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 INTRODUCTION 
 Statins are potent cholesterol-lowering agents with pleiotropic 

anti-inflammatory properties. 1  Inhibition of 3-hydroxy-

3-methyl-glutaryl-CoA reductase does not explain all of these 

drugs ’  anti-inflammatory actions. 1  Of interest, statins can 

regulate innate and adaptive immune responses, 2,3  as well as 

endothelial and epithelial cell function. 4 – 6  Prospective human 

clinical trials have provided strong evidence for statin-mediated 

anti-inflammation, as individuals with normal plasma cho-

lesterol who were randomized to receive statin therapy had 

marked decrements in both C-reactive protein, which was 

monitored as a marker of systemic inflammation, and car-

diovascular events. 7  In several animal models of injury or 

inflammation, statins also show protective actions, including 

sepsis, 8  rheumatoid arthritis, 9  asthma, 10  emphysema, 11  and 

acute lung injury (ALI). 12  However, the mechanisms remain 

to be identified. 

 Acute respiratory distress syndrome and ALI have an 

annual incidence in the United States of more than 200,000 

adults and still carry a 1-year mortality of     >    40 % . 13  There is 

no specific medical therapy for these conditions. Resolution 

of acute  respiratory distress syndrome and ALI is an 

active process that is characterized in part by clearance of 

 polymorphonuclear  leukocytes (PMNs) from the lung. The 

natural resolution of inflammation occurs through local 

biosynthesis of braking signals, such as lipoxins (LXs) and 

15-epi-LXs (also known as aspirin-triggered LXs), at sites of 

inflamed tissue. 14  15-epi-LXs belong to a new genus of lipid 

mediators that are agonists of resolution and regulate airway 

inflammation 14,15  and ALI. 16,17  15-epi-LXs are locally pro-

duced through cell – cell interactions between leukocytes and 

resident cells during multicellular host responses to injury, 

inflammation, and microbial invasion (reviewed in ref.  14 ). 

These lipid mediators show diverse counter-regulatory 

actions in pico- to nanomolar amounts, including inhibition 

of PMN functional responses 18,19  and interactions with the 

endothelium, 20  as well as stimulation of mucosal  epithelial 

bacterial killing 21  and macrophage clearance of apoptotic 

PMNs. 22  Statins show many of the same anti-inflamma-

tory properties as 15-epi-LXs. Both inhibit leukocyte adhe-

sion,  regulate cytokine and chemokine expression, induce 

endothelial and inducible nitric oxide synthase, lower matrix 

metalloproteinase expression and activation, increase tissue 

inhibitor of matrix protease, and inhibit nuclear factor- � B 

activation (editorial in ref.  23  in ref.  24 ) with the new property 

for 15-epi-LXA 4  of also promoting active resolution. 25  
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 15-epi-LXs were first described as arachidonic acid-

derived products generated during interactions between 

cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO). 26  

Aspirin-acetylated COX-2 converts arachidonic acid to 15-

 R -hydroxyeicosatetraenoic acid that is transformed by 5-LO 

to 15-epi-LXs. 26  In addition to aspirin-acetylated COX-2, 

cytochrome P450 enzymes (CYP450s) are also capable of 

catalyzing 15- R -hydroxyeicosatetraenoic acid production 

from arachidonic acid. 27  Moreover, CYP450s can also convert 

arachidonic acid to epoxyeicosatrienoic acids (EETs) 28  that 

have anti-inflammatory properties when present in micro-

molar quantities. 29  EETs are further metabolized by soluble 

epoxide hydrolase (sEH) to their corresponding diols, dihydroxy-

eicosatrienoic acids. 30  Soluble epoxide hydrolase inhibitors 

increase LX generation and decrease plasma levels of pro-

inflammatory cytokines to promote resolution of inflamma-

tory responses. 31  In this study we report that statin-initiated 

15-epi-LXA 4  generation proceeds through transcellular 

biosynthesis during human PMN – epithelial cell interactions 

that promotes resolution of ALI in the lung.   

 RESULTS  
 Lovastatin increases 15-epi-LXA 4  formation during 
interactions between human PMNs and airway 
epithelial cells 
 In the presence of lovastatin (1    �  m  hydroxy acid), human PMNs 

co-incubated with tumor necrosis factor- � -primed airway 

 epithelial cells (Calu-3) generated significant amounts of 15-epi-

LXA 4  (    >    2.82 ± 0.62-fold than Calu-3 alone (705   pg   ml  – 1 ),  P     <    0.05 

for  n     =    3 independent experiments;  Figure 1a ). In the absence 

of PMNs, lovastatin did not augment 15-epi-LXA 4  production 

by the cytokine-primed Calu-3 cells (1.02 ± 0.34-fold change). In 

addition, there was no significant increase in 15-epi-LXA 4  by 

incubations of cytokine-primed Calu-3 cells with PMNs in the 

absence of lovastatin (1.44 ± 0.22-fold change). Statin- triggered 

15-epi-LXA 4  formation correlated with increasing PMN num-

bers relative to Calu-3 cells ( Figure 1b ). For purposes of com-

parison, 15-epi-LXA 4  generated at a cell ratio of 0:1 (PMNs:

airway epithelial cells) was assigned a value of 1 (mean, 541   pg 

per ml of 15-epi-LXA 4 ) and changes in 15-epi-LXA 4  amounts 

were expressed as a fold change for each cell ratio tested (1:1 

(1.6 ± 0.19-fold increase), 2:1 (2.8 ± 0.85-fold increase), and 5:1 

(3.8 ± 0.8-fold increase);  P     <    0.05 for  n     =    5 independent experi-

ments;  Figure 1b ). In addition to Calu-3 cells, lovastatin-trig-

gered 15-epi-LXA 4  formation during human PMN interactions 

with primary normal human bronchial epithelial (NHBE) cells 

differentiated at an air – liquid interface (5:1 ratio, PMNs:NHBE, 

927   pg per ml of 15-epi-LXA 4 , mean for  n     =    4) and with the dis-

tal human airway epithelial cell line A549 (5:1 ratio, PMNs:

A549, 2.14   ng per ml of 15-epi-LXA 4 , mean for  n     =    3). In fur-

ther experiments, Calu-3 cells were used principally for ease 

of culture and cost considerations. These results indicate that 

a statin can increase 15-epi-LXA 4  generation in human cells 

through transcellular biosynthesis and that interactions between 

cytokine primed-airway epithelial cells and PMNs can enhance 

this biosynthetic reaction. 

 Lovastatin is well characterized as an inhibitor of 3-hydroxy-

3-methyl-glutaryl-CoA reductase, but mevalonate (100    �  m ) did 

not block the statin-triggered 15-epi-LXA 4  formation ( Figure 1c ), 

indicating that lovastatin ’ s mechanism for 15-epi-LXA 4  genera-

tion is distinct from its regulation of isoprenoid metabolism. 

Although independent from exogenous mevalonate, the actions 

of lovastatin were shared with simvastatin, another lipophillic sta-

tin ( Figure 1c ). Of interest, the broad-acting LO inhibitor, nordi-

hydroguaiaretic acid, significantly inhibited lovastatin- triggered 

15-epi-LXA 4  formation by over 80 %  ( Figure 1c ), indicating that 

LO activity is critical to the compound ’ s biosynthesis. 

 To identify what biosynthetic enzymes for LXs and 15-epi-LXs 

are expressed in these cell types, we next determined gene 

expression using semi-quantitative reverse transcriptase-PCR 

for sEH, 15-LO-1, 15-LO-2, and 5-LO ( Figure 1d ), as well as 

the related genes 5-LO-activating protein, 12-LO, and COX-2 

in Calu-3 cells, Calu-3 cells exposed to tumor necrosis factor-

 �  (1   ng   ml  – 1 , 24   h), freshly isolated human PMNs, and NHBE 

cells exposed to interleukin-13 (10   ng   ml  – 1 , 96   h). sEH mRNA 

was present in all three cell types. In contrast, 15-LO-1 and 

15-LO-2 mRNAs were only expressed in cytokine-primed 

NHBE cells, and 5-LO was only expressed in PMNs and Calu-

3 cells ( Figure 1d ). 5-LO-activating protein was only present 

in PMNs, and low levels of 12-LO mRNA were present in 

freshly isolated PMNs from peripheral blood ( Supplementary 

Figure S1 online ), indicating likely minor platelet contamina-

tion. 32  Increased COX-2 mRNA expression was observed in 

only cytokine-primed airway epithelial cells ( Supplementary 

Figure S1 online ). Together, these findings indicate that 

neither cell type alone contains the genes required for 15-epi-

LXA 4  biosynthesis; thus, providing a rationale for enhanced 

statin-triggered 15-epi-LXA 4  generation through transcellular 

biosynthesis during cell – cell interactions.   

 Lovastatin increases 14,15-EET generation 
 To identify potential biosynthetic intermediates in lovastatin-

triggered 15-epi-LXA 4  formation, lipid extracts from PMN and 

airway epithelial cell cultures (5:1, PMNs:Calu-3) were analyzed 

using reversed-phase high-performance liquid chromatography 

(HPLC). In addition to 15-epi-LXA 4  ( Figure 2a ), statin-exposed 

cells also had a significant increase in materials with the reten-

tion time of 14,15-epoxyeicosatriene (14,15-EET) by charged 

aerosol detection ( Figure 2b ). The statin-mediated increase in 

both 14,15-EET and 15-epi-LXA 4  was markedly increased by 

the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic 

acid (AUDA) ( Figure 2a,b ). The actions of AUDA on statin-

triggered 15-epi-LXA 4  formation were concentration dependent 

between 0.01 and 1    �  m  ( Figure 2c ). AUDA (0.01 – 1    �  m ) consist-

ently increased the amount of 14,15-EET  ~ 10-fold higher than 

15-epi-LXA 4  ( Figure 2d ).   

 Exogenous addition of 14,15-EET increases 15-epi-LXA 4  
biosynthesis 
 To determine whether the increased 14,15-EET reflected a role 

in statin-initiated transcellular 15-epi-LXA 4  biosynthesis, PMNs 

alone were activated in the presence of exogenous 14,15-EET. 
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No epithelial cells or lovastatin were present in these incuba-

tions. When exposed to exogenous 14,15-EET and activated 

with the divalent cation ionophore A23187, PMNs generated 

substantial amounts of 15-epi-LXA 4  ( Figure 3a ). There was 

no significant production of 15-epi-LXA 4  by PMNs activated 

in the absence of 14,15-EET. The effects of 14,15-EET on 15-

epi-LXA 4  generation in this system were regioselective and not 

shared by the related isomers 5,6-EET, 8,9-EET, or 11,12-EET 

( Figure 3b ). There was a bell-shaped dose – response relation-

ship between 14,15-EET and 15-epi-LXA 4  generation with 

a maximal response at 100   pmole ( Figure 3c ). Amounts of 

14,15-EET     >    100   pmole yielded a submaximal response; how-

ever, this decreased response was not statistically significant. 

In contrast, significant changes in leukotriene B 4  (LTB 4 ) levels 

in these same incubations were only observed at doses of 14,15-

EET     >    100   pmole ( Figure 3d ), suggesting that the increase in 

15-epi-LXA 4  with 14,15-EET was not secondary to decreased 

5-LO conversion of arachidonic acid to LTB 4 . In addition, the 

omega oxidation products of LTB 4  and 15-epi-LXA 4  were not 

significantly altered by addition of the EET. 

 The selective 5-LO inhibitor, AA861, and the cPLA 2  inhibi-

tor, methyl arachidonyl fluorophosphonate, both inhibited 

EET-stimulated 15-epi-LXA 4  and LTB 4  formation. In contrast, 

a CYP450 enzyme inhibitor, 17-octadecynoic acid, increased 

the amount of both 15-epi-LXA 4  and LTB 4  in incubations with 

PMNs and 14,15-EET, likely secondary to this compound ’ s 
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         Figure 1             Lovastatin triggers 15-epi-lipoxin A 4  (15-epi-LXA 4 ) biosynthesis by activated human airway epithelial cells and polymorphonuclear 
leukocytes (PMNs). ( a ) 15-epi-LXA 4  levels were determined after Calu-3 cells were exposed to tumor necrosis factor- �  (TNF- � ; 1   ng   ml  – 1 , 24   h at 37    ° C) 
and then to human PMNs in the presence or absence of lovastatin (1    �  M , 30   min at 37    ° C) (see Methods). ( b ) Dose-dependent relationship between 
PMNs relative to Calu-3 cells was determined for 15-epi-LXA 4  generation by lovastatin-exposed cells. ( c ) Select incubations with PMNs and Calu-3 
cells (5:1 ratio) were carried out in the presence of lovastatin (1    �  M ), mevalonate (100    �  M ), simvastatin (10    �  M ), nordihydroguaiaretic acid (NDGA; LO 
inhibitor, 5    �  M ), or vehicle (0.1 %  ethanol). ( d ) Representative reverse transcriptase-PCR (RT-PCR) for pivotal lipoxin biosynthetic genes in Calu-3 cells 
(without and with exposure to TNF- � ), freshly isolated human PMNs, and normal human bronchial epithelial (NHBE) cells exposed to interleukin-13 
(IL-13; 10   ng   ml  – 1 , 96   h at 37    ° C). Results are expressed as the mean ± s.e.m. for     �    3 independent experiments.  *  P     <    0.05 using analysis of variance 
(ANOVA), NS, not significant.  
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 additional action as a suicide inhibitor of 20-hydroxylase metab-

olism of eicosanoids. 33  Incubation of 14,15-EET with recom-

binant 5-LO confirmed that 14,15-EET is not directly converted 

to 15-epi-LXA 4  or other tetraene-containing products. To deter-

mine whether the relationship between 14,15-EET and 15-epi-

LXA 4  was bidirectional, PMNs were activated in the presence 

of 15-epi-LXA 4  (1    �  m ), but there was no detectable 14,15-EET 

generated.   

 Lovastatin promotes the resolution of acute lung injury by 
increasing 15-epi-LXA 4  formation  in vivo  
 To analyze the  in vivo  effect of the  in vitro  findings with air-

way epithelial cells and PMNs, lovastatin (0.2 or 2   mg   kg  – 1 ) or 

vehicle was administered intravenously 15   min before ALI, and 

lung leukocyte infiltration was determined 18   h later during the 

early resolution phase of this model. Lovastatin was adminis-

tered in mg / kg doses based on its  in vivo  activity in other murine 
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      Figure 2             Lovastatin and the soluble epoxide hydrolase (sEH) inhibitor AUDA increase 14,15-epoxyeicosatrienoic acid (14,15-EET) and 15-epi-
lipoxin A 4  (15-epi-LXA 4 ) formation. Neutrophils (polymorphonuclear leukocytes (PMNs)) were incubated with tumor necrosis factor- �  (TNF- � )-exposed 
Calu-3 cells (5:1, PMNs:Calu-3) in the presence of lovastatin (1    �  M ) and in some cases AUDA (1    �  M ) for 30   min (37    ° C). Lipids were extracted and 
analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) using ( a ) absorbance at 301   nm ( Inset,  ultraviolet (UV) spectrum 
for (i) non-specific materials at 13.3   min and (ii) for 15-epi-LXA 4  at 13.7   min) or ( b ) charged aerosol detector (CAD) (see  Methods ). Authentic materials 
are shown in the upper panels. ( c , d ) Concentration response to AUDA (0.01 – 1    �  M ) on statin-triggered 15-epi-LXA 4  formation relative to ( c ) vehicle and 
( d ) 14,15-EET by TNF- � -exposed Calu-3 cells and PMNs. 15-epi-LXA 4  levels were determined using enzyme-linked immunosorbent assay (ELISA). 
Results are expressed as mean ± s.e.m. ( n     =    3 independent experiments).  *  P     <    0.05 relative to no AUDA and  *  *  P     <    0.05 compared with 14,15-EET using 
analysis of variance (ANOVA).  
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models of lung inflammation. 12,34  Bronchoalveolar lavage flu-

ids (BALFs) after ALI contained increased numbers of total 

leukocytes, especially macrophages (M � ) and PMNs, com-

pared with BALFs from control animals receiving sterile saline 

(0.9 % ) ( Figure 4a,b ). At this time point, lovastatin significantly 

decreased total BALF cells in a dose-dependent manner. Low-

dose lovastatin (0.2   mg   kg  – 1 ) decreased BALF PMNs, but only 

the higher dose (2   mg   kg  – 1 ) significantly decreased both M �  and 

PMNs. Of interest, administration of lovastatin in the absence of 

acid injury also showed anti-inflammatory properties in block-

ing PMNs ( P     <    0.05) and increasing M �  trafficking related to 

low-level inflammation associated with the surgical procedure. 

The protective actions of lovastatin for BALF PMNs were also 

evident in the lung parenchyma with decreased numbers of cells 

positive for the PMN marker Ly-6G ( Figure 4c ). Concomitant 

with decreased lung leukocyte infiltration at 18   h after acid 

injury, lovastatin-treated mice also had significantly higher 

15-epi-LXA 4  levels in BALFs (266 ± 46   pg   ml  – 1 ) when compared 

with vehicle (131 ± 29   pg   ml  – 1 ,  P     <    0.05) or uninjured, statin-

exposed animals (76 ± 34   pg   ml  – 1 ,  P     <    0.05) ( Figure 4d ). When 

tested in parallel, lovastatin ’ s actions on airway  leukocytes, in 

particular on airway PMNs, were similar in magnitude to direct 

administration of 2   mg   kg  – 1  of 15-epi-LXA 4  ( Figure 4e,f ). In 

addition, lovastatin and 15-epi-LXA 4  yielded additive inhibition 

of airway inflammation ( Figure 4e,f ). 14,15-EET also decreased 

airway PMN trafficking after ALI.    

 DISCUSSION 
 The results presented in this study have identified biosynthetic 

pathways for statin-triggered 15-epi-LXA 4  formation during 

cell – cell interactions between human PMNs and airway epi-

thelial cells. Neither cell type alone was independently capable 
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     Figure 3             Regiospecific influence of 14,15-epoxyeicosatrienoic acid (14,15-EET) on 15-epi-lipoxin A 4  (15-epi-LXA 4 ) biosynthesis by activated human 
polymorphonuclear leukocytes (PMNs). Freshly isolated human PMNs were activated with A23187 in the presence of EETs (1    �  M ) or vehicle (0.1 %  
ethanol). After extraction, 15-epi-LXA 4  levels were measured by ( a ) reversed-phase high-performance liquid chromatography (RP-HPLC; authentic 
15-epi-LXA 4  is shown in the upper panel) or ( b ) enzyme-linked immunosorbent assay (ELISA; see Methods). Concentration response for 14,15-EET 
(10 – 10,000   pmole) on ( c ) 15-epi-LXA 4  and ( d ) LTB 4  formation. Values represent the mean ± s.e.m. for     �    3 independent experiments.  *  P     <    0.05 using 
Student ’ s  t -test.  
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ALI in the absence (upper panels) or presence of lovastatin (lower panels). PMNs are highlighted by arrows and original magnifications are indicated. 
( d ) 15-epi-LXA 4  levels were determined using enzyme-linked immunosorbent assay (ELISA) in BALFs. For purposes of direct comparison, resolution of lung 
leukocyte infiltration at 18   h was determined by monitoring ( e ) total BALF leukocytes and ( f ) BALF PMNs in mice administered (2   mg   kg  – 1 , intravenous, 
100    � l) lovastatin, 15-epi-LXA 4 , 14,15-epoxyeicosatrienoic acid (14,15-EET), the combination of 15-epi-LXA 4  and lovastatin (2   mg   kg  – 1  each), or vehicle 
(1 %  ethanol) 15   min before intratracheal acid. Values represent the mean ± s.e.m. (    �    4 from at least three independent experiments).  *  P     <    0.05 compared 
with no acid or statin,  *  *  P     <    0.05 compared with vehicle, and   #   P     <    0.05 compared with 15-epi-LXA 4  alone.  
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of substantial generation of 15-epi-LXA 4 , yet together they col-

laborated to produce this anti-inflammatory and pro-resolving 

mediator. Lovastatin ’ s induction of 15-epi-LXA 4  was shared 

with simvastatin, but not blocked by the addition of meva-

lonate, indicating that these statin properties were not solely 

secondary to inhibition of 3-hydroxy-3-methyl-glutaryl-CoA 

reductase. In contrast, 15-epi-LXA 4  production was dependent 

on LO activity. Unexpectedly, lovastatin also increased 14,15-

EET formation during PMN – airway epithelial cell interactions, 

suggestive of decreased sEH activity, and in separate experi-

ments the potent sEH inhibitor AUDA markedly increased 

15-epi-LXA 4  production. 14,15-EET showed a regioselective 

induction in 15-epi-LXA 4  formation that was distinct from its 

effects on LTB 4  generation. 14,15-EET was not a direct substrate 

for 5-LO-mediated conversion, and hence this CYP450 enzyme-

derived product indirectly altered arachidonic acid metabolism 

to favor 15-epi-LXA 4 . These cell – cell interactions  in vitro  were 

also present  in vivo  in an experimental model of PMN – airway 

epithelial cell interactions. Lovastatin dampened acid-initiated 

ALI in a dose-dependent manner, in particular decreasing PMN 

trafficking to the lung and increasing 15-epi-LXA 4  levels in BAL 

fluids. Exogenous addition of 15-epi-LXA 4  also showed tissue 

protective actions that were additive with lovastatin ’ s effects. 

Together, these results are the first to (i) identify statin-trig-

gered 15-epi-LXA 4  generation by human cells, (ii) determine its 

transcellular biosynthetic routes, (iii) assign roles for CYP450 

intermediates in its biosynthesis, and (iv) uncover 15-epi-LXA 4  

as an  in vivo  mechanism for statin ’ s anti-inflammatory actions. 

 Interactions between PMNs and tissue resident cells are criti-

cal to innate immunity. 13  When damaged by injury or exposed 

to potential pathogens, mucosal epithelial cells rapidly signal 

for PMN accumulation and activation to maintain mucosal bar-

rier integrity and host defense. Because PMN anti-microbial 

effector mechanisms can also have an unintended capacity to 

damage host tissues, the interplay between PMNs and epithelial 

cells is tightly regulated to control the intensity of acute mucosal 

inflammation and prevent extensive tissue damage (reviewed 

in ref.  35 ). To this end, counter-regulatory and pro-resolving 

mediators can stop PMN activation, block the release of epithe-

lial pro-inflammatory mediators, enhance macrophage clear-

ance of apoptotic PMNs, and increase expression of epithelial 

anti-microbial peptides (reviewed in ref.  14 ). Transient exposure 

of human bronchial epithelium to hydrochloric acid upregu-

lates LX receptors and LXs enhance restitution of the injured 

epithelium and potently block acid-triggered cytokine release 

and neutrophil transepithelial migration. 36  By inducing 15-epi-

LX generation during PMN – epithelial cell interactions, statins 

initiated the formation of mediators with autocrine anti-inflam-

matory and pro-resolving actions for these cells. In the presence 

of statins, epithelial cells exposed to increased inflammation in 

the form of greater numbers of activated PMNs yielded a dose-

dependent increase in 15-epi-LXA 4  production. Together, these 

findings uncovered new roles for transcellular biosynthesis in 

statin-mediated promotion of pro-resolving mediator genera-

tion to counter acute PMN-rich inflammation at mucosal epi-

thelial interfaces. 

 15-epi-LXs are generated  in vivo  during inflammation in 

human disease. 37  Although CYP450 enzymes can generate 15- R -

hydroxyeicosatetraenoic acid as a biosynthetic intermediate for 

15-epi-LXs, 27  novel biosynthetic pathways were recently eluci-

dated in rat myocytes in which atorvastatin and / or pioglitazone 

can trigger atypical interactions between post-translationally 

modified COX-2 and 5-LO. 38  Although these findings link sta-

tin-mediated generation of 15-epi-LXA 4  to tissue protection in 

rat myocardium, 24  the results presented in this study build on 

those with rat myocytes to broaden the implication for statin-

triggered 15-epi-LXA 4  generation to mucosal anti-inflammation 

with human cells and murine tissues  in vivo . Of interest, statins 

altered CYP450 metabolism of arachidonic acid to increase lev-

els of 14,15-EET that in turn increased 15-epi-LXA 4  produc-

tion by indirect means. Exogenous addition of 14,15-EET to 

activated human PMNs led to 15-epi-LXA 4  generation with a 

bell-shaped dose – response relationship that may have resulted 

from cytotoxicity at the higher doses of 14,15-EET as LTB 4  gen-

eration was also inhibited. Whereas 5,6-EET can serve as a direct 

substrate for platelet lipoxygenase, 39  evidence presented in this 

study did not support direct LO conversion of 14,15-EET to 

epi-LXs. 14,15-EET is the most abundant EET in the lung, 40  

and in this study the influence of 14,15-EET was regioselective, 

indicative of specific lipid – protein interactions. In addition, a 

sEH inhibitor markedly increased both 14,15-EET and 15-epi-

LXA 4  formation. Inhibition of sEH during acute inflammation 

can also increase LX formation  in vivo . 31  The exact mechanism 

for the positive influence of 14,15-EET on LX and 15-epi-LX 

biosynthesis remains to be elucidated. 

 Both EETs and LXs show anti-inflammatory actions, but their 

concentration responses are distinct and target dependent. In 

nano- to micromolar amounts, EETs can inhibit NF- � B, release 

of pro-inflammatory mediators, and leukocyte adhesion. 29,41  

In sharp contrast, LXs and 15-epi-LXs show these protective 

actions yet with half-maximal inhibitory concentration in the 

pico- to nanomolar range and activate specific G-protein-

coupled receptors. 19,42  In this study the results with statins 

serendipitously uncovered the capacity for EETs to promote 

15-epi-LX production. In the presence of lovastatin and the 

sEH inhibitor AUDA, the generation of EETs and 15-epi-LXA 4  

each increased in an approximate 10:1 ratio of 14,15-EET to 

15-epi-LXA 4 . In addition, both 14,15-EET and 15-epi-LXA 4  

blocked PMN trafficking  in vivo  in acid-initiated ALI. Thus, 

these results suggest that the anti-inflammatory actions of EETs 

may result from endogenous generation of 15-epi-LXs that 

activate pro-resolving circuits in inflammation. 

 Statins seem to have particularly beneficial actions in several 

forms of lung disease. Several observational studies have suggested a 

link between pre-existing statin use and improved outcomes in ALI 

and sepsis. 43 – 46  Recent data analyses from the Normative Aging 

Study 47  revealed that statin use attenuated the decline of lung func-

tion in the elderly, including among past and present smokers, and 

the Veterans Affairs Health Care System database 48  revealed a pro-

tective effect for statins against the development of lung cancer. 

In addition, statin use is associated with improved allograft func-

tion after lung transplantation. 49  In model systems, statins inhibit 
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 cigarette smoke-induced emphysema, pulmonary hypertension, and 

lung inflammation. 5,6,12  Although less information is available on 

15-epi-LX generation in human illness, these mediators were identi-

fied in plasma 50  and in the airways of human subjects with chronic 

obstructive pulmonary disease. 37  In this study lovastatin decreased 

ALI-initiated airway inflammation by triggering an increase in 

lung 15-epi-LXA 4 . When administered with lovastatin, 15-epi-

LXA 4  blocked lung inflammation in an additive manner. Together, 

these findings indicate 15-epi-LXA 4  biosynthesis is an endogenous 

mechanism that underlies statins ’  protective actions in the lung. 

 In conclusion, statins initiated the endogenous biosynthesis of 

15-epi-LXs during PMN – epithelial cell interactions  in vitro  and in 

mucosal inflammation  in vivo . Statins promoted 15-epi-LXA 4  gener-

ation by decreasing sEH activity to increase 14,15-EET that influences 

arachidonate conversion to 15-epi-LXs. Thus, the present results have 

uncovered endogenous 15-epi-LX generation as a pivotal mechanism 

involved in statin ’ s known anti-inflammatory actions and suggest that 

statins can activate resolution circuits  in vivo  through 15-epi-LXA 4  

biosynthesis. Given the observed clinical benefits for statin therapy, 

our findings raise the possibility that enhancing 15-epi-LX produc-

tion may also enhance the anti-inflammatory actions of statins.   

 METHODS     

  PMN Isolation and Incubations   .   Fresh venous blood ( ~ 180   ml) was 
obtained from healthy volunteers who had not taken any medication 
for at least 2 weeks, and PMNs were isolated as in Romano  et al.  32  The 
protocol was approved by the Partners Healthcare institutional review 
board and written informed consent was obtained from all subjects. 
Freshly isolated PMNs were suspended (10 × 10 6  PMNs per ml) in phos-
phate-buffered saline containing 130   mg   l  – 1  calcium and 100   mg   l  – 1  
magnesium. In select experiments, PMNs were exposed (30   min 
at 37    ° C) to 5,6-EET, 8,9-EET, 11,12-EET or 14,15-EET (0 – 10    �  m ), or 
15-epi-LXA 4  (1    �  m ), followed by A23187 (5    �  m , 15   min at 37    ° C). For 
incubations with inhibitors, PMNs were exposed (10   min at 37    ° C) 
to methyl arachidonyl fluorophosphonate (10    �  m ), AA-861 (20    �  m ), 
17-octadecynoic acid (20    �  m ), or vehicle (0.1 %  ethanol) before cell 
activation. All incubations were stopped with two volumes of cold 
methanol (2:1, vol:vol) and samples were stored at     −    20    ° C.   

  Airway epithelial cell culture and incubations   .   Human airway epi-
thelial cells (Calu-3 or A549 cells) were cultured to confluence ( ~ 3 × 10 6  
cells), and then exposed (24   h) to tumor necrosis factor- �  (1   ng   ml  – 1 ) 
before the addition of freshly isolated human PMNs (15 × 10 6  PMNs 
per ml) for 30   min (37    ° C) in Hanks ’  balanced salt solution contain-
ing calcium and magnesium (Invitrogen, Carlsbad, CA) in the pres-
ence or absence of lovastatin hydroxy acid (1    �  m;  Cayman Chemical, 
Ann Arbor, MI) as in Morimoto  et al . 34  In some experiments, Calu-3 
cells were exposed (15   min, 37    ° C) to nordihydroguaiaretic acid (5    �  m ), 
mevalonate (100    �  m ), simvastatin (10    �  m ), or AUDA (0.1 – 1    �  m ) before 
addition of PMNs. Incubations were stopped with cold methanol (2:1, 
vol:vol) and samples were then stored at     −    20    ° C. 

 Primary NHBE cells (Clonetics-BioWhittaker, San Diego, CA) were 
maintained in culture for 21 days to obtain a differentiated cell population 
with a mucociliary phenotype as in Bonnans  et al.  36  Differentiated NHBE 
cells were exposed to tumor necrosis factor- �  (1   ng   ml  – 1 , 24   h) and then 
PMNs were added with lovastatin (1    �  m ) or vehicle (0.1 %  ethanol) for 
30   min (37    ° C). Incubations were stopped and stored as above.   

  Lipid mediators   .   To identify eicosanoids, materials were first extracted with 

C 18  Sep-Pak cartridges (Waters, Milford, MA). 17  Prostaglandin B 2  (100   ng) 

was added to each sample as an internal standard for extraction recoveries. 

Materials in the methyl formate eluate (i.e., 15-epi-LXs) were brought to 

dryness under a gentle stream of N 2 , resuspended in 1   ml of methanol, and 

kept at  – 20    ° C. In all, 30 %  of the methyl formate fraction was analyzed using 

reversed-phase HPLC (Agilent 1100 series; Agilent Technologies, Palo Alto, 

CA) equipped with an Ultrasphere C18 (250 × 4.6   mm, 5    � m; Phenomenex, 

Torrance, CA) column and coupled to a photodiode array detector (ultra-

violet and visible range). In addition, a second HPLC system coupled to a 

Corona charged aerosol detector (CAD) (ESA, Chelmsford, MA) enabled 

detection of select lipid mediators in the low-picogram range. 

 The mobile phase was methanol – distilled H 2 O – glacial acetic acid 

(70:30:1, vol:vol:vol) as phase one ( t  0  – 30   min) and a linear gradient with 

methanol (100 % ) as phase two (30 – 65   min) at an initial flow rate of 

0.5   ml   min  – 1  ( t  0  – 30   min) followed by 1   ml   min  – 1  (30 – 65   min). The cri-

teria used for identification included retention time, ultraviolet spectra, 

and charged aerosol detection. 15-epi-LXA 4  and LTB 4  were monitored 

using both reversed-phase HPLC and enzyme-linked immunosorbent 

assay (Neogen, Lexington, KY); prostaglandin B 2  was monitored using 

HPLC-diode-array detection and EETs using HPLC-charged aerosol 

detection as they did not possess specific chromophores.   

  Reverse transcriptase-PCR   .   Total RNA was isolated using Trizol rea-

gent (Invitrogen Life Technologies) and residual DNA was removed 

by DNAse I (Invitrogen Life Technologies). After reverse transcrip-

tion (Sensiscript, Qiagen, Valencia, CA), PCR was performed using 1    � g 

complementary DNA per reaction with specific primers for human sEH 

(40 cycles) (forward: 5 � -TGTAAATAGCCCAGAAGAGCCCAG-3 � , reverse: 

5 � -ACATCTGAGGAACGAGCACGAAGT-3 � ); 15-LO-1 (45 cycles) 

(forward: 5 � -CCGACCTCGCTATCAAAGAC-3 � , reverse: GGATGAC

CATGGGCAAGAG-3 � ); 15-LO-2 (45 cycles) (forward: 5 � -TGGACAA

TCTGGGCAAGGAGTTCA-3 � , reverse: 5 � -ATTCAGGAACTG

GGAGGCGAAGAA-3 � ); 5-LO (40 cycles) (forward: 5 � -ATCAGGACG

TTCACGGCCGAGG-3 � , reverse: 5 � -CCAGGAACAGCTCGTTTT

CCTG-3 � ); 5-LO-activating protein (40 cycles) (forward: 5 � -GGCCAT

CGTCACCCTCATCAGCG-3 � , reverse: 5 � -GCCAGCAACGGACAT

GAGGAACAGG-3 � ); 12-LO (40 cycles) (forward: 5 � -TGGACACTGA

AGGCAGGGGCT-3 � , reverse: 5 � -GGCTGGGAGGCTGAATCTGGA-3 � ); 

and COX-2 (40 cycles) (forward: 5 � -TTCAAATGAGATTGTGGGAAAAT

TGCT-3 � , reverse: 5 � -AGATCATCTCTGCCTGAGTATCTT-3 � ). Human 

 � -actin was used as internal control. 17    

  Acid-initiated acute lung injury   .   All animal protocols were approved 

by the Harvard Medical Area Animal Institutional Review Board. 

Hydrochloric acid (0.1   N, pH 1.5, 50    � l, endotoxin free; Sigma-Aldrich, 

St Louis, MO) was selectively instilled into the left mainstem bronchus of 

anesthetized mice (FVB, male, 10 – 12 weeks; Charles River Laboratories, 

Wilmington, MA) through a 24-gauge angiocatheter inserted intratrache-

ally as in Fukunaga  et al.  17  To select animals, lovastatin (0.2 or 2   mg   kg  – 1 ), 

15-epi-LXA 4  (2   mg   kg  – 1 ), 14,15-EET (2   mg   kg  – 1 ), the combination of 

lovastatin and 15-epi-LXA 4  (2   mg   kg  – 1  each), or vehicle (    <    1 %  ethanol) 

was administered intravenously (100    � l) 15   min before hydrochloric 

acid instillation. At 18   h after hydrochloric acid instillation, BAL was 

performed with 2  ×  1   ml phosphate-buffered saline with 0.6   m m  EDTA, 

and cell-free supernatants (200  ×   g , 10   min at 4    ° C) were obtained, and 15-

epi-LXA 4  levels were measured using enzyme-linked immunosorbent 

assay (Neogen). Cells in BALFs were resuspended in phosphate-buffered 
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saline and enumerated using hemocytometer. Cytospins were performed 

by cytocentrifuge (STATspin, Westwood, MA) (265  ×   g ) and leukocyte dif-

ferentials were determined after Wright – Giemsa stain (Sigma), counting 

    �    200 cells per slide. Lungs were fixed in immunohistochemistry zinc buffer 

and paraffin embedded for immunostaining with LY-6G (1:50 dilution).   

  5-LO incubations   .   14,15-EET (100    �  m ) was incubated with 20    � g of 
potato 5-LO (Enzo Life Sciences International, Inc., Plymouth Meeting, 
PA) (at 30    ° C for 10   min) in 0.1   M K 2 HPO 4  buffer (pH 6.3). Lipoxygenase 
activity was measured at 0 and 10   min using a spectrophotometer moni-
toring absorbance at 301, 270, and 234   nm.   

  Statistical analysis   .   Values for eicosanoid levels were analyzed using 
Student ’ s  t -test and analysis of variance. Data are presented as the 
mean ± s.e.m., and a  P- value of     <    0.05 was considered significant.        

    SUPPLEMENTARY MATERIAL  is linked to the online version of the 
paper at  http://www.nature.com/mi    
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