Check for updates

CORRESPONDENCE **OPEN** Genetically determined telomere length in monoclonal gammopathy of undetermined significance, multiple myeloma risk and outcome

© The Author(s) 2024

Blood Cancer Journal (2024)14:200; https://doi.org/ 10.1038/s41408-024-01181-w

Dear Editor,

The association between leukocyte telomere length (LTL) and cancer risk has been studied, with conflicting results [1]. One potential reason is heterogeneity in the study design and methodology to measure LTL. Retrospective and prospective studies tend to show different results, which could be caused by reverse causation bias [1].

LTL is genetically determined, and several studies used a polygenic score combining eleven single nucleotide polymorphisms (SNPs) as proxies for LTL measurement. The results of these studies are more homogeneous and show a trend towards longer genetically determined LTL (gdLTL) and increased risk of several cancers [1, 2]. More recently, our knowledge of the genetics of LTL has improved, with genome-wide association studies (GWAS) identifying 158 independent SNPs [3].

For multiple myeloma (MM) three studies have been published either using PCR-based methods for measuring directly LTL, or using SNPs as proxies showing a consistent effect of longer LTL and increased risk [4-6]. However, the role of LTL was not investigated in relation to monoclonal gammopathy of undetermined significance (MGUS). MGUS is an asymptomatic precursor of MM, defined by early clonal plasma cell expansion. MM and MGUS partially share genetic susceptibility [7]. All MM cases are thought to develop from MGUS, but only a small fraction of MGUS progresses to MM [8].

We investigated the role of gdTL in MGUS onset and progression to MM using SNP scores (hereafter called teloscores). Furthermore, considering that LTL has also been suggested to affect cancer survival, we tested the teloscores for association with MM overall survival (OS) [9].

This study was carried out within the International Lymphoma Epidemiology Consortium (InterLymph), [7]. We used 746 MGUS cases and 879 controls, and 2066 MM cases (1019 with survival data) and 2050 controls (supplementary material). All individuals were of European ancestry. Isotype information was available for 530 (71%) of the MGUS cases (supplementary material). A subset of 69 MGUS had available information on progression to MM (follow-up time and date of progression). Follow-up time was defined from the date of MGUS detection to date of MM diagnosis (progressors) or date of last known follow-up or death (nonprogressors). Follow-up time for MM OS was defined from the date of MM detection to date of death or of last known follow-up. Genotyping was performed with SNP arrays by Affymetrix and Illumina. Genotype data were subjected to standard quality control measures and imputed. Additional information about study participants, genotyping and quality control is available in the supplementary material.

We computed two teloscores: one, including 38 SNPs identified through eight GWAS (basic score), and one consisting of the basic teloscore augmented with 115 SNPs identified by a single study carried out in UK Biobank (extended teloscore) [3]. We decided to use both scores because the extended score, even if consisting of more SNPs, was obtained predominantly from the UKBB and might be enriched for alleles that are specific only to UK. Therefore, we wanted to compare the performances and concordance of the two methods. The list of the selected SNPs is reported in the supplementary material.

An unweighted and a weighted score was built for each individual, for both the basic and the extended teloscore. The unweighted teloscore was computed by adding up the number of alleles associated with longer telomeres (according to the results of the literature). The weighted teloscore was computed by multiplying the number of alleles associated with LTL by their betas reported in the literature. The weighted score could reflect better the effect of each individual SNP without an overestimation of SNPs with low effect, however the unweighted score is easier to understand since it is only based on the allele count and makes the results more interpretable. All the teloscores were calculated only in subjects with a 100% call rate (MGUS: 746 cases and 879 controls; MM: 2066 cases and 2,050 controls for the basic teloscore and 1851 cases and 1606 controls for the extended teloscore). For MM survival analyses, the teloscores were computed for all the individuals with complete data on ISS stage and OS (n = 1019) with an average follow-up of 61.2 months (25%: 31.0, 75%: 84.2).

The scores were categorized in quintiles based on their distribution in the controls, whereas for survival analysis the quintiles were computed based on the distribution in all individuals with ISS stage and OS data. The association between the guintiles and MGUS and MM risk was tested with logistic regression. MGUS isotypes were classified according to a risk score, using the Mayo Clinic model, and analyzed in relation to progression to MM [10]. Sensitivity analysis of the association between gdLTL and MGUS risk was performed removing known MGUS progressors to MM (n = 69) to ensure that MGUS progressors were not driving the association. The progression of MGUS to MM was analyzed through logistic regression using nonprogressed MGUS as controls. Additional subgroup analyses considering other risk factors using the Mayo Clinic model were also carried out [10]. All analysis on MGUS progression should be considered exploratory, given the low number of individuals employed. Survival analysis of MM cases was done using Cox regression. In all analyses, the first guintile (i.e., the individuals with the shortest telomere length) was used as the reference, with sex, age, subpopulation, the top 10 principal components, and ISS stage (only for survival analyses) as adjustment variables.

Received: 15 July 2024 Revised: 24 October 2024 Accepted: 25 October 2024 Published online: 11 November 2024

Reality with basic score Reality with basic score Gundie Gase OF Solidy with basic score MULU SUL 1 2 Currols Gase 01 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 2 0 2 2 0 2 <th2< th=""> 2 2</th2<>	Table 1. Results of the unweighted score analyses.	ighted score analy	'ses.									
Quintle Controls Case OB SS,GL F_mat Controls Case OB SS,GL SS,GL <th< th=""><th></th><th></th><th>Results with basic</th><th>score</th><th></th><th></th><th></th><th>Results with exten</th><th>ded score</th><th></th><th></th><th></th></th<>			Results with basic	score				Results with exten	ded score			
1 1 218 108 100 182 109 0.71-148 100 0.77-148 2 109 171 102 0.70-135 0.873 130 111 120 0.71-148 4 210 171 102 0.70-138 0.891 130 111 120 0.71-148 5 121 132 132 133 0.81-13 0.87 130 0.71-148 0.71-148 6 121 102 0.76-138 0.89 130 0.71-148 0.71-1		Quintile	Controls	Cases	OR	95% CI	P_{value}	Controls	Cases	OR	95% CI	P _{value}
21611280970.70-1350.8731801511070.7714831691311020.74-1410.8931301111070.771484101171020.74-1410.8931301111200.7714851211371020.74-1410.8931301111200.7714861011271280.94-10.1238797461070.71-14311044511000.921-1300.8112772740.920.81-1311041020.81-130.9422461070.91-1650.91-165223383801311.04-1550.0422461070.91-16521333001311.04-1550.042246266133101-174421331.041.02-1130.042246266134101-154501311.04-1550.042246266136101-15461311.04-1550.0621311.04-1560.05136101-15461311.04-1560.042246266131101-1546141102102102102102106131101-154714110613102102132101102101-154141167111<	MGUS risk	-	218	178	1.00	ı		182	155	1.00	ı	
31691311020.74-1.410.8892121771070.78-1.4542101771020.76-1.380.8891301111200.78-1.4551211320.38-1.390.8871301111200.84-1.1761211320.98-1.430.98-1.430.981301111200.84-1.1711494511000.98-1.430.98-1.300.8112771320.84-1.1311494551030.82-1.300.8112772740.920.84-1.13114910310310310313610310310310312103103103103103103103103103120103103103103103103103103121031031031031031031031031031210310310310310310310310310312103103103103103103103103103103121031031031031031031031031031031031110310310310310310310310310310310311103		2	161	128	0.97	0.70-1.35	0.873	180	151	1.07	0.77-1.48	0.683
4210177102 $0.76 - 1.38$ 0.87 130 111 120 $0.84 - 1.71$ 51211320.98 - 1.380.98 - 1.930.0651751230.84 - 1.7111311320.98 - 1.360.98 - 1.360.98 - 1.360.89 - 1.360.84 - 1.171141120100 $0.82 - 1.30$ 0.82 - 1.300.81 - 2.740.920.86 - 1.3622302372401030.82 - 1.300.81 - 2.740.920.86 - 1.3633302372401030.82 - 1.300.81 - 2.740.920.86 - 1.374433502103104 - 1.650.821041041070.82 - 1.475330206107104 - 1.650.821071061070.82 - 1.476013300101104 - 1.650.821061071070.82 - 1.4760140150120120121061071070.92 - 1.667014015014012100100106107104 - 1.659014105014100100106106107104111104 - 1.65012012106133101 - 1.6511111001100101106106106111111001106 <t< td=""><td></td><td>m</td><td>169</td><td>131</td><td>1.02</td><td>0.74-1.41</td><td>0.889</td><td>212</td><td>177</td><td>1.07</td><td>0.78-1.45</td><td>0.677</td></t<>		m	169	131	1.02	0.74-1.41	0.889	212	177	1.07	0.78-1.45	0.677
51211321360.98-1/30.0651751201230.82-1/376onthuous*8797461060.98-1/40.1238797461040.96-1/114944511001238797461040.96-1/123303271030.82-1/300.881-1/30.881-1/30.972440.970.91-1/523303301020.82-1/30.82-1/30.861311.01-1/30.91-1/5443502124101-1/540.02366113101-1/30.91-1/553383301031.021031041.030.91-1/5633820501001.021001.03101-1/7700011001.021001.021061.030.91-1/5601011001.021001.021061.03101-1/7701011001.021001.021001.03101-1/7101011001.021001.031001.03101-1/7111011.021.021.031001.03101-1/71111.021.021.021.031001.031.011111.021.021.021.021061.031.011111.021		4	210	177	1.02	0.76-1.38	0.879	130	111	1.20	0.84–1.71	0.318
Continuous*8797461060.98-1.140.1238797461040.96-1.111494451100233934021061020.69-1.1323503271030.82-1.300.8112772740.920.68-1.3334355021.230.82-1.230.8112772740.920.68-1.3333301011.021.241.04-1.650.023661371.0170.82-1.4053333801.311.04-1.530.022661371.02-1.130.0218511.0170.82-1.4060.0120501071.02-1.130.02160618511.021.02-1.1560.011021021.02-1.130.02160618611.021.0270.011021.021.02-1.130.0218611.061.021.0690.011021.021.021.021.061.021.061.021111.021.021.021.061.021.061.021.061111.021.021.021.021.021.061.021.061111.021.021.021.021.021.061.021.061111.021.021.021.021.021.061.02<		Ŋ	121	132	1.38	0.98-1.93	0.065	175	152	1.13	0.82-1.57	0.452
1494451100 $\cdot \cdot \cdot$ 393402100 $\cdot \cdot \cdot$ 2350327103088-1300811277274023068-1333405103082-1300811277274023082-1404443502102082-137086386463107082-1406386107102082-137002366107103-115003-1666013104-1450035061851104-154031-1646014102104102-1130051666137104-15400141040042440041851104-154031-16411671111001031045104104104104-15421131141001031043104-154104-154104-1542113114100104104104104104-1542113114100114104104104104-1542113114106113104-134104-134104-13421131141161141041141041142113114116114104114104-1342113114116114114114114114114115114114114 <t< td=""><td></td><td>Continuous^a</td><td>879</td><td>746</td><td>1.06</td><td>0.98-1.14</td><td>0.123</td><td>879</td><td>746</td><td>1.04</td><td>0.96-1.11</td><td>0.356</td></t<>		Continuous ^a	879	746	1.06	0.98-1.14	0.123	879	746	1.04	0.96-1.11	0.356
2 360 327 103 $0.82-130$ 0.811 277 274 0.92 $0.68-123$ 3 425 406 102 $0.82-127$ 0.86 386 463 107 $0.82-140$ 4 433 502 124 $10-154$ 0.042 244 296 123 $0.91-164$ 6 380 131 $1.04-165$ 0.02 306 181 $107-174$ $0.91-164$ 6 0.02 2066 1.07 $1.02-113$ 0.005 1606 1831 $1.01-174$ 6 0.02 2066 1.07 $1.02-113$ 0.005 1606 1831 $1.01-174$ 6 0.012 1.02 $1.02-113$ 0.02 2066 1.07 $1.02-115$ $1.01-174$ 6 0.012 1.02 $1.02-113$ 0.02 1.06 1.07 $1.02-115$ $0.02-16$ 10 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 10 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 10 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 10 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 10 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 10 1.02 1.02 1.02 1.02 1.02	MM risk	-	494	451	1.00	ı		393	402	1.00	,	
3425406102082-1.270866366463107082-1.4044435021.241.01-1.540.0422442961.23091-1.6553383801.311.01-1.540.0423461.651.331.01-1.746MGUS8001.311.04-1.150.023061661.331.01-1.746MGUSMGUS0.071.02-1.130.00516061671.031.02-1.151MGUSMGUSMGUS0.011.02-1.130.00516061.071.02-1.151MGUSMGUSMGUSMGUSMGUS0.011.021.021.02-1.151111.021.021.021.021.021.021.0211111.021.021.021.021.021.02211111.021.021.021.021.02211111111.061.021.0221111111111121111111111121111111111112111111111111<		2	350	327	1.03	0.82-1.30	0.811	277	274	0.92	0.68-1.23	0.568
4443502124101-1540.0422442961230.91-1655338330131104-1650.02306416133101-17462066107102-1130.00516061851103101-174770.012066107102-1130.00516061851103101-174770.012066107102-1130.00516061851102-11590.01107102-1130.0050.01140102102-115111111102-1130.0115104211315191061431690.12104104211310101100124100102104104211310101011031430.0410410421131010110012310410610410431051031031031031031041061041044102119106103103103104106104104511910910010010310310410610410451191001001001031041061041061046<		£	425	406	1.02	0.82-1.27	0.866	386	463	1.07	0.82–1.40	0.607
53383801.311.04-1.650.023064161.331.01-1.74Continuous205020661.071.02-1.130.005160618511.081.02-1.15QuintieMGUSMGUS20661.071.02-1.130.005160618511.081.02-1.15QuintieMGUSMGUS0R95%CI γ_{min} MGUS0R95%CI1.02-1.150R95%CIQuintieMGUS1111.00 \cdot \cdot 1.001.021.001.02-1.1511671111.00 \cdot \cdot 1.4015%1001.02-1.15211315%1131.041.031.041001.041.041.0431761131.041.041.041.041.041.041.041.0441021131.041.041.041.041.041.041.041.0451191301.041.041.041.041.041.041.041.0461191.041.041.041.041.041.041.041.041.0471<19		4	443	502	1.24	1.01-1.54	0.042	244	296	1.23	0.91–1.65	0.177
Continues Identition2050105102100165101103102103		S	338	380	1.31	1.04-1.65	0.02	306	416	1.33	1.01-1.74	0.044
QuintleMGUSMGUSMGUSNGUSMGUSMGUSMGUSNGUSNGUSNGUSNGUSNGUSNGUSnon-progressorprogres		Continuous ^a	2050	2066	1.07	1.02-1.13	0.005	1606	1851	1.08	1.02-1.15	0.012
Interpretationprogressorpropressorpropressorpropressor1167111.0014015100-2113151960.85 4.480.11214380.490.19-1243160190.53 - 3.510.24113190.490.19-1244102111.680.53 - 3.510.24113190.25-16651191200.24-1180.197132201470.605119131.760.24-1180.197132201470.51-1665119130.20-1.320.301677691.470.71-305Continuous ⁶ 677691.170.92-1.320.301677691.470.71-3052183931.160.20-1.360.301677691.470.71-3052183931.080.92-1.480.3011470.770.920.71-3053119691.001.001.001.01770.920.920.66-1.2731190.911.010.920.88-1.760.2081270.920.910.924970.910.920.88-1.760.2081270.920.910.920.66-1.2731190.920.920.920.920.920.920.920.920		Quintile	MGUS	MGUS	OR	95% CI	P_{value}	MGUS	MGUS	OR	95%CI	P_{value}
			non-progressor	progressor				non-progressor	progressor			
	MGUS progression to MM ^c	-	167	11	1.00	ı	ı	140	15	1.00	ı	ı
3176191600.73-3.510.241158191240.60-2.594102111.680.69-4.070.25110470.640.55-1.665119131.760.74-4.180.197132201.470.57-1.66Continuous ³ 677691.10.92-1.320.301677691.120.94-1.34Continuous ³ 677691.10.92-1.320.301677691.120.94-1.34QuintileAlveDecessedHR95% CI P_{valoe} AlveDecessedHR95% CI1158691.00 \cdot \cdot 147770.920.94-1.3421191681.00 \cdot \cdot 147771.00 \cdot 31190.641.250.88-1.560.2081210.920.920.920.931311730.97497621.190.84-1.680.339131720.970.970.960.94-1.6651190.920.920.920.920.920.93131750.970.970.9961190.920.990.920.940.940.940.970.970.970.970.970.970.9961190.910.910.910.940.940.940.940.940.970.970.97 <td></td> <td>2</td> <td>113</td> <td>15</td> <td>1.96</td> <td>0.85-4.48</td> <td>0.112</td> <td>143</td> <td>8</td> <td>0.49</td> <td>0.19–1.24</td> <td>0.131</td>		2	113	15	1.96	0.85-4.48	0.112	143	8	0.49	0.19–1.24	0.131
4102111.68 $0.69-4.07$ 0.251 1047 0.64 $0.25-1.66$ 5119131.76 $0.74-4.18$ 0.197 132 0.64 $0.71-3.05$ Continuous ^a 677 69 1.1 $0.92-1.32$ 0.301 677 69 1.12 $0.94-1.34$ Continuous ^a 677 699 1.1 $0.92-1.32$ 0.301 677 69 1.12 $0.94-1.34$ QuintileAliveDeceasedHR 95% CI P_{value} Mi Mi 95% CI P_{value} Mi 95% CI11158 69 1.0 \cdot \cdot 147 77 1.0 $0.94-1.34$ 2183 93 1.08 $0.79-1.48$ 0.629 151 77 1.00 -1.20 3119 66 1.26 $0.88-1.76$ 0.208 122 62 0.92 0.92 4 97 62 1.19 $0.88-1.76$ 0.208 127 77 1.00 -1.20 5 119 66 1.26 $0.88-1.76$ 0.208 127 0.92 0.92 0.92 0.92 5 119 62 1.19 $0.88-1.76$ 0.208 127 0.92		m	176	19	1.60	0.73–3.51	0.241	158	19	1.24	0.60-2.59	0.563
5 119 13 1.76 $0.74.4.18$ 0.197 132 20 1.47 $0.71-3.05$ Continuos ^a 677 69 1.1 $0.22-1.32$ 0.301 677 69 1.12 $0.94-1.34$ Quintie Aive Deceased HR 95% Cl V_{value} Aive Deceased HR 95% Cl 77 1.02 $0.94-1.34$ Quintie Aive Deceased HR 95% Cl V_{value} Aive Deceased HR 95% Cl 1 158 0.99 1.00 $2.0-1.48$ 0.67 1.72 0.92 $0.61-1.27$ 2 183 93 1.08 $0.79-1.48$ 0.629 151 77 1.00 2.021 2 119 66 1.25 $0.88-1.76$ 0.208 127 10.77 10.77 10.77 10.77 10.77 3 119 57 10.7 10.72		4	102	11	1.68	0.69-4.07	0.251	104	7	0.64	0.25-1.66	0.364
Continuous ^a 677 69 1.1 $0.92-1.32$ 0.301 677 69 1.12 $0.94-1.34$ QuintleAliceDecesedHR 95% CI P_{value} AliceDecesedHR 55% CI1158 69 1.00 \cdot \cdot 147 77 1.00 \cdot 2183 93 1.08 $0.79-1.48$ 0.629 151 77 0.92 $0.66-1.27$ 3119 66 1.25 $0.89-1.76$ 0.208 122 62 0.97 $0.69-1.36$ 4 97 62 1.19 $0.84-1.68$ 0.339 131 75 1.13 $0.82-1.56$ 5 119 53 0.92 $0.64-1.32$ 0.636 127 62 1.13 $0.82-1.56$ 6 119 $0.84-1.68$ 0.339 131 75 1.13 $0.82-1.56$ 5 119 53 0.92 $0.64-1.32$ 0.636 127 0.97 0.97 67 343 0.99 $0.92-1.08$ 0.940 0.940 0.940 0.940 0.96 0.940		5	119	13	1.76	0.74–4.18	0.197	132	20	1.47	0.71-3.05	0.303
QuintileAiveDecasedHR 95% CI P_{value} AiveDecasedHR 95% CI1158691.00 \cdot \cdot 147771.00 \cdot 2183931.08 $0.79-1.48$ 0.629 15172 0.92 $0.66-1.27$ 3119661.25 $0.88-1.76$ 0.208 122 62 0.97 $0.69-1.36$ 497621.19 $0.84-1.68$ 0.339 13175 0.17 $0.82-1.56$ 5119530.92 $0.64-1.32$ 0.636 125 0.77 0.70 $0.82-1.56$ Continuous ^a 673430.99 $0.92-1.08$ 0.940 676 343 0.96 $0.89-1.03$		Continuous ^a	677	69	1.1	0.92–1.32	0.301	677	69	1.12	0.94–1.34	0.199
		Quintile	Alive	Deceased	Ħ	95% CI	P_{value}	Alive	Deceased	HR	95%CI	P_{value}
183 93 1.08 0.79–1.48 0.629 151 72 0.92 0.66–1.27 119 66 1.25 0.88–1.76 0.208 122 62 0.97 0.69–1.36 97 62 1.19 0.84–1.68 0.339 131 75 1.13 0.82–1.56 119 53 0.92 0.64–1.32 0.636 125 57 0.70 0.49–0.99 676 343 0.99 0.92–1.08 0.940 676 343 0.96 0.89–1.03	MM survival	-	158	69	1.00	ı	ī	147	77	1.00	ı	ī
119 66 1.25 0.88-1.76 0.208 122 62 0.97 0.69-1.36 97 62 1.19 0.84-1.68 0.339 131 75 1.13 0.82-1.56 119 53 0.92 0.64-1.32 0.636 125 57 0.70 0.49-0.99 676 343 0.99 0.92-1.08 0.940 676 343 0.96 0.89-1.03		2	183	93	1.08	0.79–1.48	0.629	151	72	0.92	0.66-1.27	0.601
97 62 1.19 0.84-1.68 0.339 131 75 1.13 0.82-1.56 119 53 0.92 0.64-1.32 0.636 125 57 0.70 0.49-0.99 676 343 0.99 0.92-1.08 0.940 676 343 0.96 0.89-1.03		£	119	66	1.25	0.88–1.76	0.208	122	62	0.97	0.69–1.36	0.845
119 53 0.92 0.64-1.32 0.636 125 57 0.70 0.49-0.99 676 343 0.99 0.92-1.08 0.940 676 343 0.96 0.89-1.03		4	97	62	1.19	0.84–1.68	0.339	131	75	1.13	0.82–1.56	0.456
676 343 0.99 0.92-1.08 0.940 676 343 0.96 0.89-1.03		5	119	53	0.92	0.64–1.32	0.636	125	57	0.70	0.49-0.99	0.046
		Continuous ^a	676	343	0.99	0.92-1.08	0.940	676	343	0.96	0.89-1.03	0.235

^aThe measurement unit used in this analysis is the increase by one quintile. Results with a P value <0.05 are in bold.

Table 2. Results of the v	Results of the weighted score analyses.	nalyses.									
		Results with basic scor	score				Results with extended score	d score			
	Quintile	Controls	Cases	OR	95% CI	P _{value}	Controls	Cases	OR	95% CI	P _{value}
MGUS risk	-	178	123	1.00			177	143	1.00		
	2	177	162	1.33	0.95-1.86	0.093	176	140	0.98	0.70-1.37	0.905
	m	173	160	1.37	0.98-1.91	0.065	175	162	1.26	0.91-1.74	0.166
	4	176	133	1.12	0.80-1.58	0.503	176	129	1.01	0.72-1.41	0.972
	S	175	168	1.51	1.09–2.11	0.015	175	172	1.35	0.97-1.86	0.071
	Continuous ^a	879	746	1.07	0.99-1.15	0.085	879	746	1.07	0.99-1.15	0.085
MM risk	-	411	401	1.00			323	331	1.00	,	
	2	412	348	0.97	0.69–1.09	0.227	321	329	0.98	0.73-1.32	0.897
	m	409	400	1.02	0.80-1.28	0.888	322	388	1.08	0.81-1.45	0.583
	4	411	478	1.18	0.95-1.48	0.137	320	371	0.96	0.72-1.28	0.771
	5	407	440	1.09	0.87-1.37	0.464	320	433	1.31	0.98-1.73	0.065
	Continuous ^a	2050	2067	1.05	0.99-1.10	0.065	1606	1852	1.05	0.99-1.12	0.108
	Quintile	MGUS non- progressor	MGUS progressor	OR	95% CI	P _{value}	MGUS non- progressor	MGUS progressor	R	95% CI	P _{value}
MGUS progression to	-	136	10	1.00			138	11	1.00		
MM ^c	2	137	11	1.02	0.41-2.50	0.973	135	6	0.82	0.33-2.08	0.680
	m	134	18	1.78	0.78-4.05	0.170	134	21	1.89	0.67-4.12	0.110
	4	135	13	1.22	0.51-2.90	0.654	135	14	1.22	0.53-2.81	0.634
	5	135	17	1.76	0.77-4.02	0.182	135	14	1.35	0.58-3.11	0.486
	Continuous ^a	677	69	1.14	0.95-1.36	0.172	677	69	1.09	0.91-1.31	0.340
	Quintile	Alive	Deceased	HR	95% CI	P_{value}	Alive	Deceased	뚶	95% CI	P_{value}
MM survival	-	143	62	1.00			142	64	1.00	,	
	2	143	61	0.98	0.69–1.41	0.929	143	60	1.04	0.73-1.48	0.846
	£	125	78	1.24	0.89–1.74	0.205	130	73	0.99	0.71-1.40	0.990
	4	126	78	1.35	0.96–1.89	0.081	122	82	1.29	0.93-1.80	0.130
	5	139	64	0.94	0.66-1.34	0.748	139	64	0.88	0.62-1.24	0.459
	Continuous ^a	676	343	1.02	0.95-1.10	0.620	676	343	0.99	0.92-1.07	0.929
^a The measurement unit used in this analysis is the increase by one quintile. Results with a P value <0.05 are in bold	sed in this analysis	is the increase by one	quintile. Results with a	P value <0	0.05 are in bold						

Correspondence

3

We observed an increased MGUS risk between the individuals with the longest gdLTL compared to those with shortest gdLTL. The association of the basic teloscore was statistically significant for the weighted teloscore (OR = 1.51, 95% CI 1.09–2.11, P = 0.015), but the *P* value did not reach the statistical significance threshold in the extended teloscore (OR = 1.35, 95% CI 0.97–1.86, P = 0.071). The unweighted teloscores showed the same trend, without statistically significant associations (Tables 1 and 2). Similar results were obtained with the analysis restricted to non-progressor MGUS cases, without statistical significance (supplementary materials). None of the teloscores were associated with progression status (Table 1) and also the analysis using the Mayo Clinic model [10] did not provide reliable results (supplementary material).

There was a consistent association between longer gdLTL and increased MM risk, in both unweighted scores (Table 1). Similar results were obtained with the weighted score, although the associations were not formally significant (Table 2).

An association between longer gdLTL and longer survival in 1019 MM cases was observed only for the unweighted extended score (Tables 1 and 2). Supplementary Fig. 1 reports the Kaplan-Meier curve of the highest vs lowest quintile of the analysis of MM OS using the extended score.

Taken together, the results confirm the association of longer gdLTL with increased risk of developing MM [6]. Our findings are consistent with other studies conducted using gdLTL as marker for cancer risk and progression [1, 2]. A common explanation of the association between long LTL and increased risk of developing cancer is that longer LTL are potential markers of cells with greater division potential, making them more susceptible to acquiring new mutations that could promote malignant transformation [11], rather than an intrinsic effect of longer versus shorter telomeres. This could be particularly relevant for pre-malignant conditions such as MGUS.

In this study, we report for the first time an association between longer gdLTL and risk of developing MGUS, that was statistically significant in the unweighted basic teloscore suggesting that LTL may play a role in the chance of developing MGUS and the following progression towards MM. Nakao and colleagues identified an association between longer LTL and increased risk of clonal hematopoiesis of indeterminate potential which is a precursor of several myeloid malignancies [12]. Thus, our observation strengthens the relation between preneoplastic conditions and blood malignancy risk through telomere length. However, we did not observe any association for the MGUS progressors vs. non-progressors, probably due to the limited number of MGUS progressors that were included in this study. Additionally, no statistically significant differences in teloscore medians across different MGUS isotypes were observed, nor did teloscores vary significantly with disease progression status.

We observed a statistically significant association between longer gdLTL in the unweighted extended teloscore and better MM survival. This association is in line with the results observed in a study conducted in the context of the International Multiple Myeloma Research (IMMEnSE) consortium [6].

Limitations of this study include the European origin of all study subjects, which makes it difficult to generalize the results to other ethnicities, as well as the relatively small number of individuals in some of the analysis that were carried out, particularly the MGUS cases progressing to MM. Furthermore, the lack of smoldering myeloma patients in our dataset also represents a possible limitation to the understanding of the effect of gdLTL in the natural history of the disease. Additionally, using SNPs instead of direct PCR-based methods, even though it decreases possible bias, captures only a modest fraction of the variance of the trait.

In conclusion, we suggest that longer gdLTL may be a marker for MM risk, possibly increasing the risk of developing MGUS, and

that longer telomeres are potentially associated with improved survival in MM patients.

Matteo Giaccherini (1)^{1,18}, Alyssa I. Clay-Gilmour (1)^{2,3,18}, Romano Liotti¹, Angelica Macauda⁴, Manuel Gentiluomo¹, Elizabeth E. Brown⁵, Mitchell J. Machiela⁶, Stephen J. Chanock 10⁶ Michelle A. T. Hildebrandt⁷, Aaron D. Norman³ Elisabet Manasanch 10⁷, S. Vincent Rajkumar 10⁸ Jonathan N. Hofmann 6, Sonja I. Berndt 6, Parveen Bhatti^{9,10}, Graham G. Giles 1^{11,12,13}, Elad Ziv¹⁴, Shaji K. Kumar 8, Nicola J. Camp 1⁵, Wendy Cozen¹⁶, Susan L. Slager 8,¹⁷, Federico Canzian 4, Federica Gemignani^{1,18}, Celine M. Vachon ^{3,18} and Daniele Campa ^{1,18} ¹Department of Biology, University of Pisa, Pisa, Italy. ²Department of Biostatistics & Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA. ³Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA. ⁴Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁵Department of Pathology, Heersink School of Medicine, University of Alabama, Birminaham, AL, USA. ⁶Division of Cancer Epidemioloav and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. ⁷Division of Cancer Medicine, Department of Lymphoma - Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. ⁸Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA. ⁹Cancer Control Research, BC Cancer, Vancouver, BC, Canada. ¹⁰Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ¹¹Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.¹²Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia. ¹³Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia. ¹⁴Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA. ¹⁵Division of Hematology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. ¹⁶Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA, USA. ¹⁷Division of Computational Biology, Department of Ouantitative Health Sciences, Mayo Clinic, Rochester, MN, USA. ¹⁸These authors contributed equally: Matteo Giaccherini, Alyssa I. Clay-Gilmour, Federica Gemignani, Celine M. Vachon, Daniele Campa. [⊠]email: daniele.campa@unipi.it

REFERENCES

- Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: a meta-analysis on more than 300,000 individuals. Crit Rev Oncol/Hematol. 2021;167:103510.
- Giaccherini M, Macauda A, Sgherza N, Sainz J, Gemignani F, Maldonado JMS, et al. Genetic polymorphisms associated with telomere length and risk of developing myeloproliferative neoplasms. Blood Cancer J. 2020;10:89.
- Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, et al. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet. 2021;53:1425–33.
- Hosnijeh FS, Matullo G, Russo A, Guarrera S, Modica F, Nieters A, et al. Prediagnostic telomere length and risk of B-cell lymphoma-results from the EPIC cohort study. Int J Cancer. 2014;135:2910–7.
- Campa D, Martino A, Varkonyi J, Lesueur F, Jamroziak K, Landi S, et al. Risk of multiple myeloma is associated with polymorphisms within telomerase genes and telomere length. Int J Cancer. 2015;136:E351–8.
- Giaccherini M, Macauda A, Orciuolo E, Rymko M, Gruenpeter K, Dumontet C, et al. Genetically determined telomere length and multiple myeloma risk and outcome. Blood Cancer J. 2021;11:74.
- 7. Clay-Gilmour Al, Hildebrandt MAT, Brown EE, Hofmann JN, Spinelli JJ, Giles GG, et al. Coinherited genetics of multiple myeloma and its precursor,

4

5

monoclonal gammopathy of undetermined significance. Blood Adv. 2020; 4:2789-97.

- Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. Nat Rev Dis Prim. 2017;3:17046.
- Xu X, Qu K, Pang Q, Wang Z, Zhou Y, Liu C. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature. Front Med. 2016;10:191–203.
- Rajkumar SV, Kyle RA, Therneau TM, Melton LJ, Bradwell AR, Clark RJ, et al. Serumfree light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood. 2005;106:812–7.
- 11. Aviv A, Anderson JJ, Shay JW. Mutations, cancer and the telomere length paradox. Trends Cancer. 2017;3:253–8.
- Nakao T, Bick AG, Taub MA, Zekavat SM, Uddin MM, Niroula A, et al. Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Sci Adv. 2022;8:eabl6579.

AUTHOR CONTRIBUTIONS

DC, CMV, FC, and FG conceived and designed the study. MGi performed the data analysis and drafted the first version of the manuscript. AICG and RL contributed to the data analysis. AM, MGe, EEB, MJM, SJC, MATH, ADN, EM, SVR, JNH, SIB, PB, GGG, EZ, SKK, NJC, WC, and SLS provided critical insights and comments. All authors reviewed and approved the final version of the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41408-024-01181-w.

Correspondence and requests for materials should be addressed to Daniele Campa.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024