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Systematic pan-cancer analysis of tumour purity
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The tumour microenvironment is the non-cancerous cells present in and around a tumour,

including mainly immune cells, but also fibroblasts and cells that comprise supporting blood

vessels. These non-cancerous components of the tumour may play an important role in

cancer biology. They also have a strong influence on the genomic analysis of tumour samples,

and may alter the biological interpretation of results. Here we present a systematic analysis

using different measurement modalities of tumour purity in 410,000 samples across 21

cancer types from the Cancer Genome Atlas. Patients are stratified according to clinical

features in an attempt to detect clinical differences driven by purity levels. We demonstrate

the confounding effect of tumour purity on correlating and clustering tumours with

transcriptomics data. Finally, using a differential expression method that accounts for tumour

purity, we find an immunotherapy gene signature in several cancer types that is not detected

by traditional differential expression analyses.
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T
he tumour microenvironment is a complex milieu
consisting of factors that promote growth and inhibit it,
as well as nutrients, chemokines, and very importantly,

other non-cancerous cell types. These cells include fibroblasts,
immune cells, endothelial cells and normal epithelial cells1. All of
these constituents interact with one another and with the tumour
as it grows. This admixture is thought to have an important role
in tumour growth, disease progression and drug resistance2,3.
Notably, infiltrating immune cells, and particularly infiltrating
T lymphocytes, have been associated with tumour growth,
invasion and metastasis in several cancer types4,5.

Tumour purity is the proportion of cancer cells in the admixture.
Until recently, it was estimated by a pathologist, primarily by visual
or image analysis of tumour cells. With the advancement of
genomic technologies, many new computational methods have
arisen to infer tumour purity. These methods make estimates using
different types of genomic information, such as gene expression6,
somatic copy-number variation7–9 somatic mutations7,10 and DNA
methylation7,11. Estimates made by these methods are generally
consistent with one another, though, to date, no systematic
sensitivity analysis in multiple cancer types has been performed.

The Cancer Genome Atlas (TCGA) is currently the largest
available data set for genomic analysis of tumours. It contains over
10,000 pretreatment samples across 30 cancer types and includes
measurements such as RNA sequencing (RNA-seq), DNA
methylation, copy-number variation and more12. The consortium
had originally set a quality threshold that tumour samples included
in the cohort be composed of at least 80% tumour nuclei, as
determined by visual analysis13. However, this threshold was later
reduced to 60%. Given the status of TCGA as a flagship project of
the National Cancer Institute, we assumed that sample purity was
the best possible using current conventional sample acquisition
methods, and we thus hypothesized that differences in purity were
due more to properties of the cancers, and less to the acquisition
method. While TCGA argues that 60% purity is sufficient to
distinguish the tumour’s signal from those of other cells, it remains
to be evaluated if this level of purity across tumour samples affects
the interpretation of genomic analyses.

In recent years, sporadic analyses have sought to determine
tumour purity levels and take them into account during
analysis14–21. These studies used different purity estimation
methods and tested only specific parameters, which were mainly
in the context of detecting somatic mutations22.

This current study is a systematic analysis of tumour purity
across multiple cancer types using four different methods and an
additional consensus method. We distinguished between the effects
of intrinsic and extrinsic factors on tumour purity and analysed the
implications of these effects on clinical and molecular information.
Intrinsic factors imply that purity levels are a characteristic of the
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those cancer types that drives them away from the purity-
mutational burden curve. An analysis restricted to the remaining
16 cancer types gave an almost perfect correlation (Pearson

correlation R¼ � 0.94, P¼ 4.4e� 8). However, it is important to
note that we did not observe significant negative correlations in a
sample-by-sample correlation in specific tumour types, suggesting
that this association is a property of cancer types rather than
individual patients.

Within cancer types, we found major differences between
different samples. For example, in SKCM, 56 of the samples
(11.8%) were highly purified (490%), while 95 (20.0%) had poor
purity (o60%). While only 1.9% of the samples had purity levels
lower than the TGCA’s minimum of 60% by IHC, 40.3, 8.9 and
18.5% had low purity according to ABSOLUTE, ESTIMATE and
LUMP, respectively.

We investigated different samples from the same patient to
determine whether they were concordant. Across all cancer types,
37 patients were analysed twice from two different portions of the
same sample. We observed high concordance between the
samples (Pearson correlation R¼ 0.73, Supplementary Fig. 7).
This result persisted even when analysing cancer types separately.
For example, purity from the 10 LUAD patients with two samples
was highly correlated (Pearson correlation R¼ 0.82). We
concluded that differences in purity levels among cancer patients
and cancer types are robust, consistent and specific to the tumour.

Tumour purity versus clinical features and outcomes. The
observation that tumour purity was maintained in different
samples from the same tumour suggested that purity is an
intrinsic property of the tumour. We sought to explore whether it
was associated with clinical features. We examined associations
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between purity levels and all available clinical features provided
by TCGA in each cancer type. We analysed 722 clinical features,
spanning 299 unique features (Supplementary Data 2). Generally,
characteristics including sex, age, ethnicity, alcohol use and
smoking were not associated with tumour purity. However, we
detected 11 associations (false discovery rate o1%) with features
characterizing the tumour, most prominently with histological
tumour analyses in different cancer types. Histological subtypes,
which are classified based on cell type and pattern, are frequently
treated as similar entities of the same cancer type, although there
are obvious differences in the tumour’s biological characteristics
and prognosis. We observed differences in purity levels between
the different histopathological subtypes of LGG, BRCA, THCA,
and between cervical squamous and adenocarcinomas (CESC;
Fig. 3a; Supplementary Fig. 8a–d). We additionally observed a
consistent decrease in purity as tumour grade progressed in KIRC
and LGG, which is consistent with the lower purity of glio-
blastoma (GBM) samples (grade 4), and in the primary grade of
prostate adenocarcinoma (Fig. 3b; Supplementary Fig. 8e–g). In
LGG, we found differences in purity at different tumour locations
(Supplementary Fig. 8h). In BRCA, we also found differences
between oestrogen receptor-positive and -negative samples
(Supplementary Fig. 8i). The only significant non-pathological
associations of purity we found were a history of thyroid gland
disorder in THCA and presence of IDH1 mutation in LGG
(Supplementary Fig. 8j–l). The latter association likely results
from the fact that LGG tumours with wild-type IDH1 are
molecularly and clinically similar to GBM24, which have lower
purity levels. Divergent purity levels were found prominently in

pathologic diagnoses, and moreover, the lack of association
between purity and patient characteristics suggests that purity
differences is at least not an intrinsic characteristic, but a result of
the sampling by the surgeon and the level of difficulty separating
it from its environment.

We employed a Cox proportional hazard regression analysis to
test for association between purity and survival time. We found
associations with purity with three methods in KIRC and LGG
(Fig. 3c; Supplementary Table 2). As described, purity in LGG
samples differed between histological subtypes. Survival analysis was
consistent with these findings, as astrocytomas tend to have poorer
prognosis than other subtypes25. This result could also be explained
by clinical outcomes associated with IDH1 mutation24, which is also
associated with purity, as shown above. Our observation in KIRC
may explain prognosis for this cancer as well, as we found lower
purity in higher-grade tumours. These explanations reinforce our
claim that purity differences are extrinsic.

Tumour purity confounds genomic analyses. We next examined
the confounding effect of tumour purity on genomic analyses. We
divided this effect into three commonly used bioinformatics
methods: correlation, clustering and differential analysis. Our
presentation focuses on gene expression profiles, but all the
analyses hold to the same extent in other genomic measurements.

Correlative analyses are widely applied to genomics in the
study of cancer. One key approach is the gene co-expression
network, which assigns a score to a pair of genes based on their
co-expression frequencies in different samples. Co-expression
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Figure 3 | Tumour purity and prognosis. (a) CPE tumour purity in different histological subtypes in lower-grade glioma (LGG), breast (BRCA), cervix

(CESC) and thyroid (THCA) tumour subtypes. Sample numbers are in parentheses. One-way analysis of variance (ANOVA) P values are presented.

(b) CPE tumour purity levels in different histological grading methods. Histological grade is shown in kidney renal clear cell carcinoma (KIRC), LGG and

prostate adenocarcinoma (PRAD). Breslow’s depth value grouped in stages is shown in melanoma (SKCM). In LGG, the purity level of glioblastoma (GBM),

which is grade 4, is shown as a reference. In PRAD, the grade is of the primary pattern. One-way ANOVA P values are presented. (c) Kaplan–Meier survival

plot in LGG and KIRC patients with low purity (3rd tertile) and high purity (1st tertile). Log rank P values are presented.
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networks have been used extensively in cancer studies, with an
aim to unravel hallmark pathways and prioritize novel candidate
genes26. We found that identifying co-expression networks from
genomics data without accounting for tumour purity is
problematic. Gene expression profiles from bladder carcinoma
illustrate the problem. For example, expression levels of colony-
stimulating factor 1 receptor (CSF1R) and Janus kinase 3 (JAK3),
tyrosine protein kinases and known cancer-driver genes27, are
highly correlated with each other (Spearman correlation R¼ 0.67,
Po1e� 20). Thus, one might suggest a shared co-expression
network between them, which would be a novel finding.
However, this correlation likely results from the high
correlation of both genes with tumour purity (Fig. 4a).

We extended this observation to all available gene pairs.
Strikingly, we found that the strongest gene networks, that is,
groups of genes with correlated expression profiles, were composed
of genes highly associated with purity (Fig. 4b; Supplementary
Fig. 9). Group A, which contains 25.7% of the genes, was enriched

with 60.0% of all co-expressing gene pairs (Spearman coefficient
|R|40.5), but also with genes negatively correlated with purity
(91.1% of genes with Ro� 0.3). In total, 49.7% of co-expressing
genes were between genes that were both correlated with purity
(|R|40.3), compared with an expected ratio of only 0.6%. As
expected, the group A gene ontology annotations were enriched
with terms related to the immune system, but also with other terms
such as extracellular matrix organization and other cellular
functions (Supplementary Table 3). Group C, on the other hand,
contained only genes positively correlated with purity. Those genes
did not seem to share specific gene ontology annotations. While
genes in both groups may be part of a shared co-expression
network, the above analysis demonstrates that a correlation
between them may be explained in large part by tumour purity.
We attempted to address this bias by applying partial correlations
with controlling for tumour purity in the co-expression analysis.
The number of pairwise co-expressions in bladder carcinoma
decreased by 39.7%, and the fraction of co-expressions between
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purity-associated genes decreased by 58.4%. Overall in all 21
cancer types, we observed a 21.0% decrease in the number of
pairwise co-expressions when controlling for purity (Fig. 4c;
Supplementary Fig. 10), and a decrease of 48.7% of co-expressions
when both genes are correlated with purity. This decrease was
tightly correlated with the pairwise correlation of the genes with
purity (defined as the multiplication of the coefficients of the
correlation of expression with purity between the co-expressing
genes). For every 0.1 increase in the level of pairwise correlation
with purity, we observed a 0.1 correlation decrease (Fig. 4d).
We concluded that naive correlation between genomic
profiling measures gives results that are highly confounded by
tumour purity. We suggest that future co-expression analyses
should employ partial correlation analysis by adjusting for tumour
purity.

The subclassification of cancers based on genomic measure-
ments has been a fundamental part of cancer research and
therapeutics development in recent years. Numerous publications
have applied molecular subtyping methods in different cancer
types28,29, and have shown its power in facilitating precision
medicine30. It should be emphasized that employing genomic
measurements for subtyping tumours is distinct from histological
subtyping by visual analysis, though there have been attempts to
consolidate these two approaches. This study highlights the risk
of confounding potential tumour purity when applying
unsupervised clustering for molecular subtyping. In three
cancer types—breast, GBM and LUAD—the molecular subtypes
and the subtyping method based on gene expression profiles are
widely accepted, and in all three, we detected discrepancies in
purity among subtypes. Four molecular subtypes of GBM have

been proposed: classical, neural, proneural and mesenchymal31.
Purity analysis on centroids of 840 genes revealed consistently
lower purity in the mesenchymal and neural subtypes (Mann–
Whitney U-test P¼ 1.8e� 9; Fig. 5a; Supplementary Fig. 11).
Three LUAD subtypes have been proposed: magnoid, bronchoid
and squamoid32. The classification utilizes centroids of 506
genes33. Again, purity is a dominant factor in distinguishing the
three subtypes (Mann–Whitney U-test P¼ 1.0e� 9; Fig. 5b;
Supplementary Fig. 12). We suspected that associations between
purity and molecular subtyping resulted from use of unsupervised
clustering techniques, which emphasizes genes that are associated
with purity. Thus, 47.1% and 45.4% of the genes used for
subtyping in GBM and LUAD, respectively, were correlated with
purity (|r|40.3) compared with 21.2 and 10.7% of all genes
(P¼ 1.6e� 18 and P¼ 1.1e� 50, Kolmogorov–Smirnov test;
Fig. 5c). It should be noted that the differences in purity
between subtypes might still be genuine and intrinsic
characteristics of the subtypes. We suspect that this is the case
in the molecular subtypes of BRCA. Our analysis detected
differences in purity levels among the PAM50 molecular subtypes
of BRCA34 (Supplementary Fig. 13); however, these differences
are consistent with our finding of differences in oestrogen
receptor status as obtained from pathologic analysis
(Supplementary Fig. 8i). In the other cancer types, where
classification is based on unsupervised clustering techniques
and there are currently no non-molecular factors that distinguish
subtypes, the confounding effect of tumour purity is alarming.
We hypothesize that clustering with expression levels adjusted for
purity will point to a different subtyping strategy for these
samples.
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Last, we analysed the confounding effect of purity on DE
analysis. Identifying differentially expressed genes in tumours is
an important tool for studying tumorigenesis, and has been
routinely applied to identify diagnostic and prognostic markers
and therapeutic targets. We use the term ‘purity’ in a broad sense
to define the proportions of non-immune counterparts in the
sample, which can be calculated for both non-cancer and cancer
samples, and can be estimated using ESTIMATE and LUMP. We
applied a consensus estimate based on these two methods on
normal samples of 13 cancer types with sufficient normal material
(‘normal’ describes adjacent non-tumour samples). We found

high concordance between the two methods in all cancer types
except in LUAD (Supplementary Fig. 14a). We also observed high
concordance between average purity estimates of TCGA normal
samples and purity estimates of equivalent tissues taken from the
Genotype-Tissue Expression project (Supplementary Fig. 14b)35.
We found substantial differences in purity levels among different
tissues and among different samples from the same tissue.
Moreover, in several cancer types, we observed immense
discrepancies between tumours and adjacent normal tissue
(Fig. 6a; Supplementary Fig. 14c,d). For example, purity in
normal kidney samples was, on average, 28.3% higher than the
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Figure 6 | Differential expression analysis adjusted to tumour purity. (a) Violin plots of CPE purity in 13 TCGA types. Blue distributions: tumour samples;

red distributions: non-tumour adjacent normal tissue. (b) CTLA-4 and CD86 expression profiles (y axis) versus CPE purity levels (x axis) in kidney renal

clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD) and thyroid carcinoma. Black curve: linear fit for purity and expression. For presentation

purposes, the y axis uses a log2 scale. Bottom vertical bars: differential expression levels in log2 scale as calculated by DESeq2 in a traditional analysis

(purity� ) and adjusted analysis (purityþ ).
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KIRC cancer samples. On the other hand, purity in normal lung
samples was, on average, 26.7% less than in the lung squamous
cell carcinoma cancer samples.

We used the DESeq2 package36 to apply DE analysis to RNA-
seq counts of tumour and normal samples across a dozen cancer
types with sufficient normal tissue for sampling. We compared
our findings with a DE analysis designed to include purity
estimates, which is equivalent to adjusting gene expression by
purity. This comparison found numerous marked differences in
relative expression levels. Many genes were differentially
expressed before purity adjustment, but no differences between
cancer samples and controls were seen after adjustment. Some
genes even changed state from up- to downregulation or the other
way around. Most importantly, we found differentially expressed
genes after adjustment that had not been identified before.
Figure 6b illustrates expression patterns of the immunotherapy
target cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and
its ligand, CD86 (also known as B7.2) in traditional and adjusted
DE analyses in three cancer types. Standard DE analysis labelled
both genes as highly upregulated in KIRC samples. However,
most of the difference from healthy samples could be ascribed to
differences in purity. In LUAD, on the other hand, CTLA4 was
detected as upregulated only after accounting for purity, while the
downregulation of CD86 was again a byproduct of purity. In
THCA, this trend was reversed: CTLA4 seemed downregulated,
until DE adjustment, while CD86 was only detected as
upregulated after adjustment.

On average, 13.7% of the genes originally considered as DE
were lost, and 11.0% of genes were newly detected as DE after
adjustment (Table 1; Supplementary Fig. 15). By ranking all genes
by DE P value, we extracted genes that would have been missed in
traditional analysis (Supplementary Data 2). We used Ingenuity
Pathway Analysis37 to identify enriched pathways of for genes
that after adjustment were ranked twice as high as before
adjustment; this analysis revealed significant enrichments of
many immune-related pathways in different cancer types (Fig. 6;
Supplementary Data 3). Notably, the analysis highlighted
different T-cell activation pathways in different cancer types,
particularly the CTLA4, CD28 and iCOS-iCOSL signalling
pathways in T cells, which are the key pathways in anti-CTLA-
4 immunotherapy treatments38. As illustrated in Fig. 6b, genes in
these pathways were prone to being ignored in traditional gene
expression analysis, as their expression was masked by sample

heterogeneity. We propose that considering tumour purity in DE
analysis should be an integral tool for the discovery of novel genes
and pathways altered in tumorigenesis.

Discussion
This study of tumour purity found major differences in tumour
purity levels (Fig. 1b). The proportion of healthy epithelial cells in
tissue samples also differed between tissue types, so it is not
surprising to find differences between cancer types (Fig. 6a).
However, as shown in our results, there were major differences
between purity of healthy samples and cancer samples from the
same tissue type, suggesting a role for the microenvironment in
the malignancy status quo. An alternative hypothesis is that the
spread of the different types of tumours makes it harder or easier
to distinguish cancer cells from the environment. This discre-
pancy was also found between samples from the same cancer
type, whether differences between samples were intrinsic
characteristics of the tumour or variations in the sample
collection methods.

We found evidence for both possibilities. On one side, we did
not find major clinical differences between patients in spite of
varying tumour purity levels. The dominant clinical differences
we did find were with pathological diagnosis or related to it,
which is somewhat analogous to cancer-type differences (Fig. 3).
Alternatively, samples from the same patient did have high
concordance, suggesting that this finding is patient specific and
an intrinsic characteristic of the tumour (Supplementary Fig. 7).
However, one can argue that according to the type and grade of
the tumour, it is difficult to distinguish tumorous from non-
tumour tissue in all regions of the tumour. Another finding
reported here was a strong association between tumour purity
and mutational burden (Fig. 2). An inflammatory microenviron-
ment is known to increase mutation rates39; thus, it is possible
that our findings result from a negative correlation between
purity and an inflammatory microenvironment, which in turn
may strengthen the argument of intrinsic effects of purity.

Answering this question is important for understanding
clinical properties of the tumour, but it is also important for
understanding the tumour’s molecular properties. This study has
shown the confounding effect of tumour purity on various types
of analyses of molecular data sets. If differences between samples
from the same cancer type can be attributed to the methods and

Table 1 | Comparison of traditional and purity-adjusted differential expression analyses.

Upregulated Specific Downregulated Specific Rank change

Purity� Purityþ Purity� Purityþ Purity� Purityþ Purity� Purityþ Up Down

BLCA 1,137 929 322 114 1,300 1,205 180 85 128 109
BRCA 2,673 2,780 194 301 1,938 1,847 142 51 177 75
COAD 1,685 1,591 167 73 1,786 2,069 55 338 208 53
HNSC 1,410 1,486 186 262 1,518 1,890 147 519 477 238
KIRC 2,975 2,542 805 372 1,743 1,338 593 188 943 1,152
KIRP 2,028 2,025 141 138 1,662 1,751 114 203 253 107
LIHC 2,329 2,572 111 354 1,013 1,054 55 96 217 45
LUAD 2,272 2,112 389 229 1,516 1,374 246 104 265 24
LUSC 2,258 1,801 621 164 1,341 992 381 32 212 14
PRAD 877 801 112 36 1,318 1,292 161 135 206 98
THCA 1,659 1,809 55 205 1,100 1,151 49 100 247 33
UCEC 2,491 2,429 334 272 1,856 1,746 198 88 135 83
Average 1,983 1,906 286 210 1,508 1,479 194 162 289 169

BLCA, bladder carcinoma; BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal
papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, prostate adenocarcinoma; THCA, thyroid papillary carcinoma;
UCEC, uterine corpus endometrial carcinoma.
The table shows the number of genes up- and downregulated in tumours compared with normal samples in traditional analysis (purity� ) and when accounting for tumour purity (purityþ ). Specific
columns show the number of genes found exclusively in each design. Rank change columns show the number of genes whose ranks changed due to purity analysis.
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skills of the sample collector, purity may be a major confounder
in all ‘omics’ analyses, and should be accounted for in these
studies. Alternatively, if differences are intrinsic to the samples, it
is still important to determine which results in molecular analyses
are related to differences in overall purity and which are not. For
example, if a gene is designated as overexpressed in a subset of
samples, is this finding due to variation in its regulation or to an
increased proportion of cell types where expression is regular?
We have highlighted the confounding effect of tumour purity in a
basic and common bioinformatics toolset, co-expression analysis
(Fig. 4) and molecular subtyping (Fig. 5). False interpretations in
these analyses due to divergent tumour purity levels may have a
negative effect on our understanding of cancer biology and on our
ability to create treatments. We urge future cancer-related
analyses of genomic data sets to account for purity levels.

In this report, we have focused on analysing clinical and
molecular associations with the whole microenvironment,
without referring to specific cell types and their proportions in
a tumour. In recent years, researchers have developed many
deconvolution methods to tackle this problem using gene
expression profiles16,40–43. However, this problem is
significantly more complex. We have shown variation between
methods on the relatively simple problem of tumour purity.
Assessing the specific proportion of dozens of cell types, some at
very low abundance, is a difficult task, and published methods
have yet to be validated in large-scale analyses. Further analyses
are needed to discriminate between the effects of specific cell
types in clinical and molecular data sets. However, although the
obvious limitation, here we demonstrated how accounting for
tumour purity as a whole reveals differentially expressed
pathways that are now appreciated to be highly important to

tumorigenesis (Fig. 7). These T-cell activation pathways, which
are being exploited in different immunotherapy methods, are
masked using traditional DE analysis, probably because of heavy
infiltrations of immune cells in the tumour. Adjusting expression
levels to purity estimates is a powerful computational tool to
detect masked pathways, and can have an important role in
discovering novel tumour pathways and developing novel
therapeutics.

In conclusion, we have shown that the influence of tumour
purity on the results of genomic analyses is much stronger than
previously appreciated, and ought to be included as a covariate in
any future analysis. Tumour purity differences resulting from
sampling variation exceed intrinsic individual differences. Lower
purity samples, by influencing genomic data, may make precision
medicine efforts more challenging. We urge cancer researchers
and clinicians to take tumour purity into account when analysing
genomic data from patient samples.

Methods
Data sets. We accessed the TCGA data portal and downloaded level 3 RNA-seq
profiles (RNAseqV2 normalized RSEM), level 3 HumanMethylation450 profiles,
slide analyses, Mutation Annotation Format files, and clinical data for 21 solid
human cancers and matched normal samples (https://tcga.data.nci.nih.gov/tcga/
dataAccessMatrix.htm, download in February 2015). ESTIMATE scores were cal-
culated using the ESTIMATE R package, and purity was estimated using the for-
mula described in Yoshihara et al.6. ABSOLUTE levels for 11 cancer types were
downloaded from synapse.org. We also attempted to calculate ABSOLUTE levels
for missing data using the R package; however, our results were substantially
different from the published estimates. ABSOLUTE data were calculated using
segmented allelic data, which is not publicly available, and also require a manual
parameter selection to ensure the best solution from several possible ones.
Molecular subtypes were acquired from the UCSC Cancer Genome Browser
(http://genome-cancer.ucsc.edu).
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Leukocytes unmethylation to infer tumour purity analysis. We obtained DNA
methylation profiles (HumanMethylation450) for 10 immune cells (whole blood,
peripheral blood mononuclear cell, granulocytes, neutrophils, eosinophils, CD4þ ,
CD8þ , CD14þ , CD19þ and CD56þ cells) with six replicates each44. We found
30,106 sites that were consistently unmethylated (o5%) in the 60 samples.
Employing DNA methylation profiles of tumour samples obtained from TCGA, we
also searched for sites that were averagely methylated (430%) in all 21 analysed
cancer types. This yielded a list of 174,696 sites. The intersection of both lists was
44 CpG sites. LUMP estimations are the average methylation levels of these sites
divided by 0.85. Supplementary Fig. 1 shows the high concordance of this method’s
estimates with those produced by another DNA methylation-based method7 and
downloaded from synapse.org.

Consensus purity estimation method. We arbitrarily chose to normalize the
purity levels ABSOLUTE, ESTIMATE, LUMP and IHC using the combined
average and s.d. from all methods (75.3±18.9%). The CPE method is the median
purity from each method after normalization. Because some samples did not have
measurements from all four methods, we restricted CPE to samples with at least
two measurements. In DE analysis, CPE levels were based only on ESTIMATE and
LUMP, which can estimate purity in non-tumour samples, and we used samples
estimated by at least one of the methods.

Associating purity with clinical features. We downloaded TCGA’s clinical
information data for each cancer type. For each binary or categorical clinical
feature, we used one-way analysis of variance to calculate P values of purity in
each category. For continuous clinical features, we calculated the P value of the
Spearman correlation. We repeated these analyses for each of the five purity
methods. A false discovery rate of 1% was chosen as a threshold for significance.
Cox proportional hazard regression was used to analyse prognosis.

Differential expression analysis. The DESeq2 software requires raw counts as
input. We downloaded raw counts for all TCGA tumour samples from the GEO
repository (GSE62944), and used the protocol generated by contributors11 to
calculate raw counts for an additional 704 adjacent normal samples. We then used
the DESeq2 R package twice for each cancer type between tumour and normal
samples, once with only the condition as a factor, and again using both condition
and CPE purity level (based on only ESTIMATE and LUMP). Next, we ranked
genes according to the DE P values. Genes were labelled ‘newly discovered’ if they
were (1) significantly differentially expressed after adjustment, (2) moved forward
in rank by a factor of at least 2 and (3) moved forward in rank by at least 200 genes.
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Corrigendum: Systematic pan-cancer analysis
of tumour purity
Dvir Aran, Marina Sirota & Atul J. Butte

Nature Communications 6:8971 doi: 10.1038/ncomms9971 (2015); Published 4 Dec 2015; Updated 5 Feb 2016

In the Results section of this Article, haematoxylin and eosin staining data from the TCGA repository are incorrectly referred to as
immunohistochemistry data. All references to ‘immunohistochemistry’ or ‘IHC’ should read ‘haematoxylin and eosin staining’ or
‘H&E staining’, respectively.
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