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Higher emissions scenarios lead to more
extreme flooding in the United States

Hanbeen Kim 1,2,3 & Gabriele Villarini 1,2,3

Understanding projected changes in flooding across the contiguous United
States (CONUS) helps increase our capability to adapt to and mitigate against
this hazard. Here, we assess future changes in flooding across CONUS using
outputs from 28 global climate models and four scenarios of the Coupled
Model Intercomparison Project Phase 6. We find that CONUS is projected to
experience an overall increase in flooding, especially under higher emission
scenarios; there are subregional differences, with the Northeast and Southeast
(Great Plains of the North and Southwest) showing higher tendency towards
increasing (decreasing) flooding due to changes in flood processes at the
seasonal scale. Moreover, even though trends may not be detected in the
historical period, these projected future trends highlight the current needs for
incorporating climate change in the future infrastructure designs and man-
agement of the water resources.

Much of the existing infrastructure and water resources management
are based on the assumption of stationarity, implying that the statis-
tical properties observed in the past will persist into the future. While
stationarity has been the cornerstone of most of the flood frequency
studies aiming at water resources management and infrastructure
design, this working assumption has been challenged due to changes
in the climate system and in the way we manage our landscapes1.
However, this signal of change has been hard to find in observational
studies due to the variability in the flood records (i.e., small signal-to-
noise ratio), complexity in the physical processes leading to flooding,
and large uncertainties2,3. The Intergovernmental Panel on Climate
Change (IPCC) states that “confidence about peak flow trends over the
past decades on the global scale is low”3 even though there are areas,
such as the northeastern and southwestern United States, that have
been experiencing increasing and decreasing trends4, respectively.

While the detection of changes is scientifically interesting, it
provides limited insight for the design of future infrastructures5. Much
effort has been placed in detecting trends in the observed floods
series6–13; however, the only way to extrapolate these findings into the
future is by assuming that the detected trends will persist in the dec-
ades to come14,15. Moreover, if we do not detect a trend in the historical
past, are we sure that it is not going to manifest itself in the future?
Because of these issues, a much more robust approach for the design

of future water-related structures and projects includes first an ana-
lysis of the historical discharge records not from the perspective of the
detection of changes, but rather of the attribution of themajor drivers
responsible for the observed interannual variability10,16,17. By looking
back at the observational records and understanding of how different
mechanisms (e.g., rainfall, snowmelt) were responsible for flooding,
we can then move forward by examining how these drivers are pro-
jected to change and their implications in terms of changes in flood
magnitudes.

There are two broad approaches for the attribution of non-
stationarity in flood magnitudes18, simulation- and regression-based
approaches. The former has the advantage of the use of mathematical
equations describing the physical processes in flood discharge19,
despite a greater computational burden. On the other hands, the
regression-based approach models the statistical relationships
between flood discharge and its possible drivers such as climate
variables20, large-scale climate indices21, and land cover22. The main
advantages of the statistical models are the computational cost and
the flexibility in incorporating different process-related predictors,
making thesemodels competitive with the simulation-based approach
in terms of model performance23. Moreover, they allow for a prob-
abilistic view of discharge, enabling the assessment of changes in dif-
ferent parts of the flood peak distribution. Many of the published
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studies about projected changes in floods across the contiguous Uni-
ted States (CONUS) tend to follow a simulation-based approach at the
regional or basin scales24–29, while only a few studies used a regression-
based approach for hundreds of streamgages distributed across
CONUS23,30.

Here, we assess future changes in floodmagnitude across CONUS
by taking advantage of the strengths and skill by the regression-based
approach and the dense network of thousands of streamgages by the
U.S. Geological Survey (USGS). We build on the statistical modeling
framework described in ref. 17, which allows the attribution of the
observed interannual variability in the annual maximum discharge
records to basin- and season-averaged precipitation and temperature
(see Methods). These variables are available frommany global climate
models (GCMs) and were shown to drive the year-to-year changes in
annual maximum flood peaks across large areas of CONUS. By pro-
jecting precipitation and temperature and using them as inputs for the
selected statistical models17, we quantify the projected changes in
flood hazard over the 21st century across multiple Shared Socio-
economic Pathways (SSPs) (see Methods). Besides its good perfor-
mance in reproducing historical observations, we have selected this
approach because it allows us to consider the projected changes in
flooding for any annual exceedance probabilities (AEPs), providing a
framework for nonstationary flood frequency analyses under different
scenarios.

Results and discussion
As a preliminary step, we check whether the GCM outputs can repro-
duce what was observed during the historical period. We evaluate the
suitability of basin- and season-averaged GCM outputs in reproducing
the observed trends in annual maximum discharge (see Methods).
Based on the results in Supplementary Fig. 1, there are 28 GCMs that
were able to satisfactorily reproduce the observed trends over the
historical period, and those are the ones we use for the projections.

Projected changes in flood extremes across CONUS
To assess future changes in flood hazard across scenarios, we test
whether the AEP distribution tends to shift towards larger or smaller
values compared to the past (i.e., 2071-2100 vs. 1985-2014) under four
SSPs (Fig. 1). Across CONUS, there is a general shift towards larger
extremes regardless of scenarios: for a 0.5 AEP (i.e., it corresponds to a
2-year event), there are 72.7%–74.3% of the sites showing a positive
shift (i.e., the distribution of the 0.5-AEP discharge is projected to shift
towards larger discharge values), with this number increasing to

76.7%–81.6% for the 0.002 AEP (i.e., it corresponds to a 500-year
event). On the other hand, the negative shifts between the historical
period and the last 30 years of the 21st century (i.e., the distribution is
projected to shift towards smaller discharge values) are limited to
~8.3%–15.1% of the sites, while a lack of detectable shifts is limited to
~8.5%–17.0% of the records depending on the AEP. Overall, these
results indicate that annual maximum peak discharge is projected to
become more extreme, with a larger tendency towards larger peaks.
This is particularly true as we move from smaller to larger flood peaks
(i.e., from the 0.5 to the 0.002 AEPs).

There is also a dependence in terms of emission scenarios (Fig. 1).
Under SSP1-2.6, the percentage of sites showing a positive shift
increases 3.8% (from 73.3% to 77.1%) as AEP decreases (from 0.5 to
0.002). As wemove from SSP1-2.6 to SSP5-8.5, the changing rate of the
sites with a positive shift also increases (i.e., 5.2%, 6.8%, and 7.5% under
SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively), indicating that, the
higher the emission scenario, themore the floodhazard is projected to
increase for themore extremeevents. These changes are compensated
by the changes in those sites that didnot exhibit statistically significant
shifts. Based on these results, efforts to reduce greenhouse gas emis-
sions and towards sustainability are projected to decrease the flood
hazard, especially for the more extreme events.

If we stratify the results across the seven subregions by the U.S.
National Climate Assessment (Fig. 2), different parts of the country are
expected to respond differently to climate change. Flooding is pro-
jected to increase in the northeastern and southeastern United States,
with more than 86% of the streamgages in that region for which the
distribution of the 0.01-AEP discharge is projected to shift towards
larger values. The Northwest and Midwest also exhibit shifts in the
distribution towards higher values (at more than 78% of the stream-
gages) compared to CONUS. The picture is different for the Southwest
and the Great Plains, where the percentage of sites projected to
increase is below 75%, and those projected to decrease ~16%. More-
over, these regions show more of a balance between increasing and
decreasing flood hazards for larger AEPs (Supplementary Fig. 2).

Our results illustrate that CONUS is projected to experience an
overall increase in extreme flooding, even though the magnitude of
this signal is not spatially homogeneous but varies sub-regionally.
These findings expand on the recent literature on the projected
changes in discharge for river basins within various subregions of the
United States24–29, as well as CONUS30–32. Compared to existing studies,
some of the strengths of these results are the large sample of
streamgage stations, the use of CMIP6 GCM outputs, and multiple
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Fig. 1 | Projected shifts in the distribution of the annual maximum discharge
during the historical (1985–2014) and future (2071–2100) periods for CONUS.
The left (right) panel shows the percentage of sites with a significant increasing
(decreasing) shift in peak discharges for CONUS at the 5% level. The middle panel

shows the percentage of sites where there is no significant shift in peak discharges
at the 5% level. In each panel, redder bars indicate higher emission scenarios from
SSP1-2.6 to SSP 5-8.5. The error bars represent the 95% confidence intervals for
multinomial proportions computed based on the Sison-Glaz method62.
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scenarios. By employing a statistical approach, we are able to project
changes across different parts of the flood peak distributions, allowing
accounting for the nonstationarities across different AEPs at any point
in time during the 21st century. Moreover, by modeling the flood peak
records by accounting for processes that are dominant during each of
the four seasons (see Methods), we are moving closer to a process-
driven flood frequency analysis, which is different from other
regression-based modeling studies that model directly the annual
maximum discharges23,30,33.

Role of seasonal climate drivers responsible for peak discharge
To shed some light on the possible physical mechanisms responsible
for the detected shifts and their subregional variability, we examine
the projected changes in seasonal precipitation and temperature (see
Methods). All GCMs project increases in temperature with respect to
the historical past, regardless of seasons, with the largest shifts as we
move from SSP1-2.6 to SSP5-8.5 (Supplementary Fig. 3). On the other
hand, precipitation exhibits amuchmore variable pattern of change in
both seasonally and sub-regionally (Supplementary Fig. 4). In the
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Fig. 2 | Projected shifts in the distributionof the0.01-AEPdischargeduring the
historical (1985–2014) and future (2071–2100) periods for CONUS and seven
subregions. a Blue (red) circles indicate the sites with a significant increasing
(decreasing) shift in peak discharges, while the gray circles indicate the sites with
no significant shift at the 5% level. Bold lines represent the boundaries of seven
subregions. b The left (right) panel shows the percentage of sites with a 5%-sig-
nificant increasing (decreasing) shift in peak discharges for CONUS and its seven

subregions (see inset map for the definition of subregions). The middle panel
shows the percentage of sites where there is no significant shift in peak discharges
at the 5% level. The error bars represent the 95% confidence intervals for multi-
nomial proportions computed based on the Sison-Glaz method62. The numbers in
the legend represent the number of streamgages within each region. Notice that
jitters are added to the x-axis to improve readability.
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Northwest, Great Plains of the North, and Midwest, there is an
increasing shift in winter and spring precipitation, while there is a
decreasing shift in summer precipitation at most sites, with a larger
signal of change for higher emission scenarios. The Southwest shows a
different seasonality,with adecreasing shift in springprecipitation and
an increasing shift in winter precipitation. The Northeast and South-
east show an increasing shift in precipitation for all seasons and sce-
narios, except for few sites in the Southeast with a projected
decreasing precipitation in the summer. One commonality among
regions is the exacerbation of seasonal precipitation for increasing
emissions: not only the absolute value of the projected changes in
precipitation is expected to increase, but also its variability among the
different sites and pointing to potentially larger climate swings within
these regions.

To better understand the role of seasonal climate drivers in
driving flood extremes, we investigate the seasonality of annual
maximum discharge occurrence, given the good performance of our
modeling framework in reproducing the historical flood seasonality
(Supplementary Fig. 5). The seasonality of annual maximum dis-
charge is projected to change, especially for increasing emissions,
with differences depending on subregions (Supplementary Figs. 6,
7). If we focus on themain flood seasons, there is a distinct change in
the seasonality of flooding across each of the seven subregions
(Fig. 3). In the Northeast and Southeast, winter and spring are the
main flood seasons, with winter being the dominant season for the
higher emission scenarios. Therefore, the projected shift towards
larger flood peaks can be interpreted through an increase in winter
and spring precipitation28 (Supplementary Fig. 4). The winter and
spring seasons are also the main flood seasons in the Northwest and
Midwest, respectively, regardless of emission scenarios. The
increasing shift in precipitation in those seasons (Supplementary
Fig. 4) is consistent with the projected tendency towards increasing
trends in flood peaks. In the Midwest, while spring is the dominant
season, there is an increase in the number of sites for which winter’s
contribution is projected to increase, especially for higher emissions,
possibly due to the polarward shift of the tracks of extratropical
cyclones34,35 (Supplementary Fig. 8). In the Southwest, the summer
season, one of the main flood seasons in this area, is projected to
contribute less to the annual maxima, particularly in the mountai-
nous area such as theRockies (Supplementary Fig. 7). Since snowmelt
is the main flood process in this area36,37, spring precipitation and
temperature play a crucial role in the magnitude of summer flood
peaks17. Therefore, the decreasing (increasing) shifts in spring pre-
cipitation (temperature) can lead to the negative shifts in annual
maximum discharge in this area (Fig. 2a). On the other hand, the
positive shift in annual maximum discharge is likely associated with
increases in precipitation in winter, themain flood season in theWest
Coast driven by atmospheric rivers38 (Supplementary Fig. 6). In the
Great Plain of the North where snowmelt is the main driver of runoff
potential39, spring and summer seasons are the main flood seasons40

(as also shown in Fig. 3). In addition to decreases in summer pre-
cipitation (Supplementary Fig. 4), the increases in temperature
(Supplementary Fig. 3) can lead to negative shifts in annualmaximum
discharge by leading to snowpack decline41 and more rainfall than
snow42. The Great Plain of the South shows the dominance of spring
season for all scenarios. However, there is no consistency in the
projected shifts in spring precipitation (Supplementary Fig. 4), con-
sistent with the much larger degree of variability in the shift in flood
extremes.

Projected changes in trends in flood extremes
Here we examine whether the historical trends in annual maximum
discharge are expected to persist or not in the future. There is a sig-
nificant change between historical and future trends depending on
scenarios (Fig. 4). Under SSP1-2.6, trends in 0.01-AEP discharge are
projected to remain not significant and/or to become smaller/more
negative during the 2071–2100 period compared to 1985–2014. As we
consider scenarios with higher emissions, however, trends are pro-
jected to be exacerbated over the future period, including trend-sign
reversal from negative/not-significant to positive in the last 30 years of
the 21st century compared to the historical past. This tendency ismore
intensified for larger flood peaks (i.e., smaller AEPs) (Supplementary
Figs. 9, 10). The results are consistent with other studies whose results
are derived from hydrological models43,44, reinforcing the message
against extrapolating the observed historical trends in flood extremes
directly to project future changes in the magnitude of extreme
flooding. Likewise, the lack of statistically significant trends over the
historical period should not be used as a justification for not taking
climate change into account5.
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Fig. 3 | Projected changes in the main flood seasons during the historical
(1985–2014) and future (2071–2100) periods for seven subregions. At each
streamgage, seasons that account for at least 30% of annual maximum discharge
occurrence are defined as the main flood seasons. The numbers in parentheses in
the title of each panel represent the number of streamgages within each region.
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Dependence of projected flood hazards on human-
modified basins
The abovementioned results are based on 3,885 streamgages,
regardless of the degree of anthropogenic modification that they
experienced. To provide further evidence of the robustness of these
findings as representative of a climate change signal, we stratified the
basins into 752 reference and 2,989 non-reference sites according to
the Geospatial Attributes of Gages for Evaluating Streamflow version II
(GAGES-II) classification45. A reference site is defined as the least-
disturbedwatershedbyhuman influences,while a non-reference site is
identified as disturbed by anthropogenic activities (e.g., reservoirs and
dams). Based on Supplementary Figs. 11–13, the results for the two
classes of basins are similar (compare them to Figs. 1, 2 and 4 as well),
pointing to the robustness of our results.

One way to interpret these results is that the most influential
factor for extremeoutflows of hydraulic structures is extreme inflow46,
which in turn could be dominated by climate drivers. In addition,
seasonal total precipitation is less sensitive to the lag effect of
hydraulic structures and can be therefore a reasonable covariate for
modeling flood extremes in a regulated basin33. These are possible
reasons for the good performance of our statistical models, despite
the use of only basin- and season-averaged climate drivers and the lack
of hydraulic structures aspredictors17. Although changes in the climate
system play a dominant role in driving changes in flood hazard47, the
role of hydraulic structures in mitigating flood risk under climate
change should not be overlooked48,49. Therefore, future work should
focus on modeling the annual maximum discharge records with
additional dam or reservoir parameters and comparing the results to
the existing model with only climate-related parameters to allow for a
more accurate assessment of the impact of anthropogenic modifica-
tion on the projected flood extremes.

The Fifth National Climate Assessment highlights the challenge of
flood projections under climate change50. This challenge arises from
the intricate interplay of multiple hydrological processes within flood-
generatingmechanisms,making it insufficient to extrapolate historical

trends in the flood series. Our findings can provide valuable and direct
information towards the detection, attribution, and projection of
flooding by focusing on changes in climate drivers under different
emission scenarios, not on historical trends of flood extremes. The
main limitation of our climate-informed projections is the assumption
that the statistical relationshipbetween flood discharge and its climate
drivers does not vary over time. This relationship could be modulated
by non-climate drivers (e.g., urbanization51 and irrigation52), implying
that our projections of flooding are limited to responses to changes in
only climate drivers and may involve additional uncertainties.

Incorporating climate change into design decisions of water-
related structures and projects still remains a major challenge in
engineering practice53. Given that multiple emission scenarios are
available, considering the worst-case scenario could represent a path
forward, although scenario uncertainty is relatively small compared to
other factors (e.g., GCMs and climate variability)54. Regarding design
metrics, it has been suggested to replace the traditional measure (i.e.,
average returnperiod)with other design concepts such as reliability or
risk of failure over a planning horizon for better communicating under
nonstationary conditions15. Because of its probabilistic nature, we have
the entire statistical distribution of annualmaximumdischarge for any
year, which can provide discharge values for different design metrics
and scenarios over the 21st century. This feature can pave the way to
supporting some of the most pressing needs in a robust design of the
physical infrastructure55.

Methods
Statistical modeling of annual maximum discharge
We adopt the statistical attribution approach by Ref. 17, which showed
good performance in reproducing the annual maximum mean daily
discharge time series across the CONUS. For a given location, the
method does not model directly the annual maximum discharge
record, but it breaks it down into four seasonal models, reflecting
different flood-generating mechanisms that comprise the population
of the annualmaxima. Therefore, the first step is tomodel the seasonal
maximum mean daily discharge in terms of basin- and season-
averaged precipitation and temperature using gamma regression
models. Then, bymeans of Monte Carlo simulations, the four seasonal
models are mixed to obtain the derived distribution of the annual
maxima. In this study, we utilize the developed gamma regression
models whose parameters were estimated for 3885 streamgages
across CONUS in Ref. 17. We also follow theirMonte Carlo approach to
obtain annual maximum discharge with various annual exceedance
probabilities (AEPs). Here, we iterate the simulation experiments
10,000 times to obtain more reliable extreme discharge series with
lower AEPs; 0.5, 0.2, 0.1, 0.04, 0.02, 0.01, 0.004, and 0.002. See Ref. 17
for details on the statistical attribution methodology.

Post-processing of global climate model outputs
To assess future changes in flood extremes, we use the projected
precipitation and temperature from GCMs part of the Coupled Model
Intercomparison Project Phase 6 (CMIP6)56. We consider the GCMs
that provide both precipitation (‘pr’) and near-surface air temperature
(‘tas’) variables at amonthly time scale and nominal spatial resolutions
of no more than 250km.We obtain monthly mean ‘pr’ (kg m−2 s−1) and
‘tas’ (K) for 36 GCMs that have outputs under historical and four
standard SSPs57: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The infor-
mation about the 36 GCMs is summarized in Supplementary Table 1.

To use the projected variables as regressionmodel inputs, we first
convert monthly mean ‘pr’ and ‘tas’ into monthly total precipitation
(mm) and monthly mean temperature (°C) and calculate the basin-
averaged values based on the basin boundary data (USGS Streamgage
NHDPlus Version 1 Basins 2011).We thenbias-correct eachGCMoutput
andeachmonthwith respect to the Parameter-ElevationRegression on
Independent Slopes Model (PRISM) data58 (i.e., reference data) for

SSP3−7.0 SSP5−8.5

SSP1−2.6 SSP2−4.5

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

�1985−2014

� 2
07

1−
21

00

0 6 12 18 24 30 �

Number of sites

Fig. 4 | 2D histogramof trends in 0.01-AEP discharge during the historical past
and the future period. The Kendall’s τ is computed for the historical (1985–2014)
and future (2071–2100) periods for the ensemble mean of 0.01-AEP discharge.

Article https://doi.org/10.1038/s41467-023-44415-4

Nature Communications |          (2024) 15:237 5



1950–2014; we bias-correct the GCM outputs using empirical quantile
mapping by the Santander Meteorology Group59. The bias-corrected
monthly series are aggregated and averaged at the seasonal scale.
Consequently, we obtain the basin- and season-averaged precipitation
and temperature and use them as predictors for annual maximum
discharge.

Evaluation of GCMs in reproducing trends in peak discharge
We use the basin- and season-averaged drivers derived from the GCMs
as inputs to the abovementioned gamma regressionmodels. To assess
the suitability of the GCMs for projections, we first evaluate their
capability in reproducing the observed trends over the historical per-
iod. More specifically, we compare the trend in annual maximum dis-
charge series obtained when using the GCMs and the PRISM over the
1951–2014 period by means of the Mann-Kendall trend test60,61.
Depending on the test results at the 5% significance level, streamgage
stations are classified into “Match” and “Mismatch” groups as follows:

• Match group: Both annual maximum discharge series derived
from the GCM and PRISM have a statistically significant trend
and of the same trend sign, or they are both not statistically
significant.

• Mismatch group: Annual maximum discharge series derived
from the GCM (or PRISM) has modeled (observed) Kendall’s τ
values that are not statistically significant, while observed
(modeled) Kendall’s τ values are significant. Or both annual
maximum discharge series derived from the GCM and PRISM
have a significant trend, but of opposite sign.

Among the 36 GCMs we analyze, we select 28 GCMs in which the
percentage of sites belonging to the match group is larger than 70%
(Supplementary Fig. 1). For each selected GCM, we obtain annual
maximum discharge series with various AEPs (i.e., 0.5, 0.2, 0.1, 0.04,
0.02, 0.01, 0.004, and 0.002) from the simulated series. Then we use
the ensemble mean of the annual maximum discharge series for the
selected GCMs to investigate how the magnitude and the trend of
flood extremes could change in the future.

Detection of projected changes in flood extremes
We use aMonte Carlo approach to detect the significant increasing (or
decreasing) projected changes in annual maximum discharge con-
sidering the uncertainties in the GCM ensemblemean. This simulation-
based approach allows the detection of statistically significant changes
in a given AEP based on the ensemble mean of the GCMs and their
variability. Theprocedure fordetectingprojected changes is as follows:
(1) For each year, estimate the sampling distribution parameters of

themeanof the selectedGCMs’ annualmaximumdischargebased
on the central limit theorem.

(2) From the sampling distribution, generate samples of the ensem-
ble mean for historical and future periods.

(3) Calculate the difference of median values between historical and
future periods:

ΔQ=
Qfuture

med � Qhist
med

Qhist
med

ð1Þ

where Qhist
med and Qfuture

med are the median values of generated flood
extremes for historical and future periods, respectively.
(4) Iterate steps (2)–(3) 10,000 times and calculate 2.5%, 50%, and

97.5% quantiles of ΔQ (i.e., ΔQ0:025, ΔQ0:5, and ΔQ0:975).
(5) Consider an increase (decrease) shift if the signs of all ΔQ0:025,

ΔQ0:5, and ΔQ0:975 are positive (negative), while no shift if any
signs of ΔQ0:025, ΔQ0:5, or ΔQ0:975 are different from the others.

For each site, the significant change of flood extreme for various
AEPs and scenarios between historical (1985–2014) and future

(2071–2100) periods is identified by conducting the simulation-based
approach.

Projected changes in precipitation and temperature
To examine what climate drivers affect the projected shifts in flood
extremes, we first obtain the ensemble mean of seasonal- and basin-
averagedprecipitation (P:ens) and temperature (T :ens) for all scenarios.
Then we calculate the projected change in P:ens and T :ens as follows:

ΔP:ens = P:ensf uturemed � P:enshistmed ð2Þ

ΔT :ens =T :ensf uturemed � T :enshistmed ð3Þ

where P:enshistmed (T :enshistmed) and P:ensf uturemed (T :ensf uturemed ) are the median
values of P:ens (T :ens) for historical (1985–2014) and future
(2071–2100) periods, respectively. For each corresponding season, we
also calculate the relative change in the ensemble mean of seasonal
maximum discharge (Q:ens):

ΔQ:ens =
Q:ensf uturemed � Q:enshistmed

Q:enshistmed

ð4Þ

where Q:enshistmed and Q:ensf uturemed are the median values of Q:ens for
historical (1985–2014) and future (2071–2100) periods, respectively.

Data availability
The USGS basin boundary data is available from the USGS Streamgage
NHDPlus Version 1 Basins 2011 at https://water.usgs.gov/lookup/
getspatial?streamgagebasins. The PRISM precipitation and tempera-
ture are obtained from the PRISM climate group58 and available at
https://prism.oregonstate.edu/historical/. The historical and future
projected precipitation and temperature from the CMIP6 GCMs are
available at https://esgf-node.llnl.gov/search/cmip6/. The GAGES-II
data is available at https://water.usgs.gov/GIS/metadata/usgswrd/
XML/gagesII_Sept2011.xml.

Code availability
Codes that were used in this study are available upon request.
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