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Nanodomain Ca2™* of Ca2™ channels detected
by a tethered genetically encoded Ca?* sensor

Lai Hock Tay', Ivy E. Dick!, Wanjun Yang!, Marco Mank3, Oliver Griesbeck® & David T. Yue'2

Coupling of excitation to secretion, contraction and transcription often relies on Ca2*
computations within the nanodomain—a conceptual region extending tens of nanometers from
the cytoplasmic mouth of Ca2™ channels. Theory predicts that nanodomain Ca?* signals differ
vastly from the slow submicromolar signals routinely observed in bulk cytoplasm. However,
direct visualization of nanodomain Ca2* far exceeds optical resolution of spatially distributed
Ca?* indicators. Here we couple an optical, genetically encoded Ca2* indicator (TN-XL) to the
carboxy tail of Cay2.2 CaZ* channels, enabling near-field imaging of the nanodomain. Under
total internal reflection fluorescence microscopy, we detect Ca2* responses indicative of large-
amplitude pulses. Single-channel electrophysiology reveals a corresponding Ca2™ influx of only
0.085 pA, and fluorescence resonance energy transfer measurements estimate TN-XL distance
to the cytoplasmic mouth at ~55 A. Altogether, these findings raise the possibility that Ca2*
exits the channel through the analogue of molecular portals, mirroring the crystallographic
images of side windows in voltage-gated K channels.
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a?* signals extend pervasively across the intracellular
C expanse of most cells; yet, these signals exhibit remarkable

specificity in activating appropriate Ca?* -modulated targets.
Understanding how this selectivity arises remains a foremost ques-
tion in Ca?* biology!%. One strategy is to co-localize at molecular
dimensions Ca* sources and targets. This co-localization is crucial
to the local signalling of Ca?* channels to nearby Ca?*-regulated
ion channels and enzymes3~> to neurotransmitter release®, as well as
to excitation—contraction’ and excitation—transcription coupling8’9.
Intriguingly, co-localized sensors do not always respond preferen-
tially to local Ca?* sources, but can require the far weaker input
of remote Ca®* sources acting through a global Ca?* selectiv-
ity paradigm!®. Critical to signalling near Ca?* sources is the
nature of Ca?* signals within a few tens of nanometers of a Ca?*
channel (nanodomain'!). Theoretical calculations!?~1¢ postulate that
nanodomain signals comprise Ca2* pulses of equal and enormous
amplitude (~100 uM), with each pulse synchronized to the millisec-
ond stochastic openings of channels'®!2. Beyond the nanodomain,
[Ca?*] rapidly dissipates with diffusion. Of note, predicted nanodo-
main [Ca®*] amplitudes vary considerably with assumed parame-
ters!7, and elegant experimental estimates of local Ca?* signals!®-1?
only indirectly probe the nanodomain itself. Thus, the critical mag-
nitude of nanodomain Ca%* pulses (Cagpike) has eluded explicit
empirical comment. This uncertainty bears on key issues, including
how spatial Ca?* decoding occurs within the nanodomain!0-20-22
and the Ca?* channel number needed to trigger neurotransmitter
vesicles?32°,

Why have nanodomain Ca?* signals remained elusive? Although
fluorescent Ca* -sensitive chemical dyes have revealed much?®,
visualization of nanodomain signals via freely diffusible dye mol-
ecules far exceeds the resolution limit of far-field microscopic
approaches?’. In this regime, fluorescence from dye molecules
outside the nanodomain will overshadow that from within?®. Even
when imaged with total internal reflection fluorescence (TIRF)
microscopy?’~3! that illuminates a restricted TIRF volume within
~150nm of the glass/cell membrane interface, freely diffusible dyes
will still report Ca®* from a region several-fold larger than a Ca?*
channel3?.

One approach is to affix a Ca** indicator within the nanodo-
main, so as to support a form of near-field imaging®3. The Ca2*-
sensitive luminescent protein aequorin represents a traditional
candidate®*, Recombinant aequorins have long been targeted to
various subcellular compartments by genetic means3>=37 but the
limited-amplitude and consumptive nature of aequorin would chal-
lenge deployment in a channel nanodomain3*. Recently, promis-
ing results have been obtained using a biarsenical chemical fluo-
rescent Ca>* indicator (Calcium green FIAsH, CaGF) targeted to
a tetracysteine tag implanted on Cay1.2 Ca?* channels®®. CaGF
features Ca?* affinity and kinetics (Kg, ~55uUM; off rate, 2ms™1)
well matched to the purported amplitudes and lifetimes of nano-
domain Ca?* pulses. Indeed, CaGF was potentially responsive to
nanodomain Ca?* fluctuations, but the observed fluorescence sig-
nals were highly heterogeneous, to an extent that precluded quan-
titative Ca?* estimation. This heterogeneity was attributable to
the diminutive and variable open probability of Cay1.2 channels
(~0.1-0.3%), despite constitutive pharmacological manipulation by
a channel opener. Indeed, the possibility of a large fraction of elec-
trically silent Cay1.2 channels fits with their unusually large ratio
of gating charge to ionic current®. Also, although careful controls
were performed for nonspecific labelling of other cysteine-rich sites
in the cell by CaGE such indiscriminate attachment would remain
a generic concern for approaches involving chemical targeting of
sensors. A third approach would be to employ genetically encoded
Ca?* indicators (GECIs) as near-field sensors. GECIs allow genetic
fusion of sensor to a Ca?* source, offering the greatest potential
selectivity in positioning sensors. Among the most popular GECIs

2+

are CFP/YFP-FRET (fluorescence resonance energy transfer)-based
molecules such as cameleons*’, and GFP-intensity-based sensors
like GCaMPs*L. All these employ calmodulin (CaM) as their CaZ*
sensor, and convert binding of the sensor’s own Ca?*/CaM with a
target peptide into altered optical readouts. When targeted to plas-
malemma, cameleons often lose Ca2* sensitivity*2, potentially via
target peptide binding to elevated plasmalemmal CaM*,

Accordingly, we here explore near-field imaging of nanodomain
Ca’* using TN-XL, a GECI** based on the Ca?* sensor troponin
C. TN-XL exploits Ca®* -driven conformational changes without a
target peptide, thereby naturally resisting endogenous CaM inter-
ference*2. Our specific approach is to fuse TN-XL to the carboxy
terminus of the principle subunit of Cay2.2 Ca?>* channels, chosen
for high open probability*>, relative absence of silent channels*®,
and abundant plasmalemmal expression’. To further improve
the TN-XL signal-to-noise ratio at the surface membrane, we uti-
lize TIRF microscopy to selectively illuminate only those Cay2.2/
TN-XL channels near the surface, thereby attenuating background
signal from imperfectly targeted intracellular channels. Finally, to
account for the high Ca?* affinity and slow kinetics of GECIs** (off
times, 100-900 ms for TN-XL) in the face of millisecond nanodo-
main Ca?* pulses, we quantify the kinetics of TN-XL readouts,
which our previous work suggests can distinguish between differing
Cagpike amplitudes*®. These strategies allow us to resolve nanodo-
main Ca®* activity of Cay2.2 channels undergoing native gating,
without pharmacological manipulation.

Results

Functional Cay2. 2/TN-XL fusions at the surface membrane.
Our strategy for probing nanodomain Ca?* signals (Fig. 1) requires
maintained Ca®* responsiveness of genetically encoded sensors
situated at the plasmalemma, which is a foremost challenge.
Accordingly, we examined whether troponin-based TN-XL could
respond to Ca?* when targeted to this environment. As a baseline,
Fig. 2a displays the properties of the well-studied, cytoplasmic
form of TN-XL*, Confocal images of an exemplar HEK293 cell,
acquired under CFP and FRET imaging modes, reveal the expected
pan-cytoplasmic distribution. An epifluorescence CFP image
of another cell also demonstrates this generalized expression,
and switching to TIRF mode indicates no preferential TN-XL
accumulation within the plasmalemmal footprint of this same
cell. To gauge TN-XL responsiveness, we measured, under TIRF
imaging, the single-cell CFP (S, respective excitation and emission
wavelengths at 442 and 485nm) and FRET fluorescence signals (Sg,
excitation and emission at 442 and 545nm), where the ratio of these
signals (Rg/c=Sg/Sc) furnishes the customary sensor readout of
Ca®* (Fig. 2b). In particular, the ratio Ry, was first determined in
resting cells with cytoplasmic Ca?* concentration (<0.1 M) well
below the K4 of the TN-XL?4, thus yielding R ;.. To subsequently
determine R, .y, Cay2.2 channels were co-expressed as conduits of
Ca®* entry under whole-cell voltage clamp. To facilitate elevation of
intracellular Ca?*, minimal internal Ca2™* buffering (1 mM EGTA)
with elevated 10mM extracellular Ca?* was employed, such that
repetitive step depolarizations (30mVx500ms pulses every 155)
readily saturated Rp;c at Ry, Thus, the ratio of Ry, and Ry,
reports sensor dynamic range.

By contrast, for TN-XL fused to the farnesylation motif of Ras
(TN-XL-Ras), sensors are sharply localized to the surface mem-
brane in confocal and epifluorescence images (Fig. 2¢), and there
is marked enrichment within the TIRF footprint. Importantly, the
Ca’>* dynamic range of TN-XL-Ras is nearly identical (Fig. 2d),
despite residence within the plasmalemmal context. Yet more rel-
evant are results for the Cay2.2/TN-XL fusions (Fig. 2e). Here
constructs appear only partially localized to the surface membrane,
consistent with typically imperfect trafficking of recombinant Ca?*
channels to plasmalemma®. Still, there is substantial focalization
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Figure 1| Approach to resolving channel nanodomain Ca2* signals.

(a) Conventional wide-field imaging using cytosolic chemical fluorescent
dyes cannot resolve channel nanodomain Ca2* signals. Blue shading
denotes region of fluorescence excitation, which extends throughout the
cell under wide-field imaging. (b), Design of the genetically encoded Ca2™*
indicator TN-XL fused to the carboxy tail of the o4g subunit of a Cay2.2
channel, yielding Cay2.2/TN-XL. For orientation, structure-function
elements involved in calmodulin regulation are denoted on carboxy
terminus?": EF, EF-hand region; 1Q, IQ-domain for apoCaM binding.

CFP denotes enhanced CFP. YFP denotes circularly permuted citrine.

(), Cay2.2/TN-XL constructs act as a ‘near-field' sensor of nanodomain
Ca?*. TIRF imaging evanescent wave illuminates only Cay2.2/TN-XL
channels within ~150 nm from the glass/cell membrane interface, as
indicated by the blue-shaded region. This mode of excitation potentially
excludes intracellular channels from consideration. When laser illumination
angle O exceeds a critical angle ®¢, TIRF illumination occurs.

of Cay2.2/TN-XL in the TIRF footprint, suggesting sufficient traf-
ficking for nanodomain experiments (Fig. 1c). Critically, sensor
dynamic range is spared when juxtaposed near Cay2.2 channels
(Fig. 2f).

A second concern is the preservation of Cay2.2 channel func-
tion upon fusion to TN-XL. Reassuringly, Ca?* currents appeared

nearly identical in Cay2.2/TN-XL (Fig. 3a, black) and Cay2.2
(grey) channels. In fact, fusing TN-XL to Cay2.2 enhances open-
ing, as seen from hyperpolarization of tail-activation curves deter-
mined with 10-mM extracellular Ca®* as charge carrier (Fig. 3b).
Even at the single-channel level, Cay2.2/TN-XL fusions exhibited
robust electrophysiological function, as illustrated by the exem-
plar single-channel current trace shown at high-gain magnification
(Fig. 3c, noisy trace). We used 90mM Ba?* as a charge carrier to
enhance resolution of elementary events, and evoked currents via
ramp depolarization to readily resolve the open-channel conduction
profile (downwardly convex grey relation). Multiple single-channel
sweeps (Fig. 3d), displayed at lower-gain magnification, confirm the
overall reproducibility and excellent resolution of elementary events
under this protocol. Accordingly, numerous sweeps from multiple
patches specify a highly reliable ensemble average current (Fig. 3c,
red curve), closely similar to that of Cay2.2 channels without sen-
sor fusion®>. Taking the ratio of the ensemble average current with
the open-channel conduction profile (Fig. 3¢, red and convex grey
curves) yields a plot of open probability P, versus voltage V (Fig. 3e,
gray relation). This plot matches impressively with whole-cell
activation (reproduced as open circles), after shifting along the
voltage axis to account for contrasting surface-charge effects of
single-channel versus whole-cell solutions. As with studies of Cay2.2
(ref. 45), the Cay2.2/TN-XL fusion exhibits a substantial Py of 0.69
at 30mV (Fig. 3e, red arrows), a feature advantageous for probing
nanodomain Ca?*.

A final prerequisite is that Cay2.2/TN-XL fusions resist prote-
olysis. Accordingly, we utilized anti-GFP antibody to perform west-
ern immunoblots from cells expressing this construct (Fig. 3f, left
lane). The other lanes correspond to cells expressing TN-XL-Ras
(~71KkD), as well as untransfected cells (no signal). The absence of
signal beneath the full-length ~320kD band (Fig. 3f, left lane) sub-
stantiates maintained TN-XL fusion to channels (Fig. 3g).

Calibration of TN-XL fused to Cay2.2. channels. We next
addressed more precise sensor calibration, to facilitate quantita-
tive inferences about nanodomain Ca?*. Both kinetic and steady-
state characterization would be ideal, given the millisecond kinet-
ics of Ca?* pulses within channel nanodomains, coupled with the
comparatively slow response of free TN-XL (off rates of 1/150 to
1/850 1/ms**). Accordingly, we devised a state-mechanism approxi-
mation of sensor performance, a forward transform’ that maps
rapid Ca?* transient inputs onto slower sensor outputs, as previ-
ously established for an older variant of TN-XL (TN-L15), freely
expressed in myocytes*3. Here we pursued an analogous approach,
but attuned to Cay2.2/TN-XL constructs resident within the TIRF
volume and driven by high-amplitude dynamic Ca?* inputs perti-
nent to channel nanodomains. To produce such inputs, we activated
ultra-large Cay2.2 Ca®* currents (Fig. 4a) in HEK293 cells, featur-
ing minimal exogenous intracellular CaZ* buffering (1 mM EGTA);
this configuration intentionally produced enormous spatial gradi-
ents of intracellular Ca?* (Fig. 4b, inset), far exceeding that usu-
ally encountered. To estimate these gradients, we simultaneously
monitored aggregate Ca?* concentration (Fig. 4b, noisy dark trace),
as deduced by imaging the entire cell for signals emanating from
10uM of the rapid chemical fluorescent Ca?* indicator Fluo 4FF.
The measured Ca?* influx (Fig. 4a) and aggregate [Ca®*] signals
were then used to explicitly constrain a radially symmetric Ca?*
diffusion mechanism, whose estimates of Ca?* concentration, in
differing cellular regions, are shown as red traces in Fig. 4b (Sup-
plementary Fig. S1; Supplementary Methods). The estimated aggre-
gate [Ca?*] concentration (Fig. 4b, lower red trace) closely approxi-
mates its measured analogue (dark noisy trace), and the estimated
[Ca2*] at the surface membrane (upper red trace) peaks at ~80 uM
and later converges to the aggregate [Ca®*] (~20-25uM). This esti-
mate of submembranous [Ca?*] was reproducible in multiple cells
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Figure 2 | Cay2.2/TN-XL fusion construct preserves function of sensor. (a) Behaviour of free TN-XL. Left to right: confocal (CFP filter), confocal (FRET
filter), epi-fluorescence (CFP filter), and TIRF (CFP filter) images of HEK293 cells expressing cytoplasmic TN-XL. White scale bar, 10 um. Bar at far left
pertains to all confocal images. Bar at middle right pertains to all epifluorescence and TIRF images. (b) TN-XL ratio (Rg,/c =Sf /Sc) measured in resting
cells (Rpmin) (grey bar) and in cells under high Ca2* (Ryay) (black bar). Data shown as mean+s.e.m. with number of cells in parentheses. (c,d), Behaviour
of TN-XL-Ras (membrane targeted TN-XL). Format as in (a,b), respectively. (e f), Behaviour of Cay2.2/TN-XL (N-type channel fused to TN-XL). Format

as in (a,b), respectively.

exhibiting like Ca?* influx, and was thereby taken as the relevant
Ca’* input in parallel experiments performed with Cay2.2/TN-XL
fusion constructs, under TIRF imaging. The green trace in Fig. 4c
displays the corresponding sensor output from GECIs in the sub-
membranous TIRF volume, averaged from multiple cells exhibit-
ing Ca* influx matching that in Fig. 4a. The steady-state plateau
of the response (Fig. 4c, grey dashed line at Rg;c=1.78), at a near
steady Ca?* concentration of ~20-25 UM, enabled us to calculate
~17.3uM as the half-response point of the steady-state response
curve for Cay2.2/TN-XL constructs in the TIRF volume (Supple-
mentary Methods). This differs from the 2.5 LM half-response point
for free TN-XL*4, consistent with previous observations that sensor
performance can change with cellular/molecular environment38:42,
Accordingly, steady-state response data for free TN-XL4 were
shifted along the [Ca?*] axis by x16.3/2.5 to provide an appropri-
ate steady-state profile for Cay2.2/TN-XL constructs (Fig. 4d, green
symbols). In all, these steady-state data and the dynamic sensor
response (Fig. 4c, green trace) to a specified submembranous Ca?*
input (Fig. 4b, upper red trace) furnished the constraints required to
deduce a forward transform for Cay2.2/TN-XL.

Fig. 4e displays the corresponding state-diagram approxima-
tion of Cay2.2/TN-XL responsiveness to Ca>*, based on a mecha-
nism for an older troponin-based GECI*® (TN-L15). State UB,
(‘unbound’) represents the Ca?*-free conformation of the sensor,
characterized by a lower FRET-ratio output of R.,;,. On binding of
a single Ca?* to the N-lobe of troponin, the sensor adopts one of
two alternate ‘bound’ conformations (B, or B,), both featuring the
same elevated FRET-ratio output of R,;4. The arrangement, thus
far, is identical to that previously established for TN-L15 (ref. 48).
The improved performance of TN-XL arises, via engineering the

4

C-lobe of troponin, to dynamically bind and unbind two signal-
ling Ca?* ions, thereby driving a further conformational change of
the sensor?%. To account for this feature, we allowed two additional
Ca2* ions to bind and induce a third bound state5%! (B3, dashed
box), exhibiting the highest FRET-ratio output of R.,,,. Numerical
simulations of this scheme (Supplementary Methods), coupled with
error minimization via parameter variation, yielded impressive fits
to the target constraints above (Fig. 4c,d, red curves), using the sen-
sor parameter estimates in Table 1. Accordingly, these parameters
and the scheme in Fig. 4e furnish a steady-state and dynamic rep-
resentation of Cay2.2/TN-XL responsiveness to Ca?*, a ‘forward
transform’ (Fig. 4f) that is potentially appropriate for making infer-
ences about channel nanodomain Ca?* fluctuations.

Cay2.2/TN-XL sensors respond to nanodomain Ca2* signals.
This transform could only be utilized, however, if a substantial frac-
tion of Cay2.2/TN-XL sensors respond to channel nanodomain
Ca®* signals, as specifically produced by individual channels flux-
ing Ca?* into their own nanodomain. Thus far, we had only dem-
onstrated that Cay2.2/TN-XL sensors in the TIRF volume respond
well to a generalized increase in submembranous [Ca?*], but this
would occur whether the majority of channel-sensor fusion con-
structs are properly trafficked to the surface membrane, or still
plentiful in submembranous vesicles within the TIRF volume. To
address this issue, we again undertook simultaneous recordings
of whole-cell Ca?* current and TIRF imaging of Cay2.2/TN-XL
sensors, but here with high intracellular Ca?* buffering present to
restrict Ca®™* elevations to the nanodomain of active channels that
flux Ca?*. Specifically, we dialysed cells with 10 mM EGTA, yielding
a Ca®* nanodomain radius of ~40 nm (ref. 13) (Fig. 5, top cartoon),
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only twofold larger than electron micrographic estimates of Ca?*
channel diameters®?. Additionally, we only investigated cells with
modest Ca?* currents (~1nA with 10mM Ca?* as charge carrier)
and little Ca2+-dependent inactivation?! (CDI), so as to exclude
Ca?* buffer depletion. Fig. 5a summarizes the results of an exem-
plar cell satisfying this criterion, with the displayed data evoked by
a single voltage pulse. Clearly present is a transient decrease in CFP
fluorescence (S¢, cyan trace), accompanied by a corresponding pha-
sic elevation of the FRET ratio Ry, (green trace). Exponential fits
(solid black curves) revealed dominant rise and fall times of 880
and 2,000 ms for S¢, and 880 and 400 ms for Rgc. Both the return of
TN-XL waveforms towards baseline, and the modest CDI of chan-
nels under elevated Ca>* buffering?! (Fig. 5a compared with Fig.
4a), argue against unintended depletion of Ca?* buffer. Accord-
ingly, these results suggest responsiveness of Cay2.2/TN-XL sen-
sors to genuine channel nanodomain Ca?* signals. By contrast to

the exemplar, about half the cells with currents of this magnitude
and limited CDI exhibited no appreciable change of TN-XL rea-
douts, presumably due to poor trafficking of active channels. Such
cells were excluded from further analysis.

Forward transform estimates of nanodomain Ca?* amplitudes.
As a prelude to more rigorous assessment of Cay2.2/TN-XL
responses to nanodomain signals, we averaged signals from multiple
responsive cells dialysed with 10mM EGTA. The mean responses
(Fig. 5b) were similar to those of the exemplar, with nearly iden-
tical characteristic time constants. This reproducibility encour-
aged us to quantitatively scrutinize these averaged waveforms. In
particular, although the robust responses observed here under ele-
vated Ca?* buffering do indicate an appreciable fraction of active
channels within the TIRF volume (Fig. 5¢, active), the data do not
exclude the possibility of a still substantial fraction of channels that
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Sc waveforms would asymptote near Ca?* -saturating levels of ~0.5
(Supplementary Fig. S2; Supplementary Methods), as specified by
the experimentally determined 1/¢ value (defined in Table 1).
Hence, the experimentally deduced asymptote of ~0.8 (Fig. 5b) sug-
gests that ~40% of Cay2.2/TN-XL channels are active within the
TIRF volume, whereas ~60% of channels are intracellular or silent.
Cognizant of this configuration, we correct S¢ and Ry, waveforms
to reflect only active channels, simply by subtracting ~60% of the
baseline amplitude of CFP (S¢) and FRET (Sg) signals, and taking a
ratio of these subtracted signals to obtain a corrected Rg,c. Fig. 6a
shows the corrected signals (Sc, Ry/c), averaged over multiple cells.
These waveforms were then suitable for making inferences about
nanodomain Ca?*

That nanodomain Ca?* signals take the form of equi-amplitude
Ca?* pulses, synchronized to the millisecond opening of chan-
nels, is widely accepted!®12 (cartoon, Fig. 6b); however, the critical
amplitude of such pulses (Cus ike) has only been inferred via simu-
lations of Ca?* diffusion'?~10, To estimate Cagpire empirically, we
analysed the corrected Cay2.2/TN-XL responses (Fig. 6a), using
the forward transform in Fig. 4e,f. The experimental waveforms
might initially appear difficult to conceptualize, as each TN-XL

resent in the plasmalemma but fail to open (Fig. 5¢, silent), or
ent within submembranous vesicles within the TIRF volume
5¢, intracellular). Such silent and/or intracellular channels
d contribute static background fluorescence that could com-
te quantitative interpretation. An indication of this scenario
es from exponential extrapolation of the S waveform decline
5b, dashed curve), which asymptotes in the range of ~0.8. By
rast, under the assumption that all channels are active, simula-
of the forward transform in F1g 4e, f 1nd1cate that, over a large
e of plausible nanodomain Ca?* pulse amplitudes (=35uM),

sees a different stochastic record of Ca?* pulses driven by single-
channel openings. However, because the response of each TN-XL
is slow (Table 1; compare Fig. 4b,c), relative to the millisecond
duration of individual Ca®* spikes, we can adopt a previously
established kinetic simplification!® that permits the Ca?*-driven
forward reaction rates in Fig. 4e to be treated, not as stochastic enti-
ties that fluctuate with each Ca?* pulse, but as smoothly changing
entities ky; - Cagyixe * Po () and ky3 - -CaZyye - Po(t) . Importantly, these
entities are to the first order equal f or all active Cay2.2/TN-XL
sensors, such that the collective output from multiple sensors, as
displayed in Fig. 6a, would approximate that for any individual
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With this proviso, we consider other long-sought-after Ca?*
channel signalling properties that could, in principle, be accessed
with our strategy. First, we estimate the gain factor A, defined as
the ratio of Cagpiie to unitary current i fluxing through individual
Ca?+ channelsll%. As such, the magnitude of A is crucial for local
Ca’* channel signalling to downstream nanodomain targets. Given
knowledge of Cagpie, we could estimate A itself, so long as the i were
known under the conditions of Cagpi. determination (Fig. 6, with
10mM Ca®* as the charge carrier). The single-channel data thus far
(Fig. 3¢,d) were obtained with 90 mM Ba2* to facilitate resolution
of open probability; these data could not be utilized here. The rel-
evant single-channel data for parameter A specification would entail
several-fold smaller signals?>2. Nonetheless, despite signals near
the limits of detection, we acquired well-resolved unitary currents
under these conditions (Fig. 7a). These data yield i=0.085+0.003 pA
(n=5 patches) at 30mV (as in Fig. 6), resembling values recorded in
native Cay2.2 channels?®. Combining i with our estimates of Cagpike
(centre, ~60 UM range, 45-80 UM), we obtain A, ~700 uM/pA (Fig.
7b, shaded regions).

Second, if the distance from the cytoplasmic mouth of the chan-
nel to the sensor (rgepsor) Were also known, near-field Ca?* sensing
could comment powerfully on Ca?* diffusion within the nanodo-
main itself. We therefore gauge r¢epso, from FRET measured between
the CFP of our Cay2.2/TN-XL fusion, and YFP fused to the base of
the channel amino terminus (Fig. 7c). To eliminate crosstalk, YFP
within TN-XL itself is replaced with the inert analogue amber>3.
FRET efficiency was thus determined®* (Fig. 7d), yielding an
estimated rengor ~55 A (Methods).

With both parameter A and rgep,, in hand, we scrutinize nano-
domain Ca?* diffusion via classic point-source Ca®* diffusion, as
given by a generalized Neher-Stern equation!31

where 74en50r 18 the distance of the TN-XL sensor from the point
source of Ca?* influx; D¢, is the diffusion coefficient of free Ca%;
F is Faraday’s constant; kg, is the on rate for Ca?* binding to
EGTA; and By is the internal EGTA concentration (10 mM). The
parameter f, specifying the fraction of half-infinite space into which
radial Ca?* diffusion occurs, has always been set at unity (Ca?*
diffuses into a full half-infinite space), absent any evidence to the
contrary. Intriguingly, our estimates of A and r¢ep,, Square poorly
with the traditional view (Fig. 7e, grey curve with f=1), but fit well
with f ~0.53 (0.53x27 steradians, solid curve). This outcome may
represent an early functional indication of fenestrated Ca®* egress
from the channel into cytoplasm (Fig. 7f), according with crystal-
lographic structures of K channels®.

Thus, nanodomain Ca?* diffusion could focus Ca?* through
particular molecular geometries within the channel-signalling
complex, raising the possibility of enhanced preferential signalling
to target molecules near or within exit portals (Fig. 7f, grey ball).
Indeed, although previous studies elegantly suggest that distinctive
unitary current amplitudes i render Cay2.2 channels favourable for
triggering vesicle fusion??, it is also plausible that differing A and f
values also factor into such optimization. The latter possibilities rep-
resent an intriguing, but nearly unexplored, realm of Ca?* biology.
Although other interpretations are certainly viable, further empiri-
cal estimates of Cagpjye, parameter A, and rgepo, Will likely aid in the
dawning of this field of inquiry.

Methods

Molecular biology. Cay2. 2/TN-XL (Cay2.2 is of human origin (NM000718))
fusion construct was made by PCR, using fusion primers. Pfu polymerase
(Strategene) was used for fidelity. To make Cay2.2/TN-XL, we first generated

a Cay2.2 channel with the C-terminus truncated at the 2180th amino acid
(without a stop codon), yielding Cay2.2A2180 stopless/Xbal in pcDNA3.1. This
was made by cutting Cay2.2 with Xho I and Xba I, and replacing the resulting

A= CaSPike — a/ f ) -exp —Tsensor fragment with the PCR product amplified from Cay 2.2 between the Xho I and
i 4-7-F- D¢y *Teensor \/DCa /(kgon - Br) (1)  2180th amino-acid sites using forward primer 5’-CGCATCAGTTACAATGACA
TG-3", and reverse primer 5-CTGTCTAGAAGCACCAGATGTTGACAGCA-3'.
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Next, TN-XL was PCR-amplified with an Xba I site upstream of CFP (ATG
removed) and a Nhe I/Spe I site downstream of the stop codon of circularly per-
muted Citrine. The forward and reverse primers used were 5-CGGCCGCCA
CCTCTAGAGTGAGC-3, and 5'-CAGACTAGTGCTAGCTTAGTCCTCGATG
TTGTGGC-3’ respectively. Finally, the TN-XL PCR fragment was spliced into the
Cay2.2A2180 stopless/Xbal construct at the Xba I site to give our Cay2.2/TN-XL
construct.

For the variant construct in Fig. 7c, the circularly permuted Citrine in TN-XL
was replaced with circularly permuted amber®3, and YFP fused to the amino
terminus of Cay2.2 after removal of the first 81 amino acids?? (nearly the entire
amino terminus). Complete sequence analysis of regions subjected to PCR was
performed.

HEK293 cell culture and transfection. HEK293 cells were cultured on No-1
25-mm glass cover slips (Bellco glass) in 10 cm plates. These slips were coated over-
night with 0.01% (wt/v; diluted 1:5 in 0.1 M borate buffer) poly-p-lysine (Sigma),
and washed with ddH,O on the day cells were seeded onto the slips. The poly-p-
lysine coating facilitates proper whole-cell voltage control at the membrane/glass
interface®, and also increases electrostatic attraction between the glass surface
and cells, thus favouring cell attachment and optimal TIRF imaging. Cells were
transiently transfected, using calcium-phosphate precipitation®®, with Cay2.2/TN-
XL, rat brain B,,%%, and rat brain 0,54 (10 ug each). Cay2.2 and B,,-CEP were
substituted for Cay2.2/TN-XL and B,,, respectively, in some experiments. Co-
transfection of channels with a number of molecules did not appreciably improve
channel trafficking in our system: PI3K and Akt/PKB>7, ORL receptors>®, and

X1 for EGTA. Grey

dominant-negative dynamin®®. TN-XL and TN-XL-Ras sensors were transfected
using FuGENE6 (Roche).

Electrophysiology. Whole-cell and single-channel current records were obtained
at room temperature 1-3 d post-transfection, using patch-clamp amplifiers Axo-
patch 200B and Axopatch 200A (Axon Instruments), respectively.

For whole-cell recordings, the cells were bathed in external solution containing
(in mM): TEA-MeSO3, 140; HEPES (pH 7.4 with TEA-OH), 10; and CaCl,, 10
at 300 mOsm, adjusted with glucose. The internal solution contained (in mM):
Cs-MeSO3, 114-135; CsCl, 5; EGTA, 1 or 10; MgCl,, 1; MgATP, 4; HEPES (pH
7.4 with CsOH), 10; and 295 mOsm with Cs-MeSO3. In some experiments, 10 UM
Fluo 4FF and 2.5 uM Alexa 568 (Invitrogen, Molecular Probes) were included for
ratiometric Ca?* determination. Electrodes were pulled from borosilicate glass
capillaries (WPI MTW 150-F4) and had pipette resistances ranging from 1.5 to
2.5 MQ before 75% series resistance compensation. Voltage pulses were applied
at 90s intervals. Currents were filtered at 5kHz, and digitized at 25kHz. Leak and
capacitance transients subtracted by P/8 protocol. Data acquired and analysed with
custom MATLAB scripts (Mathworks, Natick, MA, USA).

Single-channel recordings were all conducted in the on-cell configuration. The
bath contained (in mM): K Glutamate, 132; KCl, 5; NaCl, 5; MgCl,, 3; EGTA, 2;
glucose, 10; and HEPES (pH 7.4 adjusted with KOH), 20 at 300 mOsm adjusted
with glucose. This bath solution zeroed the membrane potential. The pipette solu-
tion contained, (in mM): BaCl,, 90; TEA-MeSOj3, 20; HEPES (pH 7.4 adjusted
with TEA-OH), 10 at 300 mOsm, adjusted with TEA-MeSOj3. In some experi-
ments, 10mM CaCl, was substituted for BaCl, and TEA-MeSOj3 correspondingly
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