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Identification of the elementary structural units
of the DNA damage response
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Histone H2AX phosphorylation is an early signalling event triggered by DNA double-strand

breaks (DSBs). To elucidate the elementary units of phospho-H2AX-labelled chromatin, we

integrate super-resolution microscopy of phospho-H2AX during DNA repair in human cells

with genome-wide sequencing analyses. Here we identify phospho-H2AX chromatin domains

in the nanometre range with median length of B75 kb. Correlation analysis with over 60

genomic features shows a time-dependent euchromatin-to-heterochromatin repair trend.

After X-ray or CRISPR-Cas9-mediated DSBs, phospho-H2AX-labelled heterochromatin

exhibits DNA decondensation while retaining heterochromatic histone marks, indicating that

chromatin structural and molecular determinants are uncoupled during repair. The phospho-

H2AX nano-domains arrange into higher-order clustered structures of discontinuously

phosphorylated chromatin, flanked by CTCF. CTCF knockdown impairs spreading of the

phosphorylation throughout the 3D-looped nano-domains. Co-staining of phospho-H2AX

with phospho-Ku70 and TUNEL reveals that clusters rather than nano-foci represent single

DSBs. Hence, each chromatin loop is a nano-focus, whose clusters correspond to previously

known phospho-H2AX foci.
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D
NA double-strand breaks (DSBs) are the most harmful
lesions induced by either endogenous (for example,
replication) or exogenous (for example, ionizing radia-

tion-IR) genotoxic stress, which may lead to chromosomal
aberrations and tumorigenesis if not correctly repaired. To deal
with DSBs, cells activate a rapid and hierarchically coordinated
signalling cascade known as DNA damage response (DDR),
leading to cell cycle arrest and allowing the DNA repair
machinery to exert its function. One of the earliest events
of DDR is the phosphatidylinositol-3-kinase-like-dependent
phosphorylation of serine 139 of histone H2AX (gH2AX)1,
a histone H2A variant whose role at the interface of DNA repair,
chromatin structure regulation and cell cycle checkpoint
activation2 is yet to be fully elucidated.

Detection of gH2AX has become the most widely used method
for quantification of DSBs and their repair kinetics. Activated
DDR, as scored by quantification of nuclear gH2AX focal
structures, has been extensively described in both precancerous
and cancer cells3,4. The majority of these studies were performed
by conventional microscopy techniques, including confocal
microscopy, and the structures resolved were in the micrometre
or sub-micrometre range, with a predicted DNA content in the
megabase-pair (Mbp) range. Indeed, gH2AX is proposed to
spread up to several Mbps from the original lesion site, in higher
eukaryotes5. The distribution of such histone modification is
neither symmetrical around DSB sites nor uniform on chromatin,
as assessed by chromatin immunoprecipitation (ChIP) studies
conducted in mammals6–8 and yeast9,10. Such uneven spreading
may be accounted for by gene transcription11, or cohesin complex
binding12, which antagonize gH2AX formation along the
chromosomes.

An increasing body of evidence underlines the crucial role of
genome topology and chromatin spatial organization in the
regulation of biological processes13. Recent chromosome
conformation capture studies have revealed the complexity of
genome architecture, with large compartments in the Mbp range
conserved across cell lineages and species14,15, as well as smaller
contact domains with a variable size in the range of a few
hundreds of kilobase pairs (kb)15. This spatial organization can be
dynamic and underlines cell-type-specific networks, possibly
driving the expression of specific sets of genes16 or organizing the
replication process17.

Nonetheless, the three-dimensional (3D) arrangement of
gH2AX-decorated chromatin in the nuclear volume and its
dynamic evolution during the DDR remains elusive. Here we
investigate the DDR over time at nanometre resolution by
employing super-resolution microscopy techniques on human
cells exposed to X-ray radiation. By overcoming the optical
diffraction limit, structured illumination microscopy (3D-SIM)18

and stimulated-emission-depletion (STED)19 fluorescence
microscopy present high prospecting capacity, thus allowing us
to dissect complex structures of gH2AX-decorated chromatin at
nanometre resolution (B100 nm). Furthermore, the integration
of the microscopy results with CRISPR-Cas-targeted DNA
damage, RNAi of the key structural factor CCCTC-binding
factor (CTCF), gH2AX ChIP-Seq(uencing) profiles during DDR,
and more than 60 genomic features reveal temporal, functional
and structural insights into the elementary chromatin units read
by the DNA DSB repair machinery.

Results
Cellular system and experimental strategy validation. For our
study, we employed HeLa cells, an established human cell
line whose (epi)genome is extensively annotated in the context
of the ENCODE project (genome.ucsc.edu/ENCODE/). To test

the DDR, we assessed the formation of gH2AX before and after
exposure to IR. We investigated the early (0.5 h), mid (3 h) and
late (24 h) stages of DDR, which, according to earlier reports20,
represent 60–100%, 20–60% and less than 10% of the initial
DSBs, respectively. Our confocal immunofluorescence analysis of
gH2AX revealed that the show endogenous gH2AX signal. This is
frequently observed in cancer cell lines and can be attributed to
randomly produced DSBs at stalled and collapsed replication
forks21,22. On exposure to IR, gH2AX followed the predicted
repair kinetics, with nuclear gH2AX fluorescence intensity
increasing, and then decreasing over time (Supplementary
Fig. 1A). Similar kinetics was observed by western blot analysis
(Supplementary Fig. 1B). Together, these methods revealed a
four- to eightfold increase in gH2AX signal after IR. Overall, cells
were able to activate a DDR and underwent cell cycle arrest,
accumulating in S-phase (Supplementary Fig. 1C). No apoptosis
was detected (Supplementary Fig. 1D), and 24 h post IR cells were
viable, re-entered the cell cycle (Supplementary Fig. 1C) and
proliferated, although at a lower rate compared with the mock-
irradiated controls (Supplementary Fig. 1E).

To investigate gH2AX kinetics at high resolution, we recorded
super-resolution image sets before and during DDR, and acquired
gH2AX ChIP-Seq genome-wide data at matching time points
(Fig. 1a). In all of our immuno-based approaches, we probed
gH2AX-decorated chromatin with the same antibody, whose
specificity was verified by slot blot analysis employing the
gH2AX-immunizing peptide (Supplementary Fig. 1F). The repro-
ducibility of the sequencing data was assessed and confirmed by
comparing biological replicates (Supplementary Fig. 1G).

Super-resolution microscopy of cH2AX kinetics during DDR.
To first address the effect of improved optical resolution, we
compared the number of gH2AX foci from cells imaged by
conventional confocal and 3D-SIM microscopy, and analysed in
addition the pseudo-wide-field images re-computed from the
same 3D-SIM images, before and after deconvolution (Fig. 1b).
A detailed analysis workflow is in the ‘Methods’ section and
summarized in Supplementary Fig. 1H. Compared with confocal
images (Fig. 1c), we observed a fivefold increase in foci numbers
in pseudo-wide-field images, with an additional twofold increase
in deconvolved images (Fig. 1d). Despite employing IR doses that
are challenging for conventional confocal microscopy (10 Gy
X-ray), the enhanced optical resolution enabled us to resolve
thousands of foci, increasing by about one order of magnitude the
foci counts compared with the pseudo-wide-field, and about two
orders of magnitude when comparing with confocal microscopy
(Fig. 1e). Thus, it becomes obvious that a single focus identified
by confocal microscopy can be further resolved by 3D-SIM into
substructures (Fig. 1b, bottom panels, and Supplementary
Fig. 2A), which we referred to as nano-foci. In addition, we
controlled the imaging and reconstruction process of 3D-SIM by
visual inspection of the reconstructed images in Fourier’s space
(Supplementary Fig. 2B). No reconstruction artifacts are visible as
can be seen from the fast Fourier transformed images, which
would contain regular stripe patterns otherwise.

Coherently, we observed a two- to fourfold decrease in the
diameters of the segmented objects, when comparing 3D-SIM
images with re-computed pseudo-wide-field images, with or
without deconvolution, respectively (Supplementary Fig. 3A).
Notably, in the 3D-SIM images, the nano-foci diameters were
constant during the DDR (median lateral diameter: B200 nm;
Fig. 2a), indicating that we detected the smallest substructures of
gH2AX-decorated chromatin at the limit defined by the foci
segmentation process (eight voxels). To gauge the actual size of
gH2AX nano-foci, we recorded gH2AX immunofluorescence
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Figure 1 | Characterization of cH2AX foci at different resolution levels. (a) Schematics of the experimental approach. (b) Mid-nuclear sections of

confocal microscopy (z: 200 nm) and 3D-SIM (z: 125 nm) representative images of cells, 24 h post IR. Only for 3D-SIM, the same exemplary cell is shown

as re-computed pseudo-wide-field image before or after deconvolution as well as the original 3D-SIM output. The total number of detected foci

(highlighted in colours) in the whole nuclear volume is shown in the DAPI panels. The lower panels show magnified views of the yellow dashed frame. Scale

bars, 5 mm and 500 nm for main micrographs and magnified regions, respectively. gH2AX foci number distributions before and during DDR,

from confocal images (c), 3D-SIM re-computed pseudo-wide-field of identical cell nuclei, before or after deconvolution (d) and original 3D-SIM

images (e). n: total number of imaged cells from three independent experiments. All boxes and whiskers represent 25–75 percentiles and three times

the IQD. The mean number of foci and corresponding s.d., the median as well as the 95% confidence intervals (CI) for the median are shown below

each box. NA: not applicable. For c–e: one-way ANOVA with Dunnett’s correction; ***Po10� 3.
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Figure 2 | Metrics of cH2AX nano-foci dimensions and DNA content. (a) Quantification of nano-foci diameters in the three dimensions (filled boxes, top)

during DDR. From these three dimensions, the volumes were calculated (empty boxes, bottom). The difference between lateral and axial measurements is

due to the lower resolution in the axial direction. Figures in nm or nm3� 106 are shown. (b) STED microscopy of gH2AX immunofluorescence. (left)

Quantification of lateral diameters of gH2AX nano-foci. Statistics and size scale are as in a. (right) Exemplary STED images of cells before and after IR are

shown together with the magnified views of the light-blue boxes. Scale bars, 5 mm and 500 nm for main micrographs and magnified regions, respectively.

(c) DNA content distributions of gH2AX nano-foci before and during DDR. Only in IR-exposed cells, we found nano-foci larger than 1 Mbp (dashed boxes),

and their frequency never exceeded 1% (0.14%, 0.28%, 0.95% for 0.5 h, 3 h and 24 h, respectively). Kruskal–Wallis w2¼ 18,503, df¼ 3, Po2.2� 10� 16.

Statistics (in kb) are shown next to each distribution. All boxes and whiskers are as in Fig. 1. n: total number of measured nano-foci from all imaged cells in

two independent experiments, for 3D-SIM (a,c) or STED (b).
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images by STED microscopy. Compared with our 3D-SIM set-up,
STED provided a twofold increase in optical resolution18. Yet,
the measured lateral diameters (Fig. 2b) were statistically
undistinguishable from those recorded by 3D-SIM under
sham-irradiation conditions (unpaired two-tailed t-test:
P40.05). Upon irradiation, the mean lateral diameters imaged
by STED were only B20% smaller than those we measured by
3D-SIM imaging (unpaired two-tailed t-test: Po10� 3). These
results validate our 3D-SIM measurements and indicate that
gH2AX nano-foci are the chromatin elementary units of the
cellular response to DSBs.

Next, to estimate the DNA content of nano-foci, we related the
integrated 4,6-diamidino-2-phenylindole (DAPI) intensity of
each gH2AX nano-focus to the total DNA content represented
by the integrated whole nuclear DAPI intensity (Supplementary
Fig. 3B). The resulting DNA fractions were first corrected for the
total HeLa genome size (determined by spectral karyotyping,
Supplementary Fig. 3C), and then further corrected for the cell
cycle phase of each given cell (Supplementary Fig. 3D). Finally,
values smaller than the 0.5th and bigger than 99.5th percentile
were discarded to avoid artifactual biases. The resulting
distributions are shown in Fig. 2c. Before exposure to IR, the
interquartile distance (IQD) of the nano-foci DNA content was
B23–65 kb. On IR (0.5 h)—after gH2AX spreading—it increased
to B34–159 kb, with a median length of 75 kb (Fig. 2c and
Supplementary Tables 1 and 2).

To provide another line of evidence supporting our 3D-SIM
metrics, we produced gH2AX ChIP-Seq profiles under the
same experimental conditions employed for the microscopic
analysis. Next, we integrated the genomic data with the
super-resolution microscopy data to establish a novel combined
approach (described in detail in the Methods and Supplementary
Fig. 4) and, thus, provide estimates of the gH2AX-decorated
chromatin domain size. Overall, the resulting gH2AX genomic
domains’ size was in good agreement with that of 3D-SIM
gH2AX nano-foci, although the former were B30% smaller
(IQD: 10–110 kb at 0.5 h). Because our approach only takes into
account the in cis contribution to the size of the genomic
domains, the difference between the latter and those measured by
3D-SIM can be attributed to inter-chromosomal contribution23.

The DDR uncouples histone modifications and DNA compaction.
To characterize the (epi)genetic composition of gH2AX-
decorated chromatin during DDR, we related the ChIP-Seq
gH2AX profiles to multiple genomic features, (Supplementary
Table 3). First, we computed the density of such genomic features
as well as the abundance of gH2AX in 10 kb genomic intervals.
Next, we calculated the genome-wide Spearman’s r correlation
coefficient of each feature with gH2AX profiles before and during
the DDR (Fig. 3a). The outcome of the analysis showed a strong
correlation at early time post IR between gH2AX and euchro-
matic features such as GC content (Supplementary Fig. 5A;
maximum Spearman’s r: 0.81, Po2.2� 10� 16), DNase hyper-
sensitivity sites, Regions of IncreaseD Gene Expression (RIDGEs),
early replication timing and histone modifications associated with
transcriptionally active chromatin state (for example, H3K36me3,
H3K4me1/2/3 and H3K9ac). Heterochromatic features, such as
AT content (Topo.CAT-YTA-RAK motif), lamin-binding sites,
late replication timing, intensity of Giemsa shades and H3K9me3,
were negatively correlated to gH2AX, instead. Notably, this trend
was inverted at later times, with heterochromatic features corre-
lating to residual gH2AX levels. An exemplary gH2AX profile on
chromosome 21 is shown in Fig. 3b. Quantification of gH2AX
levels, before and during DDR, in (anti-)RIDGEs, Giemsa shades
as well as in H3K36me3- and H3K9me3-decorated chromatin

domains is shown in Supplementary Fig. 5B–D and Suppleme-
ntary Table 4.

To validate and extend these findings at the single-cell level,
we recorded 3D-SIM images of gH2AX immunofluorescence
combined with either H3K36me3 or H3K9me3 labelling (Fig. 4a).
These two histone modifications recapitulate the results
from Fig. 3a, with the former being mainly associated with
actively transcribed genes24, while the latter is abundant
in heterochromatic (for example, pericentromeric regions) and
transcriptionally silent regions25. We segmented gH2AX
nano-foci as previously described and, in addition, we
measured the H3K36me3 or H3K9me3 fluorescence intensity in
the volume occupied by gH2AX nano-foci. In the latter,
H3K36me3 signal was high at early time points, but not at 24 h
post IR, as opposed to H3K9me3 signal, which was low at early
time points but higher 24 h post IR (Fig. 4b). We observed similar
results when measuring gH2AX fluorescence intensity in the
volume of H3K36me3- and H3K9me3-decorated chromatin
(Fig. 4c). Together, these findings recapitulate our genomic
results, indicating that gH2AX nano-foci are mainly associated to
an active chromatin state during the early and
mid-stages of DDR, whereas the residual phosphorylation signal
is enriched in heterochromatin at later times.

Based on these data, we expected an enrichment of gH2AX
nano-foci in compact chromatin (that is, DAPI-dense structures)
at later times. However, the mean DAPI content of gH2AX
nano-foci remained unvaried over the time, and, if at all, was
lower at 24 h (Fig. 4d). In fact, gH2AX nano-foci were located in
close proximity to DAPI-dense structures, and the two seldom
overlapped. To quantify this, we measured the maximum DAPI
intensity in a 3D-region dilated by three voxels in all dimensions
around each gH2AX nano-focus, which we referred to as ‘shell’
(Supplementary Fig. 5E). Shells always presented higher DAPI
signal than the nano-foci (Fig. 4e). This is in agreement with
previous observations, whereby gH2AX-decorated chromatin
was excluded from DAPI-dense structures following DSB
induction26,27. These findings prompted us to investigate the
condensation state of H3K9me3-decorated chromatin after DNA
damage induction. On IR, we observed a progressive decrease of
DAPI intensity in H3K9me3-decorated chromatin, up to
24 h (Fig. 4f). Such decrease was not observed in H3K36me3-
decorated chromatin. Together, this implies that heterochromatic
regions underwent DNA decondensation, although they retained
their histone marks. To independently validate this finding, we
investigated gH2AX and H3K9me3 levels before and after the
induction of CRISPR-Cas9-mediated DNA DSBs targeted at
heterochromatic murine major satellite repetitive DNA elements,
in C2C12 cells (Fig. 5a). These genomic regions are
predominantly found at H3K9me3-rich chromatin and are the
most condensed chromatin domains in the mouse genome
(chromocentres). As early as the ectopically expressed Cas9 was
active (43 h), gH2AX was visible at H3K9me3-decorated
chromatin (chromocentres) (Fig. 5b). Quantification of the
H3K9me3 and gH2AX fluorescence intensity in the segmented
chromocentres revealed that both signals co-localized (Fig. 5c).
Next, we analysed the condensation state of Cas9-targeted
chromocentres by means of dual-colour STED microscopy and
DNA density measurements. On Cas9-mediated DSBs induction,
chromocentres were dramatically decondensed (Fig. 5d,e).
Remarkably, they retained the gH2AX mark, which was more
abundant where the DNA signal was diminished (Fig. 5d). This
observation is in agreement with our 3D-SIM data, whereby the
gH2AX nano-foci present a partially decondensed state, with
diminished DNA levels relative to their surroundings (Fig. 4f).

Taken together, these findings show that gH2AX nano-foci are
chromatin units over represented in transcriptionally active
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regions early on exposure to IR. During the late stage of DDR,
they mark heterochromatic regions whose DNA is in a locally
decondensed state while keeping the characterizing histone marks
(for example, H3K9me3). We propose that by retaining their
histone mark, the chromatin identity of such domains is
preserved. This not only indicates that the actual chromatin
compaction state can be uncoupled from the histone modifica-
tions of a given chromatin domain, but also it suggests
a modality to reestablish the original chromatin state, once
DNA repair is accomplished.

cH2AX foci consist of spatially clustered cH2AX nano-foci. On
exposure to IR, and as DDR progressed, gH2AX nano-foci were
distributed throughout the nuclear volume, though they appeared
to be spatially clustered (Fig. 6a and Supplementary Fig. 6A). To
investigate such spatial clustering, we reconstructed the position of
gH2AX nano-foci in the 3D nuclear space by collecting their 3D
coordinates. Next, we measured the distances between the centroid
of each nano-focus and all the other nano-foci in the nucleus. If the
centroids of two objects were closer than a given cutoff distance, we
assigned the corresponding nano-foci to the same cluster (Fig. 6b
and Supplementary Fig. 1H and ‘Methods’ section). Based on the
median lateral nano-focus radius of B100 nm, we reasoned that
two adjacent nano-foci would be spatially positioned so that their
centroids would be at least 200 nm (2� radius) away. Indeed,
cutoff distances smaller than 300 nm resulted in poor clustering
(Supplementary Fig. 6B). Similarly, distances bigger than 700 nm
reduced the number of clusters at all time points, cancelling out
differences over the time and, hence, impeding the analysis of the
repair kinetics (Supplementary Fig. 6B). A cutoff distance of
500 nm (Fig. 6b) resulted in the highest number of clusters and a
clear repair kinetics (Fig. 6c and Supplementary Table 5). Overall,
the number of clusters was significantly higher than that of foci
resolved by confocal microscopy, and comparable to the number of
foci observed in pseudo-wide-field images (Fig. 1b,d). After IR,
clusters were composed of a median number of four nano-foci
(Fig. 6d), with the distributions remaining remarkably similar for
all time points. This indicates that at times when the DSBs are
repaired, the complete clusters, rather than single nano-foci, are
removed en bloc. Coherently, clusters had an integrated median
volume of about 0.05mm3 (Supplementary Fig. 6C), which
decreased at later times. The average inter-centroid distance mea-
sured between all nano-foci belonging to a given cluster, the
shortest path connecting all the centroids in a given cluster, and the
inter-focal volume delimited by the 3D coordinates of the centroids
of each nano-focus belonging to a cluster showed similar
kinetics (Fig. 6b and Supplementary Fig. 6D–F). In all cases,
these parameters increased after IR and then decreased, indicating
that the nano-foci in each cluster were progressively closer to
one another as the DDR progressed. One possible explanation
is an active chromatin structure change bringing the clustered
nano-foci in close proximity and, thus, facilitating the repair
process of complex lesions at later times. However, the
possibility that the clusters repaired at later times might
correspond to a subset of damaged chromatin fibres whose location
was in close spatial proximity already at earlier times is equally
possible.

Finally, based on the previous nano-foci DNA content
estimates, we calculated the DNA content of clusters by summing
the DNA content of all gH2AX nano-foci belonging to a given
cluster (Supplementary Tables 1 and 2). After IR, we observed
broad-size distributions, with IQDs of about 197–938, 137–622
and 112–554 kb for 0.5 h, 3 h and 24 h time points, respectively
(Fig. 6e). Overall, the cluster DNA content is in the (sub-)Mbp
range, being directly relevant to genome regulation processes, as

reported by genomic14,15,17 or super-resolution microscopy28

methods.
In view of these findings, and taking into account that the

cutoff distance we applied for the cluster analysis is comparable in
size to the gH2AX objects segmented in the pseudo-wide-field
images (Supplementary Fig. 3A), we conclude that gH2AX
foci, as previously identified by conventional microscopy
techniques, correspond to spatially organized clusters, composed
of several distinct nano-foci of phosphorylated H2AX in close
spatial proximity whose pattern in the nucleus depends on the
progression of DDR. While clusters are chromatin higher-order
organization units in the half-a-megabase-pair size range,
nano-foci are lower-order chromatin organization units whose
size spans 40–160 kb.

cH2AX clusters contain single DNA DSBs. As previously
reported, in higher eukaryotes6–8, gH2AX is proposed to spread up
to Mbps from the lesion site in a non-homogenous non-symmetrical
fashion11,12. This implies that gH2AX may also be found reasonably
far from the actual DNA break. Indeed, on severe localized DNA
damage (for example, caused by accelerated charged particles),
pan-nuclear H2AX phosphorylation is promptly induced by ATM
and DNA-PK29. It is then obvious that not all gH2AX-decorated
chromatin contains a DNA DSB in the immediate vicinity.

Based on the linear increase of gH2AX nano-foci numbers, we
observed up to 10 Gy (Supplementary Fig. 6G), and on the
assumption that 1 Gy X-ray induce 30–55 DSBs per diploid
human genome30–33, we estimated that 10 Gy X-ray would
result in 470–860 DSBs in the ploidy-adjusted genome. Such
numbers are conspicuously close to the number of gH2AX
clusters we observed on IR (95% confidence interval of median
cluster number at 0.5 h: 767–1,133; Fig. 6c and Supplementary
Fig. 6H).

To directly estimate the number of DNA DSBs before and
during the DDR, we recorded 3D-SIM super-resolution images of
immunofluorescently labelled phospho-Ku70 proteins, which are
directly associated to the broken ends, together with gH2AX. As
shown in Fig. 7a,b, most of the phospho-Ku70 signal was
surrounded by several gH2AX nano-foci. Remarkably, the number
of phospho-Ku70 focal structures matched with good agreement
that of our previously measured clusters (Fig. 7c). Also, the slopes
of the linear regression lines computed while fitting the number of
phospho-Ku70 and gH2AX nano-foci or clusters indicate that we
measured B3.4 gH2AX nano-foci per phospho-Ku70 focal
structure, or in other words, that there are B1.3 phospho-Ku70
focal structures per gH2AX cluster (Fig. 7d,e). We observed similar
results by assessing the number of DNA DSBs by terminal
deoxynucleotidyl transferase dUTP nick end-labelling (TUNEL).
TUNEL signal was often surrounded by several gH2AX nano-foci
(Fig. 7f,g) and the number of TUNEL focal structures recapitulates
the DDR (Fig. 7h). Finally, we observed a robust agreement
between the numbers of TUNEL focal structures and phospho-
Ku70 (Fig. 7i) or gH2AX clusters (Fig. 7j). Together, these data
demonstrate that gH2AX clusters are gH2AX-decorated multi-unit
chromatin structures containing a single DNA DSB.

CTCF delimits phosphorylated H2AX chromatin domains.
Altogether, the structural features we described about gH2AX
clusters underpin the role of a structural organization factor in
regulating their formation and kinetics. CTCF is involved in
diverse cellular processes, including V(D)J recombination34,
regulation of transcription35,36 and replication17. It mainly acts
as a regulator of chromatin architecture37,38 by forming and
keeping chromatin loops, and the presence of CTCF-binding
motif close to the boundaries of large looping chromatin domains
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has been recently confirmed by in situ Hi-C15. In view of these
observations, and based on CTCF insulating properties, we next
investigated the relationship between CTCF and gH2AX levels
during DDR.

We identified the genomic location of putative CTCF-binding
sites, based on a consensus motif modified from previous
studies15,39 (Supplementary Fig. 7A). The analysis resulted in
3,909 CTCF-binding sites, separated by a median intervening
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distance of B370 kb (IQD: 127–914 kb; Supplementary Fig. 7B).
The orientation of CTCF motif had little to no impact on the
measured distances (Supplementary Fig. 7B). This size range was
comparable to that of gH2AX clusters rather than with that of
single gH2AX nano-foci (Supplementary Fig. 7B), suggesting that
individual clusters can be delimited by CTCF-binding sites. To
validate such hypothesis at genomic level, we integrated our
3D-SIM-filtered gH2AX ChIP-Seq profiles (Supplementary
Fig. 4) with publicly available HepG2 CTCF ChIP-Seq data.
We identified B140,000 CTCF genomic footprints, including
CTCF occupancy levels ranging from very low to very highy.
Due to the inherent nature of this ChIP-Seq data, it is unlikely
that all those CTCF peaks would actually be present at the same
time in a given cell. Therefore, we focused our analysis only on
those CTCF genomic footprints whose occupancy score
was maximum, assuming these sites would be conserved among
different cell types. This reduced the number of CTCF footprints
to 5,322. Remarkably, these sites were flanking most of the
genomic gH2AX domains, before and during the DDR (Fig. 8a),
yet the two signals seldom overlapped. In addition, CTCF ChIP-
Seq signal intensity (that is, CTCF abundance) was higher
upstream or downstream of the borders of each gH2AX genomic
domain than that computed inside the domain (Fig. 8b),
indicating that high-occupancy CTCF sites function as barriers
for gH2AX spreading.

Next, we investigated the 3D-distribution of gH2AX and CTCF
before and during DDR at single-cell level by 3D-SIM. On IR,
CTCF foci were often in the immediate proximity of gH2AX
nano-foci (Fig. 8c and Supplementary Fig. 7C,D). The majority
(B75%) of the centroid-to-centroid distances between each
gH2AX nano-focus and the closest CTCF focal structure were
within 400 nm, and starting from 3 h post infrared, they
all were below 200 nm (Fig. 8d). In all cases, the measured
distances were smaller than distances between simulated random
objects whose populations were comparable in numbers to those
of CTCF and gH2AX nano-foci at each stage of DDR (Fig. 8d and
Supplementary Fig. 7E). Because gH2AX nano-foci in our
3D-SIM images have a radius of B100 nm, and CTCF focal
structures showed comparable size, our results imply that the two
objects would thus be in tight contact, with CTCF focal structures
flanking gH2AX nano-foci. On exposure to IR, and based on the
higher CTCF density in GC-rich regions, the expected gH2AX-
to-CTCF distance should be equal to, if not shorter than, that we
observed in the control sample (Fig. 8d, Unir, median: 131 nm).
However, 0.5 h post IR, the median gH2AX-to-CTCF distance
was two times longer (259 nm). Moreover, during the late stage of
the DDR, the majority of DSBs were associated to heterochro-
matic regions (with lower GC content). In these regions, CTCF
density is lower (compared with euchromatin) and the expected

gH2AX-to-CTCF distance should be equal to, if not longer than,
that we measured in a random distribution. Yet, the observed
median gH2AX-to-CTCF distance was only half of that we
obtained from a random distribution (Fig. 8d, 24 h measured:
176 nm; 24 h random: 331 nm). Such close spatial proximity was
confirmed by the observation that CTCF signal was more
abundant in the surroundings of gH2AX nano-foci (as measured
in the previously described shells) rather than overlapping with
them (Fig. 8e and Supplementary Fig. 7F).

Taken together, our genomic and microscopy data strongly
support that CTCF delimits gH2AX chromatin, and the two are
in close spatial proximity.

CTCF is critical for spatial regulation of cH2AX chromatin.
Finally, we investigated whether the perturbation of CTCF levels
would affect the spatial distribution of gH2AX-decorated
chromatin. While CTCF knockout is lethal, a number of
studies have shown neither effects on the cellular and nuclear
morphology, nor in the cell cycle progression up to 72 h
post CTCF knockdown40,41. In our experimental system,
esiRNA-mediated CTCF depletion to B40% of the control
protein levels (Supplementary Fig. 8A,B), resulted in a mild
radiosensitization (B20%; Supplementary Fig. 8C) and a
coherent decrease (70–85%) of CTCF foci in 3D-SIM
micrographs, before and during DDR (Fig. 9a). Notably, CTCF
depletion strongly impaired the formation of gH2AX nano-foci
(Fig. 9b), which were smaller, diminished in numbers, and
presented decreased volume and DNA content (Fig. 9c,d and
Supplementary Fig. 8D,E). Only at 24 h post IR, the
number of gH2AX nano-foci was comparable to that of the
mock-knockdown samples, although with decreased fluorescence
intensity, indicating a defect in the activation of the DDR. Indeed,
CTCF-depleted cells showed a diminished DNA repair capability
as assayed by comet single-cell analysis (Fig. 9e). Such defect was
more prominent at the mid and late stages of DDR, suggesting
that optimal CTCF levels are required to mount an efficient DDR.
In this context, CTCF role in chromatin structural regulation may
be crucial. Overall, the diminished gH2AX response resulted in a
B2.9-fold decrease in cluster formation (Fig. 9f). Remarkably,
ATM and DNA-PKcs, the main signalling effectors involved in
H2AX phosphorylation, were promptly activated on IR in both
mock- and CTCF-depleted cells (Supplementary Fig. 9A,B),
indicating that the presence of functional key factors of the DDR
is necessary but not sufficient to trigger a proper response to
DNA damage. In conclusion, we propose that CTCF, by
preserving the 3D organization of the chromatin, is critical for
the activation of an efficient DDR and, in such context, it
functions as a regulator of the structural component of DDR.

Figure 8 | Genomic and microscopic analysis of CTCF spatial distribution in cH2AX-decorated chromatin. (a) Genomic localization of gH2AX ChIP-Seq

domains (coloured bars) and CTCF genomic footprint (dashed green lines) in a representative region of chromosome 16. Dashed black line: magnification.

Coloured arrowheads: orientation of CTCF-binding sites (red: forward; green: reverse). Details about gH2AX ChIP-Seq domains are in Supplementary

Methods and Supplementary Fig. 4. ChIP-Seq CTCF profiles were retrieved from publicly available databases (UCSC Accession: Encode wgEH000080,

wgEH000543, wgEH000401 and wgEH000470). (b) CTCF occupancy outside or inside gH2AX ChIP-Seq domains. The intensity of each CTCF peak in

100 kb bins upstream and downstream of the border of gH2AX ChIP-Seq domains (grey box) is summed and then presented as one-sided distribution. The

bins range from ±300 to ±200, ±200 to ±100, ±100 to 0 and 0 to ±100 kb (inside the domain), with 0 being the border of each domain.

AU: arbitrary unit. Genome-wide CTCF footprint localization relative to gH2AX ChIP-Seq domains’ borders. For each domain, the distance in kb between its

boundaries and the closest CTCF peak is measured and plotted as a bar (dashed lines). (c) Representative 3D-SIM images of immuno-stained gH2AX and

CTCF before and during DDR. Scale bar, 500 nm. (d) Quantification of the closest centroid-to-centroid distance between CTCF and gH2AX nano-foci from

3D-SIM images. Measured (filled boxes) and simulated (patterned boxes) distances are shown. The latter were obtained from simulated random

distributions of CTCF and gH2AX nano-foci (100 iterations). (e) Quantification of maximum CTCF intensity in gH2AX nano-foci and in surrounding shells.

Maximum CTCF fluorescence in the segmented space normalized over the maximum CTCF fluorescence of the entire nucleus is plotted. All boxes and

whiskers are as in Fig. 1. n: measured distances (d) or analysed shells (e) from two independent experiments. d,e: Mann–Whitney test: Po10� 3.
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Discussion
In this study, the use of high prospecting super-resolution light
microscopy technologies enabled us to identify the elementary
structural units read by the DNA repair machinery, analysed
as gH2AX focal structures following the exposure to IR.

The gH2AX nano-foci we identified are two- to threefold
smaller—with lateral diameters of B200 nm—and contain
B10% of the conventionally estimated Mbp DNA
content42. Similar gH2AX substructures sizes were recently
measured after heavy ion irradiation43, despite the highly
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ionizing power charged particles possess, thus further supporting
our findings.

Importantly, gH2AX nano-foci form clusters of approximately
four chromatin units, and each cluster, rather than each of its
structural components, contains one DSB, assessed by direct
DNA end-labelling or by the presence of phospho-Ku70. This is
supported by the good agreement between the predicted number
of DSBs induced by the dose of IR employed in this
work and the numbers of gH2AX clusters in control cells.
gH2AX clusters are spatially distributed in the nuclear space
according to a pattern that is dependent on the progression of
DDR. Such pattern recapitulates the previously described repair
kinetics, underlining an euchromatin-to-heterochromatin repair
trend, which is likely dictated by the chromatin compaction
state: chromatin regions that were already in an open state
(for example, marked by H3K36me3) would be repaired earlier,
while compact chromatin requires further structural remodelling
before the DNA repair machinery could eventually exert its
activity (Fig. 9g), For the latter, actual DNA decondensation,
assessed as decrease of DAPI intensity, occurred while maintain-
ing the main local histone modification (for example, H3K9me3),
thus uncoupling DNA compaction from histone modifications.
While chromatin relaxation seems to be dispensable for the DNA
repair to occur at pericentromeric heterochromatin44, we propose
that the uncoupling of chromatin modifications and the actual
chromatin decondensation is crucial to reestablish the original
chromatin structure once DNA repair is accomplished.

In our 3D-SIM images, gH2AX clusters presented a discontin-
uous phosphorylation pattern, with gH2AX and CTCF showing
mutually exclusive signals, although the two were in close spatial
proximity. However, not all gH2AX nano-foci presented proximal
CTCF foci. The latter likely consist of more than one CTCF
molecule, and their detection may be influenced by a variety of
factors, such as the CTCF-binding site density, differences in the
binding affinity45 of such sites and CTCF protein levels. It is
tempting to speculate that the discontinuously phosphorylated
pattern we observed is due to the presence of multiple CTCF
molecules bound to their cognate consensus sequences but not
resolvable by our imaging techniques. To discriminate between
each individual chromatin loop bound by a pair of CTCF
molecules, would demand single molecule sensitivity in situ 3D
methods. Nonetheless, it is equally possible that other chromatin
structure regulators (for example, cohesion complex12), histone
turnover (for example, during DNA repair46) as well as biological
processes such as transcription11 antagonizing gH2AX formation
and/or spreading along the chromosome contribute to the
discontinuously phosphorylated pattern.

Finally, we show that CTCF has a critical role in the formation
and spatial clustering of gH2AX nano-foci. CTCF-depleted cells
present less gH2AX nano-foci, which are smaller and contain less
DNA than those we observed in mock-treated cells. As a
consequence, the DDR is delayed and the repair capability is

diminished, despite the efficient activation of the main signalling
effectors involved in H2AX phosphorylation (for example,
DNA-PKcs or ATM). This indicates that a structural organization
impairment—caused by CTCF depletion—results in a poor DDR.
On CTCF depletion, the frequency of interactions of CTCF
molecules with one another is decreased, leading to a diminished
loop formation and a more sparse (that is, non-clustered)
distribution of gH2AX nano-foci (Fig. 9b–g). Overall, this
scenario emphasizes the need for a (dynamically) regulated
3D organization of the chromatin, whereby the 3D spatial
proximity of chromatin loops could boost the local processivity of
the committed kinases and assure an efficient DDR. In such
context, because the CTCF-knocked-down cells display similar
numbers of gH2AX nano-foci to the number of nano-foci cluster
in control cells, we propose that in the absence of CTCF,
spreading of gH2AX is impaired and, thus, this mark is restricted
to the vicinity of the DSBs, that is, within one nano-focus
(Fig. 9g).

In conclusion, our study demonstrates that the decreased levels
of a single structural factor (CTCF), accounting for the (dynamic)
stability of chromatin, per se dramatically hinder gH2AX
spreading. While it is likely that additional factors (for example,
DNA and histone methylation readers) contribute to this process,
namely at heterochromatic regions, we propose that CTCF
functions as a regulator of the structural component of DDR,
preserving a crucial (dynamic) 3D organization of the chromatin
and, thus, enabling an efficient DDR.

Methods
Cell culture and irradiation. Cervical carcinoma HeLa cells (ATCC No. CCL-2)
cells were used throughout the study. A single exposure to 10 Gy X-ray was applied
(250 kV, 16 mA, 2.5 Gy min� 1 – GE Isovolt Titan) to induce DNA damage and
trigger DDR. On exposure to IR, cells were incubated in a humidified environment,
with 5% CO2 at 37 �C as indicated. Sham-irradiated control cells were included.
C2C12 (ATCC No CRL-1772) cells were used for CRISPR-Cas9 experiments. HeLa
and C2C12 cells were cultured in DMEM (4.5 g l� 1 glucose, Biochrom AG) sup-
plemented with 10% and 20% fetal calf serum (Biochrom AG), respectively. All
media were supplemented with 2 mM L-glutamine (Sigma), 100 U per ml penicillin
and 100mg ml� 1 streptomycin (Sigma). All cell lines were tested for mycoplasma
and found free of contamination (MycoAlert, Lonza).

Growth curve and cell cycle distribution. Cells were seeded 24 h before exposure
to IR. After IR, cells were incubated for indicated times, before trypsinization and
count with a coulter counter, in triplicates. The remaining cells were then fixed in
2% formaldehyde, permeabilized for 8 min with 0.5% Triton X-100 in PBS, stained
with DAPI (1 mg ml� 1) and analysed at the flow cytometer Partec PAS III system
(Partec) for cell cycle distribution. Data were analysed with FlowJo software (Tree
Star, Inc.).

Apoptosis assay. To detect apoptosis, TUNEL assay was performed according to
the manufacturer’s instructions (Roche, #11684795910) and a minimum of 1,000
cells was scored by microscopy in two independent experiments.

Spectral karyotyping. Cells were treated with colcemid (0.1 mg ml� 1; Invitrogen,
Darmstadt, Germany) 2 h before collecting to accumulate metaphase cells.

Figure 9 | CTCF depletion inhibits cH2AX nano-foci and cluster formation and diminishes the DNA repair capability. (a) Number of CTCF foci in

esiRNA-depleted cells before and during DDR. Black dots: median number of CTCF foci in wild-type cells. (b) Impairment of gH2AX nano-foci and 3D-

clusters formation during DDR as assessed by immunofluorescence of 3D-SIM images in CTCF-depleted cells. Scale bar, 5 mm. (c) gH2AX nano-foci

number distributions before and after IR, in CTCF siRNA-treated cells. Black dots: median number of gH2AX nano-foci of untreated cells (from Fig. 1).NS:

two-tailed t-test, P40.05. (d) gH2AX nano-foci DNA content distributions before and after IR, in CTCF siRNA-treated cells. Black dots: median DNA

content of gH2AX nano-foci of untreated cells (from Fig. 2). (e) DNA fragmentation measured by the neutral comet assay. Boxes represent the mean of

medians from four replicates (two biological replicates in duplicate), each consisting of 60 comet measurements. NS: not significant (t-test, P40.05). (f)

gH2AX cluster distributions before and after IR, in CTCF siRNA-treated cells. Black dots: median number of gH2AX clusters in untreated cells (from Fig. 6).

All boxes and whiskers are as in Fig. 1. Comparisons between time points (one-way ANOVA with Dunnett’s correction) or between esiRNA-treated and

wild-type cells (Wilcoxon/Mann–Whitney rank sum) are all statistically significant unless otherwise specified. (g) Model for cluster special arrangement

during DDR, showing the time-dependent euchromatin-to-heterochromatin repair trend (top) and how gH2AX spreading is hampered by CTCF depletion

with the concomitant loss of 3D-arrangement of chromatin loops (bottom).
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Chromosome preparations were made according to standard procedures
and hybridized with the 24XCyte Multicolor FISH Probe Kit (MetaSystems,
Altlussheim, Germany). Metaphase spreads were examined with an Axio Imager
Z1 microscope (Zeiss, Oberkochen, Germany) equipped with appropriate filter
sets. At least 100 images of metaphases were taken, further processed using ISIS
software (MetaSystems) and analysed to produce the karyotype.

CTCF knockdown. A number of 105 cells were transfected with 15 nM of a
esiRNA pool (Sigma-Aldrich) using HiPerfect (Qiagen). The CTCF esiRNA is
corresponding to the region 692–1195 of the human CTCF transcript
(NM_006565.3). For mock treatments, cells were transfected using an esiRNA pool
(Sigma-Aldrich) targeting the GFP gene. Cells were incubated 24–96 h post
transfection and knockdown efficiency was monitored every 24 h.

Immunoblotting. Whole-cell extracts were prepared by freeze and thaw lysis
(three cycles) in 600 mM NaCl, 20 mM Tris-HCl pH 7.8, 20% glycerol. After
SDS–PAGE, proteins were transferred onto PVDF membrane in semi-dry
conditions. The membrane was then blocked in 5% non-fat dry milk buffer
and incubated with mouse anti-gH2AX (Clone JBW301, Upstate, 1:5,000).
Immunoblots were stained with corresponding HRP-conjugated secondary
antibodies (GE Healthcare, 1:20,000) and detected with the enhanced
chemiluminescence detection system (Amersham Biosciences). Quantification was
performed using ImageJ.

For the validation of antibody specificity and cross-reactivity, a dilution series of
synthetic peptides (CKATQASQEY; Peptide Specialty Laboratories GmbH), with
the underlined serine in either phosphorylated or non-phosphorylated form, was
immobilized on a nitrocellulose membrane at the indicated concentrations and
probed with anti-gH2AX and anti-H2AX as described above.

CTCF knockdown western blots were developed using a rabbit anti-CTCF
(#D31H2, Cell Signaling, 1:700) and a mouse anti-actin (AC-40, Sigma-Aldrich,
1:1,000) and overnight incubation at 4 �C, followed by a direct immuno-
fluorescence detection using anti-rabbit-IgG-Cy5 (#711-175-152, Jackson, 1:1,000)
and an anti-mouse-IgG-Alexa488 (A11029, Invitrogen, 1:1,000). Images were
recorded using a AI600 Imager (Amersham) and quantified using ImageJ.

Immunofluorescence. Cells were fixed in 3.7% formaldehyde and permeabilized
in 0.5% Triton X-100 in PBS at room temperature (RT). The following primary
antibodies were used: mouse anti-gH2AX (Clone JBW301, 1:500, Upstate),
rabbit anti-H3K9me3 (#07–422, Upstate, 1:500), rabbit anti-H3K9me3 (#39161,
Active Motif, 1:500), rabbit anti-H3K36me3 (ab9050, Abcam, 1:2,000); rabbit
anti-phospho-Ku70 (pS5) (#ab61783, Abcam, 1:400); mouse anti-phospho-ATM
(pS1981) (#MAB3806, Millipore, 1:100); rabbit anti-phospho-DNA-PKcs (pS2056)
(#ab18192, Abcam, 1:100) and rabbit anti-CTCF (#2899, Cell Signaling, 1:900). For
phospho-Ku70 detection cells were prefixed in 1% formaldehyde and then
extracted with 0.7% Triton X-100 two times by 5 min47 and subsequently
fixed in 3.7% formaldehyde. Antibody incubation was performed at 4 �C over
night in 1% BSA in PBS. For CLSM and 3D-SIM, signals were detected with goat
anti-mouse-IgG-AlexaFluor 488, goat anti-rabbit-IgG-AlexaFluor 594 (1:800,
Invitrogen), donkey anti-mouse-IgG-AlexaFluor 488 (A-21202, Thermo Fisher
Scientific, 1:400), donkey anti-rabbit-IgG-AlexaFluor 594 (A-21207, Thermo Fisher
Scientific, 1:400). For STED, gH2AX was detected with goat anti-mouse-IgG STAR
635P (#2-0002-007-5, Abberior, 1:100) or goat anti-mouse-IgG STAR 580
(#2-0002-005-1, Abberior, 1:100). DNA was counterstained with 36 nM DAPI
(for 3D-SIM), 1 mM propidium iodide (confocal microscopy) or 2.5 mM SiR-DNA
(Spirochrome), before cells were mounted with Vectashield antifade medium
(Vectorlabs).

CRISPR-Cas9 targeting to heterochromatic major satellite DNA. Subconfluent
C2C12 cells were transfected with Cas9 (pCMV-hCas9, Addgene ID: 41815)
and major satellite gRNAs (U6-MaSgRNA) by means of Lipofectamine 3000
(Thermo Fisher Scientific) according to the manufacturer’s instructions. Cells
were then fixed in 3.7% formaldehyde for 10 min and immunofluorescence
followed (as described above).

DNA DSB detection by TUNEL assay. Cells were grown and irradiated as
described above. At the indicated time points, cells were fixed in 3.7% paraformal-
dehyde for 10 min. The fixation was quenched with 125 mM glycine in PBS for
10 min. Fixed cells where permeabilized in 0.5% Triton X-100 for 20 min, and
equilibrated for 10 min in blunting buffer (100 mM Tris-HCl, 50 mM NaCl,
10 mM MgCl2, 0.025% Triton X-100 and 5 mM DTT, pH 7.5). End repair was
performed using 4 ml T4 polymerase (NEB: M0203S 3,000 units ml� 1) and 4 ml T4
polynucleotide kinase (NEB: M0201S 10,000 units ml� 1) in 82ml blunting buffer,
supplemented with 10ml 1 mM dNTPs for 45 min. Slides were then equilibrated in
TdT buffer for 10 min and the TUNEL reaction was performed according to the
‘In Situ Cell Death Detection Kit’ (Roche) with Fluorescein modified dUTPs, for
4 h at 37 �C according to the manufacturer’s instructions. Following the TUNEL
reaction, cells were blocked in 1% BSA in PBS for 20 min. gH2AX staining was
performed as described above. Incorporated fluorescein-dUTPs were detected by a

rabbit anti-FITC (CUSABIO, 1:500) and a anti-rabbit-IgG Alexa488 secondary
antibody (Jackson ImmunoResearch, 1:800). All steps were conducted at RT, unless
otherwise specified.

Comet assay. DNA repair kinetics in CTCF knockdown cells were measured
using the neutral comet assay. In brief, CTCF was depleted as described above and
72 h post esiRNA transfection, the cells were exposed to 10 Gy X-ray. At the
indicated time points, cells were trypsinized and 2� 105 cells ml� 1 were
embedded in 0.8% low-melting point agarose (Sigma type VII). Lysis was
performed for 4 h at 4 �C in lysis buffer (10 mM Tris, 150 mM NaCl, 1% N-lauryl-
sarcosinate, 1% Triton X-100, 0.5% DMSO, pH 8.0) and electrophoresis was done
in 1� TBE at 4 �C (1 V cm� 1) for 25 min. Slides were then dehydrated in
70% ethanol and rehydrated in staining buffer (TBE supplemented with SybrGreen,
1:10,000) to stain the DNA48. Two biological replicates (in duplicates)
were performed and 60 comets per slide were scored using Komet 4 (Kinetic
Imaging Ltd.).

Microscopy. Confocal microscopy images were acquired using a Spinning Disk
microscope (Perkin Elmer Vox1000) equipped with a � 60 NA 1.4 oil immersion
lens (CFI Apochromat TIRF), with a pixel size of 120 nm or with a Leica TCS SP5
confocal microscope using a Plan Apo � 63 NA 1.4 oil immersion objective. Cells
were recorded as z-stacks with a z-spacing of 0.2 mm.

Super-resolution microscopy images were acquired using a 3D structured
illumination microscope (DeltaVision OMX V3, GE Healthcare) and a 2C STED
775 QUAD Scan microscope (Abberior Instruments). 3D-SIM was performed with
a � 100 NA 1.4 objective lens with a pixel size of 39 nm and a z-spacing of 125 nm
(ref. 18). STED was performed with a � 100 NA 1.4 Olympus UPlanSApo
objective lens with a pixel size of 20 nm and excitation lasers of 488, 594 or 640 nm,
and a 775 nm depletion laser.

High-content imaging was performed using the Operetta system (Perkin
Elmer). Samples were imaged using a � 20 NA 0.45 air objective with three planes
of 1 mm spacing, using the following filters: DAPI: excitation wavelength (ex):
360–400 nm, emission wavelength (em): 420–480 nm; Alexa488: ex: 460–490 nm,
em: 500–550 nm; Alexa594: ex: 560–580 nm, em: 590–640 nm.

Image analysis. For confocal microscopy, the images were analysed in ImageJ
using the nuclear staining as a mask to measure the total intensity of the gH2AX
signal per nucleus. Foci were scored in 3D using Volocity (Perkin Elmer) by the
following workflow: find objects (nucleus), threshold automatic, size minimum
500 mm3; find foci: threshold 4,000 constant for pseudo-wide-field and 5,000 for
deconvolved images, respectively. Minimum size: 0.05mm3, followed by ‘separate
touching objects’ with a guide size of 0.5 mm3. Different thresholds were applied,
because pseudo-wide-field and deconvolved images are in different bit depth. All
counts were double-checked by manual counting of randomly chosen samples by
at least three experimenters.

For CRISPR-Cas9 experiments, confocal images of C2C12 cells were segmented
into background, nuclei and chromocentres by pixel-wise classification via
supervised machine learning (default Random Forest classifier and pixel features
from the Trainable Weka Segmentation plugin in Fiji). The classifier was trained on
manually labelled pixels of the DAPI channel in one image and then applied to all
images. For each image, mean intensities in the H3K9me3 and gH2AX channels
were determined for each chromocentre object (4100 px2) within the largest
object in the nuclear mask. To analyse DNA decondensation at repair sites in
CRISPR-Cas9 experiments STED images of C2C12 cells were segmented into
background, nuclei and chromocentres by pixel-wise classification as described
above for confocal images. The classifier was trained on manually labelled pixels of
the SiR-DNA channel in one image and then applied to all images (each image’s
pixel intensity range was mapped to the 8-bit range to account for differences in
staining intensities). For each image, the circularity of chromocentre objects
(4100 px2) within the nucleus was determined. Three rounds of binary erosion
with a 3� 3 px-box followed by three rounds of binary dilation were applied to the
segmentation results to smooth the borders of segmented objects.

3D-SIM images were exported from the DeltaVision software (softWoRx 6.0
Beta 19, Applied Precision) and converted to 16-bit images per channel. Foci
counting was done using Volocity 6.3 (Perkin Elmer) or with the 3D foci picker
plugin in ImageJ (imagej.nih.gov/ij/). Nearly identical results were obtained and the
numbers from Volocity were used. In detail, the individual z-sections were
imported and merged to a volume with the above-mentioned pixel sizes and
z-spacing. First, the nucleus was identified by setting a manual threshold and a
lower volume limit of 200 mm3 followed by a ‘Fill in Holes’ step and two iterations
of ‘Dilate’ and ‘Close’ to fill in all the DAPI weak volumes. The intensities and voxel
coordinates of the whole nucleus were registered. Next, the gH2AX and H3K36me3
or H3K9me3 foci were identified with a lower threshold of 1,000 and a minimum
object size of 0.001mm3. To separate close spaced objects, a final ‘Separate
Touching Objects’ step with a nominal volume of 0.05 mm3 was used. The foci
identified were restricted to the previously defined nuclear volume to remove
possible unspecific signals from outside of the nucleus.

3D-SIM pseudo-wide-field imaging: after sample acquisition, the pseudo-wide-
field images were calculated using softWoRx 6.0 Beta 19 according to the following
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workflow: the raw data from each 3D-SIM image z-stack was subdivided to isolate
the first angle of acquisition. To this purpose, the maximum number of z-sections
in each individual stack is divided by three. Then the projected five grid shifted
section is averaged per z-position and colour channel. After that, the voxel
dimensions are adjusted from 0.625 to 0.125 mm in the z-dimension by adjusting
the file headers. The alignment of the new stack was done with the parameters used
for 3D-SIM reconstruction. The following parameters of the softWoRx software
were used: normalize intensity, use photosensor, correct bleaching, replace z-lines
and smooth z-lines. To reverse the optical distortion in the images, the aligned 3D
stack was deconvolved with the instrument-specific optical transfer function (OTF)
with the following settings: ‘enhanced ratio (aggressive)’ and ‘noise filtering
medium’.

For CTCF distance analysis, the previously described protocol was extended as
follows: CTCF domains detection was restricted to the nuclear volume, with an
automated threshold and a minimum size of 0.001 mm3. Then, the segmented
gH2AX nano-foci were extended in all dimensions by three voxels
(117� 117� 375 nm) and the resulting gH2AX nano-foci volume was subtracted
to obtain the gH2AX foci shells. Finally, the Euclidian distances between each
gH2AX nano-focus and the closest CTCF domain were measured. All identified
foci with the corresponding 3D coordinates and intensities for all recorded
channels were exported and post-processed in R49. ImageJ and UCSF chimera50

were used for image visualization and 3D rendering, respectively. Simulations of
CTCF and gH2AX distributions were run under R, using rgl and sphereplot
packages. Hundred simulations of a sphere matching the average nuclear size of
cells were run per time point. Every simulation contained objects whose numbers
matched CTCF and gH2AX foci we recorded in 3D-SIM images.

For STED images, object dimensions (for example, diameters) were measured
by manual object segmentation of randomly selected foci in ImageJ, using the
analyse particle tool. For high-content images, analysis was performed using
Harmony software (Perkin Elmer) with the following workflow: maximum
projection of the planes, flatfield correction, find nuclei in DAPI channel, method
M, splitting coefficient 0.1, general threshold 0.4 and guide size of 15mm in
diameter. Calculate intensity and morphology parameters for the nuclei. Discard
nuclei touching the border, smaller than 100 mm2 and larger than 350mm2. Filter
nuclei for roundness 40.83 and with a 4 px Haralick contrast 40.8 and a DAPI
signal CV of less than 30%. Measure the mean and integrated intensity for DAPI,
gH2AX and CTCF in the selected nuclei areas.

ChIP. Cells were fixed with 1% formaldehyde for 10 min at RT and
cross-link was quenched with 125 mM glycine (5 min at RT). Nuclei were isolated
after mild lysis in hypotonic buffer (10 mM HEPES pH 8, 1.5 mM MgCl2,
60 mM KCl) and 20 strokes in a tight dounce homogenizer. Chromatin was
sheared in sonication buffer (0.5% SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.1).
Fragmentation of chromatin was carried out by ultrasound treatment (Bioruptor
UCD200) so that fragments of 200–300 bp length were obtained. Chromatin from
1� 106–2� 106 cells was immunoprecipitated with anti-gH2AX (Clone JBW301,
Upstate, 3 mg) antibody. Chromatin was then incubated ON at 4 �C with protein
G-coated magnetic beads (ChIP-IT Express, Active Motif). The collected chro-
matin (ChIP sample) was then reverse-crosslinked in the presence of 200 mM NaCl
at 65 �C for at least 5 h, followed by RNase A (50mg ml� 1) treatment for 30 min at
37 �C and proteinase K (100 mg ml� 1) treatment for 3 h at 50 �C. DNA elution was
carried out in 1% SDS, 100 mM NaHCO3, in a rotary shaker at RT for 15 min. Pure
DNA was isolated using the Qiagen PCR purification kit and 15–30 ng of size
selected DNA fragments (Qubit fluorometric quantification) were used to produce
ChIP-seq libraries (Illumina ChIP-Seq DNA sample Prep Kit). Input sample was
essentially prepared following the same protocol, but the immunoprecipitation step
was skipped.

Next-generation sequencing and data analyses. ChIP-Seq libraries were
processed through a high-throughput sequencing pipeline (Illumina Genome
Analyzer II). Reads were mapped to the human genome (University of
California, Santa Cruz (UCSC) hg19 assembly, based on the National Center for
Biotechnology Information (NCBI) build 37.1) by means of SOAP2 software51,
allowing up to two mismatches for each 36 bp read. All data sets were deposited in
the Gene Expression Omnibus database (accession number: GSE60526). All
gH2AX ChIP-Seq tracks were smoothed with a moving average of five intervals
before further analysis. Genomic features and correlation analysis: all genomic
features data were retrieved from publicly available databases (UCSC)
(Supplementary Table 3). Most of the data were generated in HepG2 cells, but not
all. Data that were originally generated in the hg18 assembly were transposed to
hg19 using LiftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Reads per
kilobase per million reads (RPKM)52 were calculated for non-overlapping 10 kb
genomic intervals for all sequence tracks. The features were further normalized to
the corresponding genome-wide average and correlation with gH2AX tracks was
performed (Spearman’s r correlation coefficient with Po2.2� 10� 16 in all cases).

Statistical analysis. Overall, sample size was chosen so that groups (for example,
time points) had comparable numbers (for example, number of imaged cells),
whenever possible. High-content microscopy and next-generation sequencing

provided large data sets ensuring statistical significance. All statistical analysis has
been performed using R or GraphPad Prism. Briefly, in case data were normally
distributed (Shapiro–Wilk test), ANOVA or Student’s t-test were performed for
groups or pairs, respectively. Else, Kruskal–Wallis or Wilcoxon/Mann–Whitney
rank sum tests were used for groups or pairs, respectively.

Integration of 3D-SIM and ChIP-Seq data. To integrate the ChIP-Seq data with
3D-SIM information, we first generated 25 independent profiles by applying a
smoothing factor to each gH2AX ChIP-Seq data set (Supplementary Fig. 4A). Such
smoothing factor is a moving average ranging from 1 (no smoothing) to 25
genomic intervals (indicated as ‘1D’, in Supplementary Fig. 4A). In parallel, we
measured the volume fraction occupied by gH2AX nano-foci as well as their
corresponding DNA content, before and during the DDR (Supplementary Fig. 4B).
In response to ionizing radiation, we observed an increase of the mean
gH2AX-occupied nuclear volume (from 0.21±0.21% to 7.81±3.19%), which
recapitulated the DDR (the volume was reduced to 3.70±1.39% and 0.66±0.43%,
at 3 h or 24 h post-ionizing radiation, respectively). Next, we applied the mean
volume fractions (0.21%, 7.81%, 3.70% and 0.66% for unirradiated, 0.5 h, 3 h and
24 h, respectively) to filter the previously smoothed genomic gH2AX ChIP-Seq
data so that only the 10 kb genomic intervals from the top percentiles of the read
density distributions were retrieved (Supplementary Fig. 4C). For example, as for
the unirradiated cells, we sampled the 99.79th percentile (top 100–0.21%) of
the intervals, while for the 0.5 h time point, we sampled the 92.19th percentile
(top 100–7.81%) of the total RPKM gH2AX ChIP-Seq distribution. A repre-
sentative image of filtered ChIP-Seq profiles is shown in Supplementary Fig. 4D. By
applying these imaging-based thresholds, we obtained a linear coverage of 4.7 Mbp,
159.0 Mbp, 92.3 Mbp and 21.8 Mbp, at unirradiated, 0.5 h, 3 h and 24 h time points,
respectively (Supplementary Fig. 4E). Finally, we employed the numbers of 3D
gH2AX nano-foci to match the numbers of 1D nano-domains as follows: first, the
number of 3D gH2AX nano-foci before and after the DDR was scaled down to
the haploid genome size to match the genomic data (ploidy correction factor:
HeLagenome size/haploid referencegenome size¼ 3.12); next, we chose the smoothing
factor at which the number of gH2AX nano-foci and the number of retrieved
genomic intervals matched best, at any given time point (Supplementary Fig. 4A,
over-imposed crosses). All ChIP-Seq domains identified via such approach are
referred to as ‘1D domains’ and an estimate of the 1D domain size distribution is
presented in Supplementary Fig. 4F.

Data availability. Next-generation sequencing results are available at GEO
(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE60526.
Other data that support the findings of this study are available from the
corresponding author on reasonable request.
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