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Jarid2 binds mono-ubiquitylated H2A lysine 119
to mediate crosstalk between Polycomb complexes
PRC1 and PRC2
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The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental

gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing

histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation

(H3K27me3), respectively. Reciprocal crosstalk between these modifications is critical for the

formation of stable Polycomb domains at target gene loci. While the molecular mechanism

for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with

H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2 cofactor

Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin inter-

action motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates

PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical

function to Jarid2 and define a key mechanism that links PRC1 and PRC2 in the establishment

of Polycomb domains.
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T
he Polycomb repressive complexes PRC1 and PRC2 play a
central role in developmental regulation of the genome in
multicellular organisms. Both PRC1 and PRC2 catalyse

specific histone modifications, H2A lysine 119 ubiquitylation
(H2AK119u1) and H3 lysine 27 methylation (H3K27me3),
respectively, and these activities together are critical for Polycomb
function at target gene loci1.

In mammals, Polycomb complexes occupy broad domains that
correspond to CpG island promoters of repressed target genes2,
and additionally to the inactive chromosome, present in cells
of XX females3–5, and other atypical loci, including, during
early embryogenesis, to pericentric heterochromatin (PCH)6.
Polycomb targets in most instances are co-occupied by both
PRC1 and PRC2. Conventionally, this has been attributed
to crosstalk involving the CBX subunit of canonical PRC1
complexes binding to PRC2-mediated H3K27me3 (ref. 7).
Accordingly, initiation of Polycomb domain formation has
generally been attributed to sequence-specific factors and/or
non-coding RNAs that target PRC2 complexes. However, more
recent findings demonstrate that PRC1 recruitment also has a role
in initiating Polycomb domain formation8–11, and moreover, that
PRC1-mediated H2AK119u1 can direct recruitment of PRC2
complexes12–14. A specific PRC2 sub-complex, which includes the
cofactors Aebp2 and Jarid2, together with core subunits, has been
implicated in recognition of H2AK119u1 (ref. 14), although the
molecular mechanism for this interaction is currently unknown.

In this study, we demonstrate using different cell-based models
that the PRC2 cofactor Jarid2 mediates interaction of PRC2 with
H2AK119u1. We identify a ubiquitin interaction motif (UIM) at
the amino-terminus of Jarid2, and demonstrate that this domain
is required for PRC2 localization to H2AK119u1-modified
chromatin both in vivo and in vitro. Our findings ascribe a
critical function to the Jarid2 protein and additionally elucidate a
key molecular mechanism for the recognition of H2AK119u1 by
PRC2, furthering our understanding of the link between PRC1
and PRC2 in the establishment of Polycomb domains.

Results
Jarid2 mediates recognition of H2AK119u1. To define the role
of the PRC2 sub-complex associated with the cofactors Aebp2
and Jarid2 in recognition of H2AK119u1 in vivo, we made
use of MBD-RPCD, a fusion protein construct which
directs H2AK119u1 to methylated CpG sites, including at PCH
domains13 (Fig. 1a). Expression of MBD-RPCD targeted
H2AK119u1 to PCH in wild type, Aebp2 null and Jarid2 null
mouse embryonic stem cells (mESCs) (Supplementary Fig. 1a,b),
consistent with our previous findings13, and in wild type
and Aebp2 null mESCs, the H2AK119u1 recruited PRC2
(H3K27me3) (Fig. 1b,c). However, in Jarid2 null mESCs,
H3K27me3 deposition was abolished (Fig. 1d,e). This result is
not due to PRC2 intrinsically losing capacity to catalyse
H3K27me3, as direct tethering of the catalytic subunit of PRC2,
Ezh2, using an MBD-Ezh2 fusion, did result in H3K27me3
deposition (Supplementary Fig. 1c,d). These results suggest that
Jarid2, but not Aebp2, plays a role in recognition of H2AK119u1
by PRC2.

To further test the role of Jarid2 in PRC2 recruitment by
H2AK119u1, we used a different model system, Dnmt1
conditional knockout mESCs, in which depletion of DNA
methylation triggers deposition of both H2AK119u1 and
H3K27me3 at PCH domains13 (Fig. 2a). Thus, we generated
Jarid2 null alleles in Dnmt1 conditional knockout mESCs using
CRISPR/Cas9 (Supplementary Fig. 2a), and then induced deletion
of Dnmt1 by tamoxifen-mediated activation of CreER. Depletion
of DNA methylation from PCH (and genome wide) occurred

within 6 days (Supplementary Fig. 2b), and loss of Jarid2 had little
or no effect on global levels of H3K27me3 (Supplementary
Fig. 2c), consistent with previous reports15,16. However, while
H3K27me3 deposition at PCH occurred after 6 or 12 days
tamoxifen treatment in wild type (WT) mESCs, it was
undetectable in the Jarid2 null cells (Fig. 2b and Supplementary
Fig. 2d). H2AK119u1 deposition at PCH on the other hand was
detected in WT and Jarid2 null mESCs (Fig. 2c). Again, tethering
MBD-Ezh2 at PCH resulted in H3K27me3 deposition in WT and
Jarid2 null ESCs, demonstrating that Jarid2 null cells retain the
capacity to deposit H3K27me3 at these sites (Supplementary
Fig. 2e,f). Analysis of Dnmt1 deficient mESC sublines stably
transfected with Ezh2-eGFP demonstrated PRC2 localization to
PCH in WT but not in Jarid2 null mESCs (Supplementary
Fig. 2g). This finding confirms that Jarid2 facilitates PRC2
binding to H2AK119u1 chromatin.

Jarid2 and PRC2 recruitment to the inactive X chromosome. In
unpublished work, we have found that H2AK119u1 mediated by
a variant PRC1 complex, PCGF3/5-PRC1, initiates Xist RNA-
dependent Polycomb domain formation in X chromosome
inactivation. Interestingly, it has been reported that knock-
down of Jarid2 reduces Xist-mediated recruitment of PRC2 in
X chromosome inactivation17. Together with the findings
reported herein, these observations suggest that PRC2 recruit-
ment in X inactivation may also require recognition of
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Figure 1 | JARID2 is required for recruitment of PRC2 to H2AK119u1

modified chromatin. (a) Schematic of the experiment. The MBD localizes

to high meCpG regions including PCH. The minimal E3 ligase fusion protein

(RPCD) catalyses H2AK119u1 but does not interact with PRC1 or PRC2.

(b) Immunofluorescence staining of WT and Aebp2tr/tr mESCs. Scale bar,

5 mm. Arrowhead indicates a PCH focus. (c) Quantification of H3K27me3-

positive PCH domains shown in b. (d,e) As (b,c) but for Jarid2 WT and

Jarid2 KO mESCs. A minimum of 300 cells were counted in three biological

repeats. Error bars indicate s.d.
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H2AK119u1 by Jarid2. To test this hypothesis, we used CRISPR/
Cas9 to generate null alleles in the mESC cell line, BglXist1, in
which an inducible Xist RNA transgene has
been engineered with BglG stem loops, enabling tagging with
Bgl-mCherry fusion protein18 (Supplementary Fig. 3a,b). In
parallel, we generated null alleles for the core PRC2 protein
Suz12, and for the chromatin remodeller ATRX, recently
proposed to play a pivotal role in PRC2 recruitment by Xist
RNA19 (Supplementary Fig. 3c). We then assayed for the
presence of PRC2 (Ezh2 and Suz12) and H3K27me3 domains
after inducing Xist RNA expression in wild-type and mutant
mESC lines. Examples and quantitative analysis are shown in
Supplementary Fig. 3d,e. In Suz12 null BglXist1 mESCs, PRC2
localization and H3K27me3 was largely abolished, consistent
with expectations. Deletion of Jarid2 strongly reduced PRC2

recruitment, consistent with published findings17, although in
contrast to PCH domains, residual activity was observed, evide-
nced by the presence of H3K27me3 domains in a proportion of
cells. Surprisingly, deletion of the Atrx gene had no effect on
either PRC2 or H3K27 domains formed in response to Xist RNA
expression. This latter observation argues against the proposal
that ATRX is important for PRC2 recruitment by Xist RNA19.

We further defined the contribution of Jarid2 to PRC2
recruitment by Xist RNA in preimplantation embryos from a
Jarid2 conditional knockout mouse line, employing the ZP3-CRE
oocyte-specific driver20 to deplete both maternal and embryonic
Jarid2 (Supplementary Fig. 4a,b,c). Again, we observed that PRC2
localization to Xist domains (core PRC2 subunit Eed) is largely
abolished in Jarid2 null female embryos (Supplementary Figs 4c,
5a,b,c). H3K27me3 deposition at Xist RNA domains was also
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Figure 2 | JARID2 is required for establishment of H3K27me3 at PCH domains upon loss of DNA methylation. (a) Schematic of the experimental

set-up. DNA methylation (filled lollipops) was removed by tamoxifen induction of conditional Dnmt1F/F mESCs and culturing for 6–12 days. In response to

the loss of DNA methylation PRC1 (H2AK119u1) and PRC2 (H3K27me3) complexes localize to PCH (major satellites). (b) Immunofluorescence staining

with H2AK119u1 (left) and quantification of PCH domains (right) of Dnmt1� /� and Dnmt� /� Jarid2 KO mESCs. (c) As (b), except staining and

quantification for H3K27me3. A minimum of 300 cells were counted in three biological repeats. Error bars indicate s.d. Scale bars, 5mm.
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strongly reduced although not entirely abolished (Supplementary
Figs 4b,5b,c), similar to the BglXist1 mESC model. Together,
these findings suggest that Jarid2 plays a pivotal role in recruiting
PRC2 to Xist-dependent H2AK119u1 domains. However, the
presence of residual PRC2 recruitment following deletion of
Jarid2 points to the existence of a parallel mechanism through
which PRC2 can recognize H2AK119u1.

A ubiquitin interaction motif (UIM) in Jarid2. We went on to
define which regions of the Jarid2 protein are required for recog-
nition of H2AK119u1. Thus, we established Jarid2 null mESC
sublines stably expressing HA-tagged full length, mutant or trun-
cated Jarid2 proteins (Fig. 3a and Supplementary Fig. 6a). Consi-
stent with previous reports21, HA-tagged Jarid2 proteins, with the
exception of the carboxy-terminal fragment (aa 542–1234),
all interact with endogenous PRC2 (Supplementary Figs 6b,c,
7a,b). We then transfected the mESC sublines with the MBD-

RPCD construct, and monitored H3K27me3 deposition at
PCH. The data are summarized in Fig. 3b, with examples
shown in Supplementary Fig. 6d,e. Full length Jarid2 rescued
H3K27me3 deposition at PCH, consistent with expectations, and
this was unaffected by mutating Jarid2 lysine 116 (K116A), a
residue that when methylated by PRC2 stimulates PRC2 activity
both in vitro and in vivo22 (Fig. 3a,b and Supplementary Fig. 6d,e).
Interestingly, N-terminal fragments encompassing the trans-
repression domain (TRD)/PRC2 interaction domain21, and either
with or without the JmjN domain, also fully complemented
H3K27me3 deposition (Fig. 3a,b and Supplementary Fig. 6d,e.
Conversely, expression of the C-terminal fragment encompassing
JmjN, ARID, JmjC and ZF domains failed to restore H3K27me3
(Fig. 3a,b and Supplementary Fig. 6d,e). These data indicate that
the Jarid2 N-terminal region preceding the JmjN domain harbours
the key residues required for recognition of H2AK119u1-modified
chromatin.
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A careful examination of the Jarid2 N-terminal region revealed
a putative single-sided single UIM23 at the extreme N-terminus,
aa24–40 with close similarity to a UIM in Dnmt1 that interacts
with ubiquitylated histone H3 (ref. 24) (Fig. 3c). The putative
UIM is highly conserved in different vertebrate species
(Supplementary Fig. 8a). UIMs of this class have been shown to
form a short helix, which interacts with the I44 hydrophobic
patch on ubiquitin25. Accordingly, using fluorescence
polarization, we demonstrated that a Jarid2 UIM peptide binds
to WT but not to I44A mutant ubiquitin (Fig. 3d). Although weak
(41 mM), this interaction is in the same range seen for other
UIMs25. We went on to determine the importance of the UIM for
PRC2 recruitment to PCH domains. As shown in Fig. 3a,b and
Supplementary Fig. 6d,e, recognition of H2AK119u1 at PCH
domains by the Jarid2 N-terminal region was largely abolished in
the absence of the UIM (44–541 Jarid2 construct). Importantly,
this mutation had no effect on the ability of the Jarid2 N-terminus
to interact with PRC2 (Supplementary Figs 6c,7b). We further
analysed the importance of the UIM using the inducible Xist
transgene model described above. Complementation of Jarid2 null
BglXist1 mESCs with wild-type Jarid2 N-terminus fully restored
Xist-dependent recruitment of PRC2 (EZH2), consistent with a
previous report17, but this effect was entirely lost following
deletion of the UIM (Fig. 3e and Supplementary Fig. 6f).

The Jarid2 UIM directs interaction with H2AK119u1. The
aforementioned genetic analyses suggest that the Jarid2
N-terminus may bind directly to H2AK119u1-modified chro-
matin. To test this idea, we developed a pull-down assay using
reconstituted unmodified or H2AK119u1 nucleosomes
(Supplementary Fig. 8b), and nuclear extract from wild-type and
Jarid2 null mESCs. RYBP, a core component of non-canonical
PRC1 previously shown to bind to H2AK119u1 (ref. 26), was
used as a control. As shown in Fig. 4a (Supplementary Fig. 9), in
nuclear extract from wild-type mESCs, both Jarid2 and PRC2
(EZH2 subunit) bound strongly to H2AK119u1 compared with
unmodified nucleosomes. Introduction of the I44A mutation in
ubiquitin abolished the enhanced binding of both Jarid2 and
PRC2, confirming that recognition of ubiquitin is important for
the observed interaction. Enhanced binding of PRC2 was not seen
using nuclear extract from Jarid2 null mESCs (Fig. 4a, right panel;
and Supplementary Fig. 9).

To further substantiate direct interaction of the Jarid2
N-terminus and H2AK119u1, we expressed the N-terminal
region of Jarid2, residues 1–530, as a recombinant protein
(Supplementary Fig. 8c), and then assayed binding to either
unmodified or H2AK119u1 mononucleosomes using biolayer
interferometry (Fig. 4b). The affinity of the Jarid2 1-530 for
H2AK119u1 was significantly higher (2.8±0.5 mM), than that
between ubiquitin and the Jarid2 UIM (41mM), and showed a
reproducible approximately twofold increase in affinity compared
with unmodified nucleosomes (or H2AK119u1I44A) nucleo-
somes (5.0±0.7 and 5.1±1 mM, respectively). This difference was
largely attributable to the kon being significantly faster (576 s� 1

for H2AK119u1 compared with 313 and 346 s� 1 for unmodified
and H2AK119u1I44A, respectively). The binding of Jarid2 1–530
to unmodified and H2AK119u1 I44A nucleosomes is likely the
result of a previously defined nucleosome interaction domain
located between Jarid2 residues 349–450 (ref. 27).

Discussion
Previous studies have determined that Jarid2 plays an important
role in the recruitment of PRC2 to target loci in ES
cells15,16,21,28,29 and the inactive X chromosome in female
mammals17. Consistent with this, Jarid2 loss of function in
mouse results in mid-late-gestation lethality30. In light of our
findings, we suggest that these phenotypes are attributable to
decreased interaction between PRC2 and H2AK119u1, affecting
initiation and/or maintenance of Polycomb domains at target
loci. The fact that embryo lethality occurs later in Jarid2
null mice30, than with null mutations in genes encoding core
PRC2 proteins, for example Eed31, implies either H2AK119u1-
independent targeting of PRC2 by sequence-specific DNA
binding factors/lncRNAs, or alternatively, compensatory mecha-
nism(s) for the recognition of H2AK119u1 by PRC2. In light of
our finding that H2AK119u1 is required to initiate PRC2
recruitment by Xist RNA (unpublished), the observation that
PRC2 recruitment to Xi is retained, at least to a small degree, in
Jarid2 null ES cells, supports the latter possibility, although does
not rule out the former.

The chromatin remodeller ATRX was previously reported to be
highly enriched on Xi32 and to play a key role in PRC2
recruitment by Xist RNA19. We on the other hand found that
CRISPR/Cas9 mediated deletion of the Atrx gene had no effect on
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Xist-mediated recruitment of PRC2. Consistent with this finding,
we have also been unable to detect ATRX enrichment on Xi in
differentiating XX ES cells (unpublished). Our findings therefore
indicate that prior evidence for the involvement of ATRX in
PRC2 recruitment by Xist RNA needs to be reappraised.

In experiments performed using recombinant nucleosomes, we
demonstrate that Jarid2 directly binds to H2AK119u1, and that
this interaction involves a UIM in the Jarid2 N-terminus binding
to the I44 patch of ubiquitin. While binding of the UIM to
ubiquitin is relatively weak, we observed significantly enhanced
binding using a recombinant Jarid2 N-terminal fragment. This
difference is likely attributable to additional sequences in the
Jarid2 N-terminus that enhance nucleosome binding27. It should
be noted that the enhanced binding of the Jarid2 N-terminus to
H2AK119u1 compared with unmodified nucleosomes is relatively
modest, arguably insufficient to account for the enhanced activity
of PRC2 on H2AK119u1 nucleosomes in vivo in itself. One
possible explanation is that interaction surfaces contributed by
other PRC2 subunits, or by the Jarid2 C-terminal domains,
further enhances binding to H2AK119u1. An alternative,
although not mutually exclusive idea, is that enhanced
H3K27me3 deposition in vivo also reflects an allosteric switch
in PRC2 activity triggered by Jarid2 binding to H2AK119u1.
Consistent with this proposal, recent structural studies have
defined a key allosteric mechanism for activation of PRC2 by
ligands that bind to the aromatic cage of the EED subunit33–35.

In summary, we define a key molecular mechanism by which
the PRC2 cofactor Jarid2 directly binds to H2AK119u1-modified
chromatin, providing insight into how PRC1 and PRC2
collaborate to initiate the formation of repressive chromatin at
target genes through development and cellular differentiation.

Methods
Cell growth. ES cells were grown in ES media (Dulbecco’s Modified Eagle
Medium (DMEM, Life Technologies) supplemented with 10% foetal calf
serum (FCS, Seralab), 2 mM L-glutamine, 1� non-essential amino acids, 50 mM
2-mercaptoethanol, 50 mg ml� 1 penicillin/streptomycin (Invitrogen) and
LIF-conditioned medium, made in house, at a concentration equivalent to
1000 U ml� 1. ESCs were grown on inactivated SNLP feeders (STO mouse fibro-
blasts expressing neomycin, puromycin resistance and Lif genes), unless otherwise
stated. ES cell knockout (KO) medium was KnockOut DMEM (Life Technologies)
with the same supplements as ES cell medium, plus 3.3% Knockout Serum
Replacement (KnockOut SR Life Technologies). Cell lines used in this study were
129/1 WT and Aebp2tr/tr cells36, Jarid2 WT and KO15, Dnmt1f/f (ref. 13), BglXist1
(ref. 18). Jarid2 WT and KO cells were grown in ES cell KO medium without
feeders, and Eed WT and KO cells were grown in ES medium without feeders.

Transfection. Transient and stable mESC lines were generated by transfection of
4 mg expression constructs using Lipofectamine 2000 (Life Technologies). Stable
integrants were selected using 1.5 mg ml� 1 puromycin and individual colonies were
picked and tested for expression of the construct by immunoblotting.

CRISPR knockout cell lines. Cells were transfected with the pX459 vector
containing sgRNA target site sequences listed in Supplementary Table 1. Thirty
hour after transfection, medium containing 1.5 mg ml� 1 puromycin was added,
and after a subsequent 48 h, cells were cultured in medium without selection until
colonies had grown. Successful homozygous mutation was confirmed by PCR
and sequencing using primers in Supplementary Table 1 and, where possible by
immunoblotting. Antibodies used were anti-JARID2 (Novus Biologicals NB100-
2214) at 1:1,000 dilution, anti-SUZ12 (Cell Signalling 3737) at 1:1,000 dilution,
anti-EZH2 (Cell Signalling 5246) at 1:1,000 dilution, anti-ATRX (a gift from
R. Gibbons) at 1:10 dilution, anti-EED (a gift of A. Otte) at 1:500 dilution.
Controls used were H2AK119u1 (NEB 8240) at 1:1,000 dilution, anti-H3K27me3
(Diagenode pAb-069-050) at 1:1,000 dilution, anti-H3 (Abcam ab1791) at 1:10,000
dilution and anti-RING1B (a gift of H. Koseki) at 1:1,000 dilution.

Immunofluorescence. ESCs were grown on slides without feeders, fixed with 2%
formaldehyde for 15 min, permeabilized with 0.4% Triton X-100 for 5 min and
blocked with 0.2% fish gelatin (Sigma) for 30 min. Slides were incubated with
primary antibody for 2 h (diluted in 0.2% fish gelatin and 5% normal goat serum),
washed three times and incubated with Alexa-fluor conjugated secondary antibody

for 2 h (Life Technologies). After washing five times, the slides were stained with
DAPI (1 mg ml� 1), and mounted using mounting media (Dako). Primary anti-
bodies used were protein-A purified anti-AEBP2 (ref. 36) at 1:10 dilution, anti-
H3K27me3 (Active motif 39157) at 1:500 dilution, anti-SUZ12 (Cell Signalling
3737) at 1:500 dilution, anti-EZH2 (Cell Signalling 5246) at 1:500 dilution, anti-
EED (a kind gift from A. Otte) at 1:100 dilution, anti-JARID2 (Novus Biologicals
NB100-2214) at 1:500 dilution, H2AK119u1 (NEB 8240) at 1:500 dilution, anti-
FLAG (Sigma M2 F1804 and F7425) at 1:500 dilution, anti-mCherry (Source
Bioscience ABE3523 and gift from F. Barr) at 1:500 and 1:800 dilution, anti-
RING1B at 1:500 dilution and anti-ATRX (a gift from R. Gibbons) at 1:10 dilution.

Pericentric heterochromatin targeting assay. Methyl-binding domain (MBD)
fusion proteins were as described13. The RING1B/PCGF4 catalytic domain (RPCD)
fusion was produced by linking amino acids 1–116 of mouse RING1B and 3–109 of
PCGF4 using a 4� GGS flexible linker to create a minimal E3 ubiquitin ligase13.
The MBD domain of human MBD1 (residues 1–112) was fused with a 2� GGS
flexible linker to the N-terminus of RPCD or full length mouse Ezh2 along with a
C-terminal SV40 NLS and FLAG-tag. These MBD-fusion proteins were cloned
into the pCAG plasmid. Isogenic WT and mutant ESC lines used were 129/1
and Aebp2tr/tr (ref. 36) and Jarid2 WT and KO15. mESCs were transiently
transfected using lipofectamine 2000 (Invitrogen), and fixed and stained 3 days
post transfection for FLAG, H2AK119u1 and H3K27me3.

The JARID2 fragments used to complement the mutant phenotype were
generated using primers listed in Supplementary Table 1. PCR products were
digested with Sal I and Not I and cloned into the pCAGIPuro vector, in which
expression of the insert is controlled by the constitutive b-actin promoter. All
constructs contained a C-terminal HA tag for detection, and were stably
transfected into Jarid2 KO mESCs.

Quantification of localization to PCH was carried out by counting the number
of cells containing visible H2AK119u1 or H3K27me3-stained PCH foci compared
with the total number of transfected cells (n4300). Error bars show standard
deviation of three biological repeats. All quantifications were carried out blind, with
coded genotypes and represent the average counts obtained independent by two
individuals.

Redistribution of Polycomb in Dmnt mutant cells. Conditional Dnmt1f/f ESCs37

were grown on inactivated PEFS and gene deletion was induced by the addition of
800 nM 4-hydroxytamoxifen. Knockout of the Jarid2 gene was performed in this
background using CRISPR/Cas9, and three independent mutant lines were
generated. These were validated on the basis of a shift in the reading frame of the
protein determined by Sanger sequencing, and the absence of detectable JARID2
protein by immunoblotting.

Dnmt1f/f and three Dnmt1f/fJarid2� /� knockout lines were grown for 6 and 12
days with or without 4-hydroxytamoxifen addition, and immunostaining was
performed for H2AK119u1 and H3K27me3. The number of cells with PCH foci
positive for H2AK119u1 or H3K27me3 were counted as a percentage of the total
number of cells (n4300). Three biological repeats were performed for each of the
three independent mutant lines and controls. Error bars show standard deviation
of the three mutant lines, and counting was carried out blind as described above.

C-terminally eGFP tagged EZH2 was cloned into the pCAGIPuro vector,
and stable cell lines were generated in the Dmnt1f/f and Dnmt1f/f Jarid2� /�

backgrounds. Clones expressing a comparable level of tagged EZH2 to the
endogenous protein, as determined by immunoblotting, were selected for
further experiments. Live imaging was performed at 0 and 10 days following
4-hydroxytamoxifen addition and the number of cells with PCH foci positive for
EZH2-eGFP were counted as a percentage of the total number of cells (n4300) as
above.

Chromatin targeting by Xist. Full length Xist cDNA was cloned into the
pTRE-tight vector with Bgl stem loops inserted within the sequence to allow
visualization of Xist localization in live cells, and a tetO promoter driving
its expression18. Male ESCs, that constitutively expressed the tetracycline
transactivator protein, rtTA such that expression of Xist can be regulated by
addition of doxycycline were co-transformed with the Xist-Bgl construct and a
construct expressing an mCherry tagged BglG protein to label the Xist domains,
and stable lines were generated. Clones were selected whereby induction of Xist
induced a single domain of Xist localization, due to integration of the Xist
transgene on a single autosome18.

Knockout of the Jarid2, Atrx and Suz12 genes were performed in this
background using CRISPR/Cas9 as above. Mutant clones were validated on the
basis of a shift of the reading frame of the protein determined by Sanger
sequencing, and absence of detectable JARID2, ATRX and SUZ12 proteins using
immunoblotting.

Expression of the Xist transgene was induced with 1.5 ug ml� 1 doxycycline for
1 day in WT, Jarid2� /� , Atrx� /� and Suz12� /� cells. Immunostaining was
performed for H3K27me3, EZH2, SUZ12 and mCherry. The number of cells with
an inactive chromosome focus stained with these markers were counted as a
percentage of the total number of cells (n4300). Three biological repeats were
performed for each of the mutant lines and controls. Error bars show standard
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deviation of the three biological repeats, and counting was carried out as
described above.

Co-immunoprecipitation of endogenous and HA-tagged proteins. Cells from a
confluent 140 mm plate were collected and resuspended in 500 ml cell lysis buffer
C300 (20 mM HEPES-KOH pH 7.9, 1.5 mM MgCl2, 0.1 % NP40, 0.2 mM EDTA-
NaOH pH8.0, 300 mM KCl with freshly added 0.5 mM DTT, cOmplete EDTA-free
(Roche)). Cells were incubated on ice for 20 min and cell debris was removed by
centrifugation (16,100g, 20 min, 4 �C). Extracts were pre-cleared with 30 ml packed
volume salmon sperm-blocked Protein A Agarose beads (Millipore) in the presence
of 250 U Benzonase Nuclease (Millipore) for 30 min at 4 �C. Antibodies were added
(anti-EZH2 (Cell Signalling 5246, 5 ml), IgG (Sigma M7023, 4 ml) and HA affinity
matrix (Roche 3F10, 11867423001, 15 ml)) and incubated at 4 �C overnight.
Subsequently, 30ml packed volume Protein A Agarose beads were added to capture
antibodies against endogenous proteins and incubated for 2 h at 4 �C. The flow
through was collected and beads were washed five times with 1 ml C300. Subse-
quently beads were boiled in 50 ml SMASH buffer (50mM Tris-HCl pH 6.8, 10%
Glycerol, 2% SDS, 0.02% bromophenol blue, 1% beta-mercaptoethanol) for 5 min
at 95 �C. Immunoblots were probed with anti-HA (Roche 3F10) at 1:1,000 dilution,
anti-H3 (Abcam ab1791) at 1:10,000 dilution and anti-EZH2 (Cell Signalling 5246)
at 1:1,000 dilution.

Southern blotting. For methylation-specific southern blots, genomic DNA was
digested with the methylation-sensitive enzyme HpyCH41V, separated on a 1.25%
agarose gel and blotted to a hybond-XLMembrane. Blots were probed with a
‘gamma’ mouse major satellite probe as described38,39 labelled using klenow and
alpha-P-32-ATP.

Genetic crosses. All animals used in the studies were handled with care and
experiments were done according to the guidelines from the Danish animal ethical
committee (Dyreforsøgstilsynet) and French legislation and institutional policies.
Targeted Jarid2 mice (C57Bl/6N.Jarid2tm1a(KOMP)Wtsi) were obtained from the
Knockout Mouse Program (KOMP, https://www.mousephenotype.org/data/genes/
MGI:104813). In these animals, a lacZ-Neo-reporter cassette flanked by FRT sites is
inserted between exons 1 and 2 of Jarid2 as well as LoxP sites surrounding exon 2.
To obtain conditional (Jarid2flox/flox) and Jarid2 knockout (Jarid2ko) alleles,
they were sequentially crossed with mice ubiquitously expressing Flp- and
Cre-recombinase. Maternal and paternal preimplantation Jarid2-deficient embryos
were generated from natural mating between Jarid2flox /flox;Zp3::creþ /� females
with Jarid2ko/þ or Jarid2ko/flox males. Animals were maintained on a C57Bl/6
background and the different Jarid2 alleles (wt 994 bp, Neo 719 bp, flox 1192 bp, ko
240 bp) were detected with primers listed in Supplementary Table 1.

Embryo collection and immunostaining. Blastocysts were collected in M2
medium (Sigma) by flushing the uterus. The zona pellucida was removed, embryos
were transferred onto coverslips previously coated in Denhardt’s solution and
dried for 30 min at room temperature as described40. Samples were fixed in 3%
paraformaldehyde (pH 7.2) for 10 min at RT and permeabilized in ice-cold PBS,
0.5% Triton X-100 containing 2 mM Vanadyl Ribonucleoside Complex (NEB) on
ice for 3–15 min. After rinsing with PBS, embryos were blocked with PBS 1% BSA
(Gibco 15260-037) and 1 U ml RNAse inhibitor (Euromedex) for 15 min then
incubated with primary antibodies (Jarid2 (ab48137; 1:800), Eed (A.Otte 1:100) and
H3K27me3 (Active Motif 39155 1:200)) diluted in PBS 1% BSA, 4 U ml RNAse
inhibitors for 1.5 h. Coverslips were then washed three times in PBS and incubated
with secondary antibody (1:250) for 30 min. After washing, preparations were
postfixed in 4% PFA for 10 min and rinsed in SSC 2� . For RNA FISH, the Xist
probe was labelled with Spectrum Red-dUTP (Vysis) by nick translation on a
preparation of a plasmid containing a 19 kb genomic fragment covering most of the
Xist gene. Hybridizations using 0.1 mg of probe per coverslip in 50% formamide,
2� SSC, 20% dextran sulfate, 1 mg ml� 1 BSA (Biolabs) and 200 mM VRC were
performed overnight at 37 �C in a humid chamber followed by three washes in
2� SSC at 42 �C for 5 min. Slides were mounted in Vectashield (Cliniscience)
containing DAPI. Images were acquired on a Zeiss LSM700 inverted confocal
microscope with a Plan apo DICII (numerical aperture 1.4) � 63 oil objective.
Z sections were taken every 1 mm and full Z stack projections are shown. Images
were analysed using ImageJ software.

Nuclear extract preparation. Cells were collected, washed in PBS and resus-
pended in 10 packed cell volumes buffer A (10 mM HEPES, pH 7.9, 1.5 mM MgCl2,
10 mM KCl, 0.5 mM DTT, 0.5 mM PMSF, protease inhibitors (Roche)). Cells were
collected and resuspended in three cell volumes of buffer A containing 0.1% NP-40,
and incubated on ice for 10 min. Nuclei were collected and resuspended in one cell
volume buffer C (5 mM HEPES, pH 7.9, 26% glycerol, 1.5 mM MgCl2, 0.2 mM
EDTA, 250 mM NaCl, 0.5 mM DTT, protease inhibitors), before NaCl con-
centration was increased to 350 mM by adding 5 M NaCl dropwise while mixing.
Salt extraction was carried out for 1 h on ice, and chromatin pelleted at 16,000g
for 20 min at 4 �C. The supernatant was taken as soluble nuclear extract, and
quantified by Bradford assay.

Histone purification and nucleosome reconstitution. Recombinant Xenopus
histones were expressed in bacteria and purified from inclusion bodies. Stoichio-
metric amounts of each core histone were incubated together under high-salt
conditions, and the resulting histone octamer was purified using a Superdex 200 gel
filtration column (GE Healthcare). His-tagged ubiquitin was cloned into a PET14b
plasmid, expressed in BL21 cells, sonicated, clarified by centrifugation and purified
by affinity purification. Site-directed mutagenesis was performed using the
QuikChange Lightning kit (Aligent). Ubiquitinated H2A was produced as
previously described41. In brief, ubiquitin, mutated to include a C-terminal
Cysteine (G67C), was crosslinked to H2A K119C using 1,3-dichloroacetone.
Cross linked product was purified by affinity purification via the N-terminally
tagged ubiquitin.

For pull downs, biotinylated DNA containing two repeats of the nucleosome
positioning sequence (601) and 48 bp linker was amplified by PCR (50 biotin-
tagged primer) and purified. For biolayer interferometry, a biotinylated 147 bp
DNA fragment containing a single 601 sequence was produced as described42.

Equimolar ratios of DNA and octamers were mixed together in 2 M NaCl and
diluted stepwise with 10 mM Tris-HCl, pH 7.5, to reach a final concentration of
100 mM NaCl. The reconstituted dinucleosomes were analysed by an
electrophoretic mobility shift assay (EMSA) using 0.8% agarose gel in 0.2%
Tris-borate and post stained with ethidium bromide.

H2AK119u1 pull downs. WT and uH2A dinucleosomes were incubated with
prewashed, magnetic, streptavidin coated beads (Fisher) for 1 h at 4 �C, and then
washed five times with 250 mM NaCl, 10 mM Tris-HCl pH 7.0 and 0.01% Tween
20. 10mg dinucleosomes (WT or uH2A) were incubated with 250 ug nuclear cell
extract for 1 h at 4 �C, again washed five times with 250 mM NaCl, 10 mM Tris-
HCl pH 7.0 and 0.01% Tween 20, and finally the reaction stopped by adding SDS
loading buffer. Samples were analysed by SDS-PAGE and western blot. Primary
antibodies used were anti-HA (Roche 3F10 11867423001) at 1:1,000 dilution,
anti-ATRX (a gift from R.Gibbons) at 1:10 dilution, anti-EZH2 (Cell Signalling
5246) at 1:1,000 dilution, anti-JARID2 (Novus Biologicals NB100-2214) at 1:1,000
dilution and anti-H4 (Abcam AB7311).

JARID2 purification. hJARID2 1–530 virus was a gift from Raphael Margueron,
cloned using the Bac-to-Bac Baculovirus Expression Systems (Invitrogen). Protein
was produced in SF9 insect cells after infection. Lysates containing Flag-tagged
proteins were resuspended in 300 mM NaCl, 20 mM Tris-HCl, pH 8.0, 2.5 mM
dithiothreitol (DTT), lysed by sonication and clarified by centrifugation. Following
incubation with Flag beads (M2-beads), protein was eluted by Flag peptide
overnight.

Biolayer interferometry. Jarid2 1–530 binding to immobilized mononucleosomes
was measured on an Octet RED biolayer interferometer (Pall ForteBio Corp.,
Menlo Park, CA, USA). Biotinylated mononucleosomes were immobilized on
streptavidin biosensors (Pall ForteBio Corp., Menlo Park, CA, USA) at a con-
centration of B0.012 mg ml� 1. The binding of Jarid2 (at 2–25 mM) to the immo-
bilized nucleosomes was measured at 25 �C with a 500 s association step followed
by a 1,000 s dissociation step. The buffer was 10 mM HEPES (pH 7.4), 150 mM
NaCl, 3 mM EDTA, 0.005% Tween-20 and 1 mg ml� 1 BSA. The association phase
was analysed as a single exponential function using in-house software and a plot of
the observed rate (kobs) versus the Jarid2 concentration gave the association and
dissociation rate constants (kon and koff) as the slope and intercept, respectively,
(Fig. 4b). The dissociation rate constant was also determined independently from
analysis of the dissociation phase.

Fluorescence polarization. WT or I44A ubiquitin was titrated into 7 mM fluor-
escent UIM peptide (7-Methoxycoumarin-4-Acetic acid –SEERVVRKVLYLSLK-
EFKNA) purchased from GL Biochem Ltd. Fluorescence anisotropy was monitored
on a JASCO FP 8500 in 100 mM NaCl and 50 mM Tris pH 8.0, data was analysed
using in-house software.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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