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Mutational landscape and significance
across 12 major cancer types
Cyriac Kandoth1*, Michael D. McLellan1*, Fabio Vandin2, Kai Ye1,3, Beifang Niu1, Charles Lu1, Mingchao Xie1, Qunyuan Zhang1,3,
Joshua F. McMichael1, Matthew A. Wyczalkowski1, Mark D. M. Leiserson2, Christopher A. Miller1, John S. Welch4,5,
Matthew J. Walter4,5, Michael C. Wendl1,3,6, Timothy J. Ley1,3,4,5, Richard K. Wilson1,3,5, Benjamin J. Raphael2 & Li Ding1,3,4,5

TheCancerGenomeAtlas (TCGA) has used the latest sequencing and analysismethods to identify somatic variants across
thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions
from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of
mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/
carcinogen influences, andDNArepairdefects.Using the integrateddata sets,we identified 127 significantlymutatedgenes
fromwell-known(forexample,mitogen-activatedproteinkinase,phosphatidylinositol-3-OHkinase,Wnt/b-cateninand
receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone
modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in
these significantlymutated genes varies across tumour types;most tumours have two to six, indicating that thenumberof
driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show
tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis
identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal
architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for
developing new diagnostics and individualizing cancer treatment.

The advancement of DNA sequencing technologies now enables the
processing of thousands of tumours of many types for systematic
mutation discovery. This expansion of scope, coupledwith appreciable
progress in algorithms1–5, has led directly to characterization of signifi-
cant functionalmutations, genes and pathways6–18. Cancer encompasses
more than 100 related diseases19, making it crucial to understand the
commonalities and differences among various types and subtypes.
TCGA was founded to address these needs, and its large data sets
are providing unprecedented opportunities for systematic, integrated
analysis.
Weperformed a systematic analysis of 3,281 tumours from12 cancer

types to investigate underlying mechanisms of cancer initiation and
progression. We describe variable mutation frequencies and contexts
and their associations with environmental factors and defects in DNA
repair.We identify 127 significantlymutated genes (SMGs) fromdiverse
signalling and enzymatic processes. The finding of a TP53-driven
breast, head and neck, and ovarian cancer cluster with a dearth of other
mutations in SMGs suggests common therapeutic strategies might be
applied for these tumours. We determined interactions among muta-
tions and correlated mutations in BAP1, FBXW7 and TP53 with det-
rimental phenotypes across several cancer types. The subclonal structure
and transcription status of underlying somatic mutations reveal the
trajectory of tumour progression in patients with cancer.

Standardization of mutation data
Stringent filters (Methods) were applied to ensure high quality muta-
tion calls for 12 cancer types: breast adenocarcinoma (BRCA), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
uterine corpus endometrial carcinoma (UCEC), glioblastomamultiforme

(GBM), head and neck squamous cell carcinoma (HNSC), colon and
rectal carcinoma(COAD,READ), bladderurothelial carcinoma (BLCA),
kidney renal clear cell carcinoma (KIRC), ovarian serous carcinoma
(OV) and acute myeloid leukaemia (LAML; conventionally called
AML) (Supplementary Table 1). A total of 617,354 somaticmutations,
consisting of 398,750missense, 145,488 silent, 36,443 nonsense, 9,778
splice site, 7,693 non-coding RNA, 523 non-stop/readthrough, 15,141
frameshift insertions/deletions (indels) and 3,538 inframe indels, were
included for downstream analyses (Supplementary Table 2).

Distinct mutation frequencies and sequence context
Figure 1a shows that AML has the lowest median mutation frequency
and LUSC the highest (0.28 and 8.15 mutations per megabase (Mb),
respectively). Besides AML, all types average over 1 mutation per Mb,
substantially higher than in paediatric tumours20. Clustering21 illus-
trates that mutation frequencies for KIRC, BRCA, OV and AML are
normally distributed within a single cluster, whereas other types have
several clusters (for example, 5 and 6 clusters in UCEC and COAD/
READ, respectively) (Fig. 1a and SupplementaryTable 3a, b). InUCEC,
the largest patient cluster has a frequency of approximately 1.5muta-
tions per Mb, and the cluster with the highest frequency is more than
150 times greater. Multiple clusters suggest that factors other than age
contribute to development in these tumours14,16. Indeed, there is a
significant correlation between high mutation frequency and DNA
repair pathway genes (for example, PRKDC, TP53 and MSH6) (Sup-
plementary Table 3c). Notably, PRKDCmutations are associated with
high frequency in BLCA, COAD/READ, LUAD and UCEC, whereas
TP53 mutations are related with higher frequencies in AML, BLCA,
BRCA, HNSC, LUAD, LUSC and UCEC (all P, 0.05). Mutations in
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gain-of-functionmutations in IDH1 (Arg 132) and/or IDH2 (Arg 172)
typify GBM and AML (Supplementary Table 2 and Fig. 2). Although
KRAS residues Gly 12 and Gly 13 are commonly mutated in LUAD,
COAD/READ and UCEC, the proportion of Gly12Cys changes is
significantly higher in lung cancer (P, 3.23 10210), resulting from
the high C.A transversion rate (Extended Data Fig. 2).

Tumour-type-specific mutations
Signature mutations exclusive to KIRC include those affecting VHL
(52%) and PBRM1 (33%) (Fig. 2). Mutations to BAP1 (10%) and
SETD2 (12%) are also most common in KIRC. Transcription factor
CTCF, ribosome component RPL22, and histone modifiers ARID1A
and ARID5B have the highest frequencies in UCEC. Predominant
COAD/READ-specific mutations are those affecting APC (82%) and

Wnt/b-catenin signalling (93% of samples). Several mutations occur
exclusively in AML, including recurrent mutations in NPM1 (27%)
and FLT3 (27%), and rare mutations affecting MIR142 (Fig. 2).
Mutations of methylation and chromatin modifiers are also typical
in AML, mostly affecting DNMT3A and TET2. BRCA-specific muta-
tions include GATA3 and MAP3K1, whereas KEAP1 mutations pre-
dominate in lung cancer (LUAD 17%, LUSC 12%). EPHA3 (9%),
SETBP1 (13%) and STK11 (9%) are characteristic in LUAD.

Shared and cancer type-specific mutation signatures
Cluster analysis onmutations in SMGs (Fig. 4 andExtendedData Fig. 3)
showed 72% (1,881 of 2,611) of tumours are adjacent to those from the
same tissue type.Notably, clustering identified several dominant groups
in UCEC, COAD, GBM, AML, KIRC, OV and BRCA. Two major
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endometrial endometroid clusters were found, one having mutations
inPIK3CA, PTEN andARID1A, and the other containingmutations in
two additional genes (PIK3R1 andCTNNB1). Five major breast cancer
clusters were observed, with mutations in CDH1, GATA3, MAP3K1,
PIK3CA and TP53 as drivers for respective clusters. The TP53-driven
cluster is adjacent to anHNSC cluster and an ovarian cancer cluster, all
having a dearth of other SMG mutations (Fig. 4). The glioblastoma
cluster is characterized by mutations in EGFR. Two kidney clear cell
cancer clusters were detected; both have VHL as the common driver
and onehas additionalmutations inPBRM1 and/orBAP1 (refs 25–27).
PBRM1 and BAP1 mutations are mutually exclusive in KIRC (P 5
0.006), consistentwith previous reports26,28. AMLhas threemajor clus-
ters represented by various combinations of DNMT3A, NPM1 and
FLT3 mutations, and one cluster dominated by RUNX1 mutations.
One cluster having APC and KRAS mutations was almost exclusively
detected in COAD/READ. Tumours from BLCA, HNSC, LUAD and
LUSC are largely scattered over the Pan-Cancer cohort, indicating
extensive heterogeneity in these diseases.

Mutual exclusivity and co-occurrence among SMGs
Pairwise exclusivity and co-occurrence analysis for the 127 SMGs
found 14 mutually exclusive (false discovery rate (FDR) , 0.05) and
148 co-occurring (FDR , 0.05) pairs (Supplementary Table 6). TP53
andCDH1 are exclusive in BRCA,withmutations enriched in different
subtypes13, as are TP53 and CTNNB1 in UCEC. Cohort analysis iden-
tified pairs where at least one gene has mutations strongly associated
(corrected P, 0.05) to one cancer type, and also identifies TP53 and
PIK3CAwith significant exclusivity (Extended Data Fig. 4). Pairs with
significant co-occurrence include IDH1 and ATRX in GBM29, TP53
and CDKN2A in HNSC, and TBX3 andMLL4 in LUAD.
Dendrix30 identified a set of five genes (TP53, PTEN, VHL, NPM1

and GATA3) having strong mutual exclusivity (P, 0.01) (Extended
Data Fig. 5a and Supplementary Table 7). Not surprisingly, many are
associated (P, 0.05) with one cancer type (for example, VHL muta-
tions in KIRC), demonstrating a strong relationship between exclus-
ivity and tissue of origin. When 600 non-cancer-type-specific genes
were added to the analysis (Methods), we identified another set con-
sisting of TP53, PIK3CA, PIK3R1, SETD2 and WT1 (P, 0.01;
Extended Data Fig. 5b and Supplementary Table 7). Dendrix also
finds genes with strong mutual exclusivity from each cancer type
separately (Extended Data Fig. 5c), allowing calculation of ‘cancer
exclusivity’. KIRC has the strongest exclusivity from the other 11
cancer types, followed by AML with clear exclusivity from BRCA
and UCEC. Conversely, COAD/READ displayed the greatest co-
occurrence with other cancer types (Extended Data Fig. 5d).

Clinical correlation across tumour types
We examined how clinical features (Supplementary Table 8) correlate
with somatic events in 127 SMGs within tumour types. Some findings
are unsurprising, such as the correlation of TP53mutations with gene-
rally unfavourable indicators, for example in tumour stage (P5 0.01,
Fisher’s exact test) and elapsed time to death (P5 0.006,Wilcoxon) in
HNSC, age (P 5 0.002, Wilcoxon rank test) and time to death (P 5

0.09, Wilcoxon) in AML, and vital status in OV (P5 0.04, Fisher). In
UCEC,mutations in several genes are correlatedwith the endometrioid
rather than serous subtype: PTEN,CTNNB1, PIK3R1,KRAS,ARID1A,
CTCF, RPL22 and ARID5B (all P, 0.03) (Supplementary Table 9).
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Figure 3 | Distribution of mutations in 127 SMGs across Pan-Cancer
cohort. Box plot displays median numbers of non-synonymous mutations,
with outliers shown as dots. In total, 3,210 tumours were used for this analysis
(hypermutators excluded).





it is possible that a later mutation contributing to tumour cell expan-
sionmight have a highVAF. It is worth noting that copy neutral loss of
heterozygosity is commonly found in classical tumour suppressors
such as TP53, BRCA1, BRCA2 and PTEN, leading to increased VAFs
in these genes. In AML, DNMT3A (permutation test P5 0), RUNX1
(P5 0.0003) and SMC3 (P5 0.05) have significantly higher VAFs
than average among SMGs (Fig. 5a and Supplementary Table 11b).
In breast cancer,AKT1,CBFB,MAP2K4,ARID1A,FOXA1 andPIK3CA
have relatively high average VAFs. For endometrial cancer, multiple
SMGs (for example, PIK3CA, PIK3R1, PTEN, FOXA2 and ARID1A)
have similarmedianVAFs. Conversely,KRAS and/orNRASmutations
tend to have lower VAFs in all three tumour types (Fig. 5a), suggesting
NRAS (for example, P5 0 in AML) and KRAS (for example, P5 0.02
in BRCA) have a progression role in a subset of AML, BRCA and
UCEC tumours. For all three cancer types, we clearly observed a shift
towards higher expression VAFs in SMGs versus non-SMGs, most
apparent in BRCA and UCEC (Extended Data Fig. 8a and Methods).
Previous analysis using whole-genome sequencing (WGS) detected

subclones in approximately 50% of AML cases15,36,37; however, ana-
lysis is difficult using AML exome owing to its relatively few coding
mutations. Using 50 AML WGS cases, sciClone (http://github.com/
genome/sciclone) detectedDNMT3Amutations in the founding clone
for 100% (8 out of 8) of cases and NRASmutations in the subclone for
75% (3 out of 4) of cases (Extended Data Fig. 8b). Among 304 and 160
of BRCA and UCEC tumours, respectively, with enough codingmuta-
tions for clustering, 35% BRCA and 44% UCEC tumours contained
subclones. Our analysis provides the lower bound for tumour hetero-
geneity, because only coding mutations were used for clustering. In
BRCA, 95% (62 out of 65) of cases contained PIK3CA mutations in
the founding clone, whereas 33% (3 out of 9) of cases hadMLL3muta-
tions in the subclone. Similar patterns were found in UCEC tumours,
with 96% (65 out of 68) and 95% (62 out of 65) of tumours containing
PIK3CA and PTENmutations, respectively, in the founding clone, and
9%(2out of 22) ofKRAS and 14%(1out of 7) ofNRASmutations in the
subclone (Extended Data Fig. 8b and Supplementary Table 12).

Discussion
Wehaveperformed systematic analysis of the TCGAPan-Cancermuta-
tion data set, finding key insights for cancer genomes, as summarized in
ExtendedData Fig. 9. The data set contains 127 diverse SMGs, demon-
strating that many cellular and enzymatic processes are involved in
tumorigenesis. Notably, 66 of them are also on the ‘mut-driver genes’
list generated by a ratiometric method using COSMIC mutations38.
Although a common set of driver mutations exists in each cancer type,
the combination of drivers within a cancer type and their distribution
within the founding clone and subclones varies for individual patients.
This suggests that knowing the clonal architecture of each patient’s
tumour will be crucial for optimizing their treatment.
Given the rate at which TCGA and International Cancer Genome

Consortium projects are generating genomic data, there are reas-
onable chances of identifying the ‘core’ cancer genes and pathways
and tumour-type-specific genes and pathways in the near term. These
results will be immediately circulated within the research community
to assess their potential for candidate targets for diverse tumour types
or for specific tumour type. Ultimately, these data and their associa-
tions with different clinical features and subtypes should contribute to
the formulation of a reference candidate gene panel for all tumour
types that could be helpful for prognosis at various clinical time points.

METHODS SUMMARY
Mutation data were standardized for 12 cancer types and tracked on Synapse with
documentation (http://dx.doi.org/10.7303/syn1729383.2). All mutation annota-
tion format files were downloaded from the TCGAdata coordinating centre, each
being reprocessed to eliminate known, recurrent false positives and germline
single nucleotide polymorphisms (SNP) present in the dbSNP database. All vari-
ant coordinates were converted to GRCh37 and re-annotated using the Gencode

human transcript annotation imported from Ensembl release 69. Mutation con-
text (22 to 12 bp) was calculated for each somatic variant in each mutation
category, and hierarchical clustering was then performed using the pairwise
mutation context correlation across all cancer types. The mutational significance
in cancer (MuSiC)3 package was used to identify significant genes for both indi-
vidual tumour types and the Pan-Cancer collective. An R function ‘hclust’ was
used for complete-linkage hierarchical clustering across mutations and samples,
and Dendrix30 was used to identify sets of approximately mutual exclusive muta-
tions. Cross-cancer survival analysis was based on the Cox proportional hazards
model, as implemented in the R package ‘survival’ (http://cran.r-project.org/web/
packages/survival/), and the sciClone algorithm (http://github.com/genome/sci-
clone) generated mutation clusters using point mutations from copy number
neutral segments. A complete description of the materials and methods used to
generate this data set and its results is provided in the Methods.

Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Standardization and tracking ofmutation data from12 cancer types.The three
TCGAgenome sequencing centres (GSCs; BaylorHumanGenomeCenter, Broad
Institute, and The Genome Institute at Washington University) collectively per-
formed exome sequencing on thousands of tumour samples andmatched normal
tissues, the latter being used as controls to distinguish somatic mutations from
inherited variants. These controls were most often peripheral blood, but skin
tissue was used in 199 AML samples as well as 1 buccal source, and adjacent
tumour-free tissue was used for 927 cases, with 120 cases having normal DNA
from blood and adjacent solid normal tissue.
Exome capture targets may differ among GSCs, as well as across cohorts at the

same GSC because the capture technologies and sequencing platforms continue
to evolve over time. Therefore, collecting sequencing coverage data for each
sample is crucial for most variant significance analyses. Somatic variant calling
methods also differ among GSCs for similar reasons, in addition to the fact that
filtering strategies may be tuned to emphasize either sensitivity or specificity of
calls. Finally, the TCGA disease analysis working groups (AWGs)may optionally
performmanual curation of the variant calls, in which false positives are removed
and true negatives are recovered. AWGs and GSCs also collaboratively select
putative variants for validation or for recovering variants from regions that
reported low coverage in the first pass of exome sequencing. These steps mean
that somatic variant sensitivity and specificity are mostly comparable across
samples of a given TCGA tumour type, but that they differ considerably among
tumour types, creating significant challenges for Pan-Cancer analyses.
Complete standardization of sensitivity could not be attained, as it would have

required a uniform variant calling and filtering workflow across all tumour–
normal pairs. Instead, publicly available somatic variant calls inmutation annota-
tion format (MAF) files from the TCGAwere used to both ensure reproducibility
and take advantage of extensive manual curation performed over the years by
experts in the disease or in genomic sequence analysis and annotation. Specifically,
all MAF files were downloaded from the TCGA data coordinating centre, each
being reprocessed to eliminate known, recurrent false positives andgermline single
nucleotide polymorphisms (SNP) present in the dbSNP database. All variant
coordinates were transferred to GRCh37 and re-annotated using the Gencode
human transcript annotation imported from Ensembl release 69. Per sample,
per gene coverage values were obtained using WIG-formatted reference coverage
files associated with the BAMs or by processing the original BAM files directly.
Details were tracked on Synapse with provenance and documentation (https://
www.synapse.org/#!Synapse:syn1729383).
Mutation frequency and spectrum analysis. We calculate mutation frequency
by dividing the number of validated somatic variants by the number of base pairs
that have sufficient coverage.Minimumcoverage is six and eight reads for normal
and tumour BAMs, respectively. For mutation spectrumwe classify the mutation
by six types (transitions/transversions). Mutation context is generated by count-
ing the frequency of A, T, C and G nucleotides that are 2 bp 59 and 39 to each
variant within the six mutation categories. For the clustering, we pooled all
samples (excluding hypermutators having.500mutations) for each cancer type.
We calculated the mutation context (22 to 12 bp) for each somatic variant in
each mutation category. A hierarchical clustering was then done using the pair-
wise correlation of the mutation context across all cancer types. We used correla-
tionmodules in themutational significance in cancer (MuSiC) package to identify
genes withmutations that are positively correlated with the number of mutations
in the tumour sample. This analysis was performed for all 12 cancer types. Only
genes mutated in at least 5% of tumours were included in the analysis. A list of
genes known to be involved in DNAmismatch repair is included Supplementary
Table 13.
SMG analysis.We used the SMG test in the MuSiC suite3 to identify significant
genes for each tumour type and also for Pan-Cancer tumours. This test assigns
mutations to seven categories: AT transition, AT transversion, CG transition, CG
transversion, CpG transition, CpG transversion and indel, and then uses statist-
ical methods based on convolution, the hypergeometric distribution (Fisher’s
test), and likelihood to combine the category-specific binomials to obtain overall
P values. All P values were combined using the methods described previously3.
SMGs are listed in Fig. 2. Finally, for the analysis of SMGs, genes not typically
expressed in individual tumour type or/and Pan-Cancer tumour samples were
filtered if they had an average read per kilobase permillion (RPKM)# 0.5. For the
RNA sequencing (RNA-seq)-based gene expression analysis, we used the
‘Pancan12 per-sample log2-RSEM’ matrix from Synapse (https://www.synapse.
org/#!Synapse:syn1734155). A gene qualified as ‘expressed’ if it had at least three
reads in at least 70% of samples. Annotation based curation was also performed.
Tumour specificity analysis. To make quantitative inferences as to the number
of cancer types with which an individual gene associates, we calculated the
empirical distributions of frequency for each cancer (tissue) type and declared

an association (setting indicator variable to 1) if a given gene frequency within a
type exceeded a threshold. Otherwise we set the indicator to 0, indicating no
association. We took the threshold as a standardized Z-score of 0.2 above the
mean based on the estimated level of noise in the 127 significant genes as quan-
tified by the coefficient of variation for each cancer type. We then computed an
overall distribution on the indicator variable. The mean for each functional
category having at least five genes was then converted to a Z-score based on the
descriptive statistics (mean and standard deviation) of the indicator distribution.
Unsupervised clustering. Somatic pointmutations and small indels of 127 SMGs
across the 3,281 tumours were collected. To reduce noise from passenger muta-
tions, tumours having more than 500 somatic mutations (considered hypermu-
tators) were excluded from this analysis. Tumours with zero detected somatic
mutations were also excluded, resulting in mutations from 2,611 tumours for
downstream clustering analysis. A mutation status matrix (sample3 gene) was
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only age and gender as covariates (for example, 12 out of top 15 significant genes
are overlapping from these two analyses for UCEC) (Supplementary Table 14).
Clonality and mutation VAF analysis. We computed the VAFs of somatic
mutations in SMGs using TCGA targeted validation data or/and exome and
RNA sequencing data for AML, BRCA and UCEC. An internally developed tool
called Bam2ReadCount (unpublished), which counts the number of reads sup-
porting the reference and variant alleles, was used for computing VAFs for point
mutations and short indels in copy number neutral segments. Onlymutation sites
having$203 coverage and SMGs having at least five data points were included
in downstream analyses. Permutation and t-tests were used to identify genes
with significantly higher or lower VAFs than the average (Supplementary
Table 11a, b). These indicate chronological order-of-appearance of somatic
events during tumorigenesis. VAFs for mutations from genes that are not iden-
tified as significantly mutated were similarly computed for generating control
VAF density distribution.We also computed VAF distribution for the other nine
cancer types, and plots are included in Extended Data Fig. 7. In total, 91 BLCA,
772 BRCA, 144 COAD/READ, 62 GBM, 144 HNSC, 195 KIRC, 197 LAML, 216
LUAD, 146 LUSC, 278 OV and 248 UCEC tumours were used for SMG VAF
distribution analysis.

We further investigated the expression level of somatic mutations using avail-
able RNA sequencing data for AML, BRCA and UCEC, and then compared
observed mutant allele expressions with expected levels based on DNA VAFs
(assuming no allelic expression bias). A total of 671 BRCA, 170 AML and 190
UCEC tumours with RNA-seq BAMs were used for this analysis. Notably, we
observed at least a twofold increase of variant allele expressions in 3.9%, 12.9%
and 5.9% of mutations from SMGs in AML (for example, TP53, STAG2 and
SMC3), BRCA (for example, CDH1, TP53, GATA3 and MLL3), and UCEC (for
example, ARID1A and FGFR2), respectively (Supplementary Table 11a). We
further compared expression level distributions across mutations from SMGs
and non-SMGs. For all three cancer types, we clearly observed a shift towards
higher expression VAFs in SMGs versus non-SMGs, which was most apparent in
BRCA andUCEC (ExtendedData Fig. 8a). This result suggests potential selection
of these mutations during tumorigenesis.
SciClone (http://github.com/genome/sciclone) was used for generating muta-

tion clusters using point mutations from copy number neutral segments. Only
variants with greater than or equal to 1003 coverage were used for clustering and
plotting. Validation data were used for AML, and exome sequencing data were
used for BRCA and UCEC. SMGs were highlighted automatically by sciClone to
show their clonal association (Extended Data Fig. 8b).
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Extended Data Figure 1 | Mutation context across 12 cancer types.
Mutation context showing proportions of A, T, C and G nucleotides
within65 bp for all validated mutations of type C.G/G.C and C.T/G.A

across all 12 cancer types. The y axis denotes the total number of mutations in
each category.
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Extended Data Figure 2 | The distribution of KRAS hotspot mutations
across tumour types. Distribution of changes caused by mutations of the
KRAS hotspot at amino acids 12 and 13. Lung adenocarcinoma has a

significantly higher proportion of Gly12Cys mutations than other cancers
(P, 3.23 10210), caused by the increase in C.A transversions in the genomic
DNA at that location.
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ExtendedData Figure 3 | Unsupervised clustering based onmutation status
of SMGs. Tumours having no mutation or more than 500 mutations were
excluded to reduce noise. A mutation status matrix was constructed for 2,611

tumours. Major clusters of mutations detected in UCEC, COAD, GBM, AML,
KIRC, OV and BRCA were highlighted. The shorter version is shown in Fig. 4.
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Extended Data Figure 4 | Mutation relation analysis in individual tumour
types and the Pan-Cancer set. a, Exclusivity and co-occurrence between
SMGs in each tumour type. The2log10 P value appears in either red or green if

the pair shows exclusivity or co-occurrence, respectively. b, Exclusivity and
co-occurrence between genes in the most significant (q, 0.05) pairs in
Pan-Cancer set. Colour scheme is as in a.
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Extended Data Figure 5 | Mutually exclusive mutations identified by
Dendrix in the Pan-Cancer and individual cancer type data sets. a, The
highest scoring exclusive set of mutated genes in 127 SMGs contains several
genes that are strongly associated with one cancer type. b, The highest scoring
exclusive set of mutations in the top 600 genes (not enriched for mutations in
one cancer type) reported by MuSiC. c, Relationships between exclusive gene
sets identified by Dendrix in individual cancer types. Eight types include TP53

in the most exclusive set, three include KRAS, and two include PTEN, with the
remaining genes appearing in only a single type. d, Exclusivity and co-
occurrence assessed at the Pan-Cancer level. The2log10 P value appears in red
or green if the pair shows exclusivity or co-occurrence, respectively. KIRC is
most exclusive to other tumour types, whereas COAD/READ presented strong
co-occurrence with other types.
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Extended Data Figure 6 | Kaplan–Meier plots for genes significantly
associated with survival. Plots are shown for 24 genes showing significant
(P# 0.05) association in individual cancer types. AlthoughNPM1mutations in
patients with AMLhaving intermediate cytogenetic risk are relatively benign in
the absence of internal tandemduplications inFLT3, we didnot stratify patients

based on cytogenetics or FLT3 internal tandem duplication status in this
analysis, and cannot discern this effect. Because most patients with OV (95%)
haveTP53mutations, we could not obtain sufficient non-TP53mutant controls
for confidently dissecting the relationship between TP53 status and survival in
OV.
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Extended Data Figure 7 | VAF distribution of mutations in SMGs across
tumours from BLCA, KIRC, HNSC, LUAD, LUSC, COAD/READ, OV and
GBM. To minimize the effect of copy number alterations on VAFs, only

mutations residing in copy number neutral segments were used for this
analysis. Only mutation sites with$203 coverage were used for analysis and
plotting. SMGs with at least five data points were included in the plot.
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Extended Data Figure 8 | Mutation expression and tumour clonal
architecture in AML, BRCA and UCEC. a, Density plots of expressed VAFs
for mutations in SMGs (blue) and non-SMGs (red). b, SciClone clonality
example plots for AML (validation data), BRCA and UCEC. Two plots are

shown for each case: kernel density (top), followed by the plot of tumour VAF
by sequence depth for sites from selected copy number neutral regions.
Mutations (with annotations) in SMGs were shown.
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Extended Data Figure 9 | Summary of major findings in Pan-Cancer 12.
Systematic analysis of the TCGA Pan-Cancer mutation dataset identifies

SMGs, cancer-related cellular processes, and genes associated with clinical
features and tumour progression.
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Extended Data Table 1 | Clinical correlation and survival analysis for genes mutated at$2% frequency in at least 2 tumour types
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