Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomics of a sexually selected sperm ornament and female preference in Drosophila

Abstract

Our understanding of animal ornaments and the mating preferences driving their exaggeration is limited by knowledge of their genetics. Post-copulatory sexual selection is credited with the rapid evolution of female sperm-storage organ morphology and corresponding sperm quality traits across diverse taxa. In Drosophila, the mechanisms by which longer flagella convey an advantage in the competition among sperm for limited storage space in the female, and by which female sperm-storage organ morphology biases fertilization in favour of longer sperm have been resolved. However, the evolutionary genetics underlying this model post-copulatory ornament and preference system have remained elusive. Here we combined comparative analyses of 149 Drosophila species, a genome-wide association study in Drosophila melanogaster and molecular evolutionary analysis of ~9,400 genes to elucidate how sperm and female sperm-storage organ length co-evolved into one of nature’s most extreme ornaments and preferences. Our results reveal a diverse repertoire of pleiotropic genes linking sperm length and seminal receptacle length expression to central nervous system development and sensory biology. Sperm length development appears condition-dependent and is governed by conserved hormonal (insulin/insulin-like growth factor) and developmental (including Notch and Fruitless) pathways. Central developmental pathway genes, including Notch, also comprised the majority of a restricted set of genes contributing to both intraspecific and interspecific variation in sperm length. Our findings support ‘good genes’ models of female preference evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sperm length and female SR length have co-evolved across the drosophilid tree of life.
Fig. 2: Intraspecific phenotypic and genetic variation in sperm length and SR length are not correlated.
Fig. 3: Sperm length genes are biased towards expression in the CNS and sensory organs, as well as during the post-meiotic phase of spermatogenesis in the testes.
Fig. 4: Effect size distributions suggest different selective histories for genetic variants underlying sperm length and SR length expression.
Fig. 5: Correlated gene evolution with ornament and/or preference diversification reveals functionally relevant expression patterns.

Similar content being viewed by others

Data availability

All data are available in the Supplementary Information accompanying this paper.

References

  1. Darwin, C. The Descent of Man, and Selection in Relation to Sex Vol. 2 (John Murray, 1871).

  2. Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).

  3. Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).

    Article  Google Scholar 

  4. Eberhard, W. G. Female Control: Sexual Selection by Cryptic Female Choice (Princeton Univ. Press, 1996).

  5. Keller, L. & Reeve, H. K. in Advances in the Study of Behavior Vol. 24 (eds Slater, P. J. B. et al.) 291–315 (Elsevier, 1995).

  6. Birkhead, T., Hosken, D. J. & Pitnick, S. (eds) Sperm Biology: An Evolutionary Perspective (Elsevier, 2009).

  7. Lüpold, S. & Pitnick, S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 155, R229–R243 (2018).

    Article  PubMed  Google Scholar 

  8. Chenoweth, S. F. & McGuigan, K. The genetic basis of sexually selected variation. Annu. Rev. Ecol. Evol. Syst. 41, 81–101 (2010).

    Article  Google Scholar 

  9. Wilkinson, G. S. et al. The locus of sexual selection: moving sexual selection studies into the post-genomics era. J. Evol. Biol. 28, 739–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Barmina, O. & Kopp, A. Sex-specific expression of a HOX gene associated with rapid morphological evolution. Dev. Biol. 311, 277–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Parrett, J. M. et al. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat. Ecol. Evol. 6, 1330–1342 (2022).

    Article  PubMed  Google Scholar 

  13. Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Yasui, Y. A ‘good-sperm’ model can explain the evolution of costly multiple mating by females. Am. Nat. 149, 573–584 (1997).

    Article  Google Scholar 

  15. Lüpold, S. et al. How sexual selection can drive the evolution of costly sperm ornamentation. Nature 533, 535–538 (2016).

    Article  PubMed  Google Scholar 

  16. Kahrl, A. F., Snook, R. R. & Fitzpatrick, J. L. Fertilization mode drives sperm length evolution across the animal tree of life. Nat. Ecol. Evol. 5, 1153–1164 (2021).

    Article  PubMed  Google Scholar 

  17. Pitnick, S. Investment in testes and the cost of making long sperm in Drosophila. Am. Nat. 148, 57–80 (1996).

    Article  Google Scholar 

  18. Miller, G. T. & Pitnick, S. Sperm–female coevolution in Drosophila. Science 298, 1230–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Manier, M. K. et al. Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328, 354–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Lüpold, S. et al. How female × male and male × male interactions influence competitive fertilization in Drosophila melanogaster. Evol. Lett. 4, 416–429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miller, G. T. & Pitnick, S. Functional significance of seminal receptacle length in Drosophila melanogaster. J. Evol. Biol. 16, 114–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).

    Article  PubMed  Google Scholar 

  23. Kirkpatrick, M. & Ryan, M. J. The evolution of mating preferences and the paradox of the lek. Nature 350, 33–38 (1991).

    Article  Google Scholar 

  24. Pitnick, S., Marrow, T. & Spicer, G. S. Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution 53, 1804–1822 (1999).

    PubMed  Google Scholar 

  25. Mackay, T. F. C. et al. The Drosophila melanogaster genetic reference panel. Nature 482, 173–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirkpatrick, M. & Hall, D. W. Sexual selection and sex linkage. Evolution 58, 683–691 (2004).

    PubMed  Google Scholar 

  27. Connallon, T. & Clark, A. G. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution 64, 3417–3442 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes: condition is more than nutrition. Ecol. Lett. 14, 625–634 (2011).

    Article  PubMed  Google Scholar 

  29. Warren, I. A., Gotoh, H., Dworkin, I. M., Emlen, D. J. & Lavine, L. C. A general mechanism for conditional expression of exaggerated sexually-selected traits. Bioessays 35, 889–899 (2013).

    Article  PubMed  Google Scholar 

  30. Xu, S. et al. Interactions between the Ig-Superfamily proteins DIP-α and Dpr6/10 regulate assembly of neural circuits. Neuron 100, 1369–1384.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aberle, H. Searching for guidance cues: follow the Sidestep trail. Fly (Austin) 3, 270–273 (2009).

    Article  PubMed  Google Scholar 

  32. Mosca, T. J. & Luo, L. Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 3, e03726 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wen, K. et al. Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 26, 1233–1244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, Q., Barish, S., Okuwa, S. & Volkan, P. C. Examination of endogenous rotund expression and function in developing Drosophila olfactory system using CRISPR-Cas9–mediated protein tagging. G3 (Bethesda) 5, 2809–2816 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Biehs, B., François, V. & Bier, E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev. 10, 2922–2934 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Guss, E. J., Akbergenova, Y., Cunningham, K. L. & Littleton, J. T. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 12, RP88273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie, Q. et al. Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons. Proc. Natl Acad. Sci. USA 116, 16068–16073 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durham, M. F., Magwire, M. M., Stone, E. A. & Leips, J. Genome-wide analysis in Drosophila reveals age-specific effects of SNPs on fitness traits. Nat. Commun. 5, 4338 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Arya, G. H. et al. The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chem. Senses 40, 233–243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Graze, R. M., Tzeng, R.-Y., Howard, T. S. & Arbeitman, M. N. Perturbation of IIS/TOR signaling alters the landscape of sex-differential gene expression in Drosophila. BMC Genomics 19, 893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shorter, J. et al. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior. Proc. Natl Acad. Sci. USA 112, E3555–E3563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kravitz, E. A., Fernandez, M. & de la, P. Aggression in Drosophila. Behav. Neurosci. 129, 549–563 (2015).

    Article  PubMed  Google Scholar 

  43. Oldham, S. & Hafen, E. Insulin/IGF and _target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol. 13, 79–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Wei, H.-C. et al. Depletion of plasma membrane PtdIns(4,5)P2 reveals essential roles for phosphoinositides in flagellar biogenesis. J. Cell Sci. 121, 1076–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dalton, J. E. et al. Male-specific Fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics 14, 659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Babonis, L. S. & Martindale, M. Q. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20150477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 11, e1005004 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gleason, J. M. & Ritchie, M. G. Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes and intraspecific QTL? Genetics 166, 1303–1311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arbuthnott, D. The genetic architecture of insect courtship behavior and premating isolation. Heredity 103, 15–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Pitnick, S., Wolfner, M. F. & Suarez, S. S. in Sperm Biology: An Evolutionary Perspective (eds Birkhead, T. R. et al.) 247–304 (Elsevier, 2009).

  51. Immler, S. et al. Resolving variation in the reproductive tradeoff between sperm size and number. Proc. Natl Acad. Sci. USA 108, 5325–5330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pitnick, S., Wolfner, M. F. & Dorus, S. Post‐ejaculatory modifications to sperm (PEMS). Biol. Rev. 95, 365–392 (2020).

    Article  PubMed  Google Scholar 

  53. McCullough, E. L. et al. The life history of Drosophila sperm involves molecular continuity between male and female reproductive tracts. Proc. Natl Acad. Sci. USA 119, e2119899119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pitnick, S., Hosken, D. J. & Birkhead, T. R. in Sperm Biology: An Evolutionary Perspective (eds Birkhead, T. R. et al.) 69–149 (Elsevier, 2009).

  55. Higginson, D. M., Miller, K. B., Segraves, K. A. & Pitnick, S. Female reproductive tract form drives the evolution of complex sperm morphology. Proc. Natl Acad. Sci. USA 109, 4538–4543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Firman, R. C., Gasparini, C., Manier, M. K. & Pizzari, T. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 32, 368–382 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy–isogamy continuum. Nature 441, 742–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Radwan, J., Engqvist, L. & Reinhold, K. A paradox of genetic variance in epigamic traits: beyond “good genes” view of sexual selection. Evol. Biol. 43, 267–275 (2016).

    Article  PubMed  Google Scholar 

  59. Götz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  60. Matos, B., Publicover, S. J., Castro, L. F. C., Esteves, P. J. & Fardilha, M. Brain and testis: more alike than previously thought? Open Biol. 11, 200322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Syed, Z. A. et al. Sperm cyst ‘looping’: a developmental novelty enabling extreme male ornament evolution. Cells 10, 2762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pitnick, S., Markow, T. A. & Spicer, G. S. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc. Natl Acad. Sci. USA 92, 10614–10618 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, B. Y. et al. Single-fly genome assemblies fill major phylogenomic gaps across the Drosophilidae tree of life. PLoS Biol. 22, e3002697 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  65. Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5 (2013).

  66. Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. Biol. Sci. 255, 37–45 (1994).

    Article  Google Scholar 

  67. Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).

    Article  PubMed  Google Scholar 

  68. Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66, 2369–2383 (2012).

    Article  PubMed  Google Scholar 

  69. Falconer, D. S. & Mackay, T. Introduction to Quantitative Genetics (Pearson, 2009).

  70. Mackay, T. F. C. & Huang, W. Charting the genotype–phenotype map: lessons from the Drosophila melanogaster genetic reference panel. Wiley Interdiscip. Rev. Dev. Biol. 7, 10.1002/wdev.289 (2018).

    Article  Google Scholar 

  71. Ober, U. et al. Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genet. 8, e1002685 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rohde, P. D., Fourie Sørensen, I. & Sørensen, P. qgg: an R package for large-scale quantitative genetic analyses. Bioinformatics 36, 2614–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Liao, J. et al. Impact of measurement error on testing genetic association with quantitative traits. PLoS ONE 9, e87044 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schuetzenmeister, A. & Dufey, F. VCA: Variance Component Analysis. R package version 1.5.1 (2022).

  75. Keightley, P. D. & Jackson, B. C. Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics 209, 897–906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  78. Leader, D. P., Krause, S. A., Pandit, A., Davies, S. A. & Dow, J. A. T. FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res. 46, D809–D815 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Lyne, R. et al. FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol. 8, R129 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mummery-Widmer, J. L. et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458, 987–992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsurumi, A., Zhao, C. & Li, W. X. Canonical and non-canonical JAK/STAT transcriptional _targets may be involved in distinct and overlapping cellular processes. BMC Genomics 18, 718 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Doumpas, N. et al. Brk regulates wing disc growth in part via repression of Myc expression. EMBO Rep. 14, 261–268 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DasGupta, R., Kaykas, A., Moon, R. T. & Perrimon, N. Functional genomic analysis of the wnt-wingless signaling pathway. Science 308, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kimura, K.-I., Hachiya, T., Koganezawa, M., Tazawa, T. & Yamamoto, D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 59, 759–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Ryner, L. C. et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079–1089 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Wohl, M., Ishii, K. & Asahina, K. Layered roles of fruitless isoforms in specification and function of male aggression-promoting neurons in Drosophila. eLife 9, e52702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, B. et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct. _target. Ther. 7, 95 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hombría, J. C.-G. & Sotillos, S. JAK-STAT pathway in Drosophila morphogenesis: from organ selector to cell behavior regulator. JAKSTAT 2, e26089 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Rosendo Machado, S., van der Most, T. & Miesen, P. Genetic determinants of antiviral immunity in dipteran insects – compiling the experimental evidence. Dev. Comp. Immunol. 119, 104010 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Meng, Q., Xu, Y., Li, Y. & Wang, Y. Novel studies on Drosophila melanogaster model reveal the roles of JNK–Jak/STAT axis and intestinal microbiota in insulin resistance. J. Drug _target. 31, 261–268 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Campbell, G. & Tomlinson, A. Transducing the Dpp morphogen gradient in the wing of Drosophila: regulation of Dpp _targets by brinker. Cell 96, 553–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Geetha-Loganathan, P., Nimmagadda, S. & Scaal, M. Wnt signaling in limb organogenesis. Organogenesis 4, 109–115 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Abou Azar, F. & Lim, G. E. Metabolic contributions of wnt signaling: more than controlling flight. Front. Cell Dev. Biol. 9, 709823 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lartillot, N. & Poujol, R. A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol. Biol. Evol. 28, 729–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Zdobnov, E. M. et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 45, D744–D749 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Drosophila Species Stock Center and the Artyom Kopp laboratory for providing fly cultures and technical support; E. Sedore and L. Pekowsky for assistance with Syracuse University’s OrangeGrid; B. Woolsey for graphic design assistance; S. Buel for technical assistance; and members of the Center for Reproductive Evolution for intellectual support. This research was funded by the National Science Foundation (grant nos. DEB-1811805 to S.P. and S.D.; DEB-1655840 to S.D. and S.P.; DEB-2011045 to R.A.G.; DEB-2030129, DEB-1839598 and DEB-1241253 to P.M.O.), the National Institutes of Health (grant no. R35GM147454 to Y.H.A.-B,), a Syracuse University Postdoctoral Fellowship (to S.D. and S.P.) and a generous gift from M. and J. Weeden to Syracuse University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.P., S.D., Z.A.S., D.A.P. Methodology: S.D., S.P., Z.A.S., K.B., R.A.G., B.Y.K. Investigation: Z.A.S., S.P., S.D., R.A.G., K.B., A.A., A.S.C., S.L., B.Y.K., P.M.O., P.W., Y.H.A.-B., C.M.-G. Funding acquisition: S.P., S.D., R.A.G., P.M.O., D.A.P. Project administration: S.P., S.D., P.M.O., B.Y.K. Supervision: S.P., S.D., Z.A.S., D.A.P. Writing—original draft: S.D., S.P., Z.A.S., R.A.G. Writing—review and editing: S.P., S.D., Z.A.S., R.A.G., S.L., B.Y.K., Y.H.A.-B.

Corresponding authors

Correspondence to Zeeshan A. Syed, Steve Dorus or Scott Pitnick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology and Evolution thanks Jacek Radwan, Murielle Ålund and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Table 1.

Reporting Summary

Supplementary Data 1

Sperm length, seminal receptacle length and body size data for 149 drosophilid species.

Supplementary Data 2

Sperm length and seminal receptacle length data for Drosophila Genetic Reference Panel lines.

Supplementary Data 3

Allelic information for genome-wide association study of sperm length and seminal receptacle length.

Supplementary Data 4

Gene information on significant sperm length and seminal receptacle length variants from genome-wide association studies.

Supplementary Data 5

Gene Ontology/Biological Process assessment for sperm and seminal receptacle length genome-wide association study.

Supplementary Data 6

Results of molecular evolutionary and network interaction analyses of significant sperm and/ or seminal receptacle length genes identified in Coevol analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, Z.A., Gomez, R.A., Borziak, K. et al. Genomics of a sexually selected sperm ornament and female preference in Drosophila. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02587-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
admin 1
Association 7
INTERN 1
Note 1
Project 1
twitter 1