Scholar] [CrossRef]
- Mihi, A.; Ghazela, R.; Wissal, D. Mapping potential desertification-prone areas in North-Eastern Algeria using logistic regression model, GIS, and remote sensing techniques. Environ. Earth Sci. 2022, 81, 385. [Google Scholar] [CrossRef]
- Kairis, O.; Karamanos, A.; Voloudakis, D.; Kapsomenakis, J.; Aratzioglou, C.; Zerefos, C.; Kosmas, C. Identifying degraded and sensitive to desertification agricultural soils in Thessaly, Greece, under simulated future climate scenarios. Land 2022, 11, 395. [Google Scholar] [CrossRef]
- Sun, C.; Feng, X.; Fu, B.; Ma, S. Desertification vulnerability under accelerated dryland expansion. Land Degrad. Dev. 2023, 34, 1991–2004. [Google Scholar] [CrossRef]
- Salvia, R.; Quaranta, V.; Sateriano, A.; Quaranta, G. Land Resource Depletion, Regional Disparities, and the Claim for a Renewed ‘Sustainability Thinking’ under Early Desertification Conditions. Resources 2022, 11, 28. [Google Scholar] [CrossRef]
- Perović, V.; Kadović, R.; Đurđević, V.; Pavlović, D.; Pavlović, M.; Čakmak, D.; Pavlović, P. Major drivers of land degradation risk in Western Serbia: Current trends and future scenarios. Ecol. Indic. 2021, 123, 107377. [Google Scholar] [CrossRef]
- Gianoli, F.; Weynants, M.; Cherlet, M. Land degradation in the European Union—Where does the evidence converge? Land Degrad. Dev. 2023, 34, 2256–2275. [Google Scholar] [CrossRef]
- Prokopová, M.; Cudlín, O.; Včeláková, R.; Lengyel, S.; Salvati, L.; Cudlín, P. Latent Drivers of Landscape Transformation in Eastern Europe: Past, Present and Future. Sustainability 2018, 10, 2918. [Google Scholar] [CrossRef]
- D’Agata, A.; Cudlin, P.; Vardopoulos, I.; Schinaia, G.; Corona, P.; Salvati, L. Assessing the Spatial Coherence of Forest Cover Indicators from Different Data Sources: A Contribution to Sustainable Development Reporting. Ecol. Indic. 2024, 158, 111498. [Google Scholar] [CrossRef]
- Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban–rural gradient structure: An application in a Mediterranean mountainous landscape. Earth Syst. Dyn. 2012, 3, 263–279. [Google Scholar] [CrossRef]
- Perrin, C.; Nougarèdes, B.; Sini, L.; Branduini, P.; Salvati, L. Governance changes in peri-urban farmland protection following decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 2018, 70, 535–546. [Google Scholar] [CrossRef]
- Wijitkosum, S. Reducing vulnerability to desertification by using the spatial measures in a degraded area in Thailand. Land 2020, 9, 49. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Sakellariou, S. Quantitative classification of desertification severity for degraded aquifer based on remotely sensed drought assessment. Hydrology 2021, 8, 47. [Google Scholar] [CrossRef]
- Lyu, Y.; Shi, P.; Han, G.; Liu, L.; Guo, L.; Hu, X.; Zhang, G. Desertification control practices in China. Sustainability 2020, 12, 3258. [Google Scholar] [CrossRef]
- Masoudi, M.; Elhaeesahar, M.; Cerdà, A. Risk assessment of land degradation (RALDE) in Khuzestan Province, Iran. Eurasian Soil Sci. 2021, 54, 1228–1240. [Google Scholar] [CrossRef]
- Ibáñez, J.; Gartzia, R.; Alcalá, F.J.; Martínez-Valderrama, J. The importance of Prevention in tackling desertification: An Approach to anticipate risks of degradation in Coastal Aquifers. Land 2022, 11, 1626. [Google Scholar] [CrossRef]
- Ferrara, A.; Salvati, L.; Sabbi, A.; Colantoni, A. Soil Resources, Land Cover Changes and Rural Areas: Towards a Spatial Mismatch? Sci. Total Environ. 2014, 478, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Vardopoulos, I.; Maialetti, M.; Scarpitta, D.; Salvati, L. Spatially Explicit Analysis of Landscape Structures, Urban Growth, and Economic Dynamics in Metropolitan Regions. Urban Sci. 2024, 8, 150. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Q.; Guan, Q.; Zhang, J.; Yang, X.; Liu, Z. Environmental sensitivity assessment of land desertification in the Hexi Corridor, China. Catena 2023, 220, 106728. [Google Scholar] [CrossRef]
- Salako, G.; Adebayo, A.; Sawyerr, H.; Badmos, B.; Adio, A.; Jambo, U.M. MODIS derived vegetation and aridity indices account for spatial variation in desertification risk index in dry environment. Int. J. Ecol. Dev. 2021, 36, 46. [Google Scholar]
- Martínez-Valderrama, J.; Guirado, E.; Maestre, F.T. Unraveling misunderstandings about desertification: The paradoxical case of the Tabernas-Sorbas Basin in Southeast Spain. Land 2020, 9, 269. [Google Scholar] [CrossRef]
- Afzali, S.F.; Khanamani, A.; Maskooni, E.K.; Berndtsson, R. Quantitative assessment of environmental sensitivity to desertification using the modified MEDALUS model in a semiarid area. Sustainability 2021, 13, 7817. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Ioannides, S.; Georgiou, M.; Voukkali, I.; Salvati, L.; Doukas, Y.E. Shaping Sustainable Cities: A Long-Term GIS-Emanated Spatial Analysis of Settlement Growth and Planning in a Coastal Mediterranean European City. Sustainability 2023, 15, 11202. [Google Scholar] [CrossRef]
- Fadl, M.E.; Abuzaid, A.S.; AbdelRahman, M.A.; Biswas, A. Evaluation of desertification severity in El-Farafra Oasis, Western Desert of Egypt: Application of modified MEDALUS approach using wind erosion index and factor analysis. Land 2021, 11, 54. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Abdul, J. Assessment of land sensitivity to desertification for Al Mussaib project using MEDALUS approach. Casp. J. Environ. Sci. 2022, 20, 177–196. [Google Scholar]
- Berberoglu, S.; Cilek, A.; Kirkby, M.; Irvine, B.; Donmez, C. Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environ. Monit. Assess. 2020, 192, 491. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Yan, W.; Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 2021, 781, 146777. [Google Scholar] [CrossRef]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Zasada, I.; Loibl, W.; Köstl, M.; Piorr, A. Agriculture under human influence: A spatial analysis of farming systems and land use in European rural-urban-regions. Eur. Countrys. 2013, 5, 71–88. [Google Scholar] [CrossRef]
- Zucca, C.; Della Peruta, R.; Salvia, R.; Sommer, S.; Cherlet, M. Towards a World Desertification Atlas. Relating and selecting indicators and data sets to represent complex issues. Ecol. Indic. 2012, 15, 157–170. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y.; Zhang, Y. Land desertification and its influencing factors in Kazakhstan. J. Arid Environ. 2020, 180, 104203. [Google Scholar] [CrossRef]
- Rivera-Marin, D.; Dash, J.; Ogutu, B. The use of remote sensing for desertification studies: A review. J. Arid Environ. 2022, 206, 104829. [Google Scholar]
Theme | Variable | Scale | Unit of Measure | Source |
---|---|---|---|---|
Soil quality | Soil texture | 1:500,000 | Sensitivity class | Ministry of Agriculture, European soil database |
Soil Depth | 1:500,000 | mm | Ministry of Agriculture, European soil database | |
Available Water Capacity | 1:500,000 | mm | Ministry of Agriculture, European soil database | |
Slope | 1:25,000 | % | Ministry of Environment | |
Climate quality | Annual mean rainfall rate | 1:500,000 | mm | Meteorological statistics |
Aridity index | 1:500,000 | mm/mm | Meteorological statistics | |
Aspect | 1:25,000 | Angle | Ministry of Environment | |
Vegetation quality | Wildfire risk | 1:100,000 | Sensitivity class | Corine Land Cover |
Soil erosion protection | 1:100,000 | Sensitivity class | Corine Land Cover | |
Drought resistance | 1:100,000 | Sensitivity class | Corine Land Cover | |
Plant cover | 1:100,000 | Sensitivity class | Corine Land Cover | |
Land management quality | Population density | 1:500,000 | Population km−2 | Census of Household |
Population growth rate | 1:500,000 | % | Census of Household | |
Land-use intensity | 1:100,000 | Sensitivity class | Corine Land Cover |
Soil Quality (SQI) | Vegetation Quality (VQI) | ||||
---|---|---|---|---|---|
Texture | Score | Fire Risk | Vegetation Type | Corine Class | Score |
S | 2.00 | Barren; Permanent agriculture; Crops | 2.1.2., 2.2.1., 2.2.2., 2.2.3, 3.3.3, 3.3.4, 4.2.3 | 1.00 | |
Si, C, SiC | 1.67 | Cereals; Grasslands; Deciduous forests | 2.1.1., 2.4.1., 2.4.2., 2.4.3, 2.4.4., 3.1.1., 3.1.3., 3.2.1, 3.2.4 | 1.33 | |
SC, SiL, SiCL | 1.33 | Mediterranean maquis | 3.2.3 | 1.67 | |
L, SCL, SL, LS, CL | 1.00 | Conifer | 3.1.2 | 2.00 | |
Soil depth | Soil erosion protection | ||||
<15 | 2.00 | Mixed Mediterranean maquis-evergreen wood | 2.4.4., 3.1.3., 3.2.4. | 1.0 | |
15–30 | 1.67 | Mediterranean maquis; Conifer wood; Evergreen permanent agriculture (olive trees); Permanent grassland | 3.2.3., 3.1.2., 3.2.1., 3.2.3. | 1.3 | |
30–75 | 1.33 | Deciduous wood | 3.1.1. | 1.6 | |
>75 | 1.00 | Permanent agriculture (orchard) | 2.2.2. | 1.8 | |
Crops; Grasslands; Barren | 2.1.1., 2.1.2., 2.2.1., 2.4.1., 2.4.2., 2.4.3., 3.3.3., 3.3.4., 4.2.3. | 2.0 | |||
Available water capacity | Drought resistance | ||||
<80 | 2.00 | Mixed Mediterranean maquis-evergreen wood | 3.2.3., 3.2.4., 3.3.3., 3.3.4. | 1.0 | |
80–120 | 1.67 | Conifer; Deciduous; olives | 2.2.3., 3.1.1., 3.1.2., 3.1.3. | 1.2 | |
120–180 | 1.33 | Permanent agriculture | 2.2.1., 2.2.2., 2.4.4. | 1.4 | |
>180 | 1.00 | Permanent grasslands | 2.4.1., 3.2.1., 4.2.3. | 1.7 | |
Slope | Crops; Barren | 2.1.1., 2.1.2., 2.4.2., 2.4.3. | 2.0 | ||
>35% | 2.00 | Vegetation cover | |||
18–35% | 1.67 | >40% | 1.0 | ||
6–18% | 1.33 | 10–40% | 2.1.1., 2.2.1., 2.2.2., 2.2.3., 2.4.1., 2.4.2., 2.4.3., 2.4.4., 3.2.1., 4.2.3. | 1.8 | |
<6% | 1.00 | <10% | 3.3.3., 3.3.4. | 2.0 | |
Climate quality (CQI) | Land Management quality (MQI) | ||||
Aridity index | Land-use intensity | Corine class | Score | ||
<0.5 | 2.0 | Olive; Deciduous and conifer wood; Mediterranean maquis | 2.1.2., 2.2.1., 2.2.2., 2.4.2. | 1.00 | |
0.5–0.65 | 1.8 | Mixed woodland-farmland areas | 3.2.4., 3.3.4. | 1.33 | |
0.65–0.8 | 1.6 | Annual crops (not irrigated); Permanent grassland | 2.1.1., 2.3.1., 2.4.1., 2.4.3. | 1.67 | |
0.8–1.0 | 1.4 | Permanent (and irrigated) agriculture | 2.1.2., 2.2.1., 2.2.2., 2.4.2. | 2.00 | |
1.0–1.5 | 1.2 | Population density | |||
>1.5 | 1.0 | <100 | 1.0 | ||
Annual rainfall rate | 100–200 | 1.2 | |||
<280 | 2.0 | 200–400 | 1.4 | ||
280–650 | 1.5 | 400–700 | 1.6 | ||
>650 | 1.0 | 700–1000 | 1.8 | ||
Aspect | >1000 | 2.0 | |||
−1° | 1.00 | Population growth rate | |||
225–359° | 1.00 | <20% | 1.0 | ||
0–135° | 1.00 | 20–40% | 1.5 | ||
136–224° | 2.00 | >40% | 2.0 |
ESAI Score | Class | Land Description (Examples) |
---|---|---|
<1.175 | Unaffected | Areas unexposed to early desertification risk |
1.175–1.225 | Potentially affected | Areas potentially exposed to early desertification risk, under climate warming, depending on a particular combination of land-use or where off-site impacts will produce severe issues in surrounding territories |
1.225–1.375 | Fragile | Areas in which any changes in the delicate balance of natural and human activities is likely to bring about LD. For instance, the impact of predicted climate change could affect vegetation cover, intensify soil erosion, and finally shift the level of sensitivity of the area to the ‘critical’ class. A land-use change (e.g., a shift towards cereal cultivation on sensitive soils) might produce immediate increase in runoff and soil erosion, and perhaps pesticide and fertilizer pollution down-stream |
>1.375 | Critical | Areas already degraded because past land misuse, showing a threat to the environment of the surrounding land (e.g., badly eroded areas experiencing severe runoff and sediment loss). |
Region | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 | 2020 | S1 | S2 | S3 | S4 |
---|---|---|---|---|---|---|---|---|---|---|---|
North | 1.326 | 1.343 | 1.338 | 1.337 | 1.340 | 1.353 | 1.358 | 1.357 | 1.366 | 1.355 | 1.364 |
Centre | 1.332 | 1.350 | 1.358 | 1.349 | 1.350 | 1.357 | 1.354 | 1.362 | 1.376 | 1.359 | 1.373 |
South | 1.383 | 1.417 | 1.410 | 1.396 | 1.408 | 1.409 | 1.394 | 1.399 | 1.410 | 1.399 | 1.410 |
Italy | 1.345 | 1.367 | 1.365 | 1.358 | 1.363 | 1.371 | 1.368 | 1.371 | 1.382 | 1.369 | 1.380 |
Region | 60–90% | 90–20% | 20-S3% | 20-S2% |
---|---|---|---|---|
North | 41.7 | 6.3 | 64.6 | 14.6 |
Centre | 17.9 | 46.4 | 28.6 | 14.3 |
South | 32.4 | 44.1 | 38.2 | 20.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maialetti, M.; Halbac-Cotoara-Zamfir, R.; Vardopoulos, I.; Salvati, L. Early Desertification Risk in Advanced Economies: Summarizing Past, Present and Future Trends in Italy. Earth 2024, 5, 690-706. https://doi.org/10.3390/earth5040036
Maialetti M, Halbac-Cotoara-Zamfir R, Vardopoulos I, Salvati L. Early Desertification Risk in Advanced Economies: Summarizing Past, Present and Future Trends in Italy. Earth. 2024; 5(4):690-706. https://doi.org/10.3390/earth5040036
Chicago/Turabian StyleMaialetti, Marco, Rares Halbac-Cotoara-Zamfir, Ioannis Vardopoulos, and Luca Salvati. 2024. "Early Desertification Risk in Advanced Economies: Summarizing Past, Present and Future Trends in Italy" Earth 5, no. 4: 690-706. https://doi.org/10.3390/earth5040036
APA StyleMaialetti, M., Halbac-Cotoara-Zamfir, R., Vardopoulos, I., & Salvati, L. (2024). Early Desertification Risk in Advanced Economies: Summarizing Past, Present and Future Trends in Italy. Earth, 5(4), 690-706. https://doi.org/10.3390/earth5040036