Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing the biology of regulatory T cells to treat disease

Abstract

Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-_targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three phases of Treg cell-mediated immune suppression.
Fig. 2: Tracking Treg cells in clinical studies.
Fig. 3: Treg cell therapy steps and considerations.
Fig. 4: Clinical trials of Treg cell therapy.
Fig. 5: Evolution of Treg therapies.

Similar content being viewed by others

References

  1. Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hernandez, R., Poder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295–1302 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feinerman, O. et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allan, S. E. et al. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol. Ther. 16, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Freeborn, R. A., Strubbe, S. & Roncarolo, M. G. Type 1 regulatory T cell-mediated tolerance in health and disease. Front. Immunol. 13, 1032575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flippe, L., Bezie, S., Anegon, I. & Guillonneau, C. Future prospects for CD8+ regulatory T cells in immune tolerance. Immunol. Rev. 292, 209–224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, J. E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morgana, F. et al. Single-cell transcriptomics reveals discrete steps in regulatory T cell development in the human thymus. J. Immunol. 208, 384–395 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Lagattuta, K. A. et al. Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate. Nat. Immunol. 23, 446–457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tai, X. et al. How autoreactive thymocytes differentiate into regulatory versus effector CD4+ T cells after avoiding clonal deletion. Nat. Immunol. 24, 637–651 (2023). Effector T and Treg cell differentiation are instructed via persistent or TGF-β-disrupted TCR signalling in the mouse thymus, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hemmers, S. et al. IL-2 production by self-reactive CD4 thymocytes scales regulatory T cell generation in the thymus. J. Exp. Med. 216, 2466–2478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burton, O. T. et al. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 57, 1586–1602.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Lam, A. J. et al. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep. 36, 109494 (2021). Knockout of FOXP3 in mature human Tregs has little effect on their phenotype or function.

    Article  CAS  PubMed  Google Scholar 

  18. van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Trujillo-Ochoa, J. L., Kazemian, M. & Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat. Rev. Immunol. 23, 842–856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akagbosu, B. et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity 55, 1173–1184.e7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cepika, A. M. et al. Tregopathies: monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol. 142, 1679–1695 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milpied, P. et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 39, 1466–1471 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Lam, A. J., Uday, P., Gillies, J. K. & Levings, M. K. Helios is a marker, not a driver, of human Treg stability. Eur. J. Immunol. 52, 75–84 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Joudi, A. M., Reyes Flores, C. P. & Singer, B. D. Epigenetic control of regulatory T cell stability and function: implications for translation. Front. Immunol. 13, 861607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borna, S. et al. Identification of unstable regulatory and autoreactive effector T cells that are expanded in patients with FOXP3 mutations. Sci. Transl. Med. 15, eadg6822 (2023). FOXP3 mutations drive Treg cell destabilization into effector T cells; this is prevented in the presence of wildtype-expressing FOXP3+ Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skartsis, N. et al. IL-6 and TNFα drive extensive proliferation of human tregs without compromising their lineage stability or function. Front. Immunol. 12, 783282 (2021). Human Treg cells cultured in pro-inflammatory cytokines have enhanced proliferation, while maintaining their stability and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoeppli, R. E. et al. Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am. J. Transpl. 19, 62–76 (2019).

    Article  CAS  Google Scholar 

  38. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Proics, E. et al. Preclinical assessment of antigen-specific chimeric antigen receptor regulatory T cells for use in solid organ transplantation. Gene Ther. 30, 309–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Ellis, G. I. et al. Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory T cells in Cynomolgus macaque. Cell Rep. Med. 3, 100614 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shahin, T. et al. Germline biallelic mutation affecting the transcription factor Helios causes pleiotropic defects of immunity. Sci. Immunol. 6, eabe3981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henry, Y. L. et al. A germline heterozygous dominant negative IKZF2 variant causing syndromic primary immune regulatory disorder and ICHAD. Preprint at medRxiv https://doi.org/10.1101/2023.09.09.23295301 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dikiy, S. & Rudensky, A. Y. Principles of regulatory T cell function. Immunity 56, 240–255 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Tay, C., Tanaka, A. & Sakaguchi, S. Tumor-infiltrating regulatory T cells as _targets of cancer immunotherapy. Cancer Cell 41, 450–465 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Akkaya, B. et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 20, 218–231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Waters, E., Williams, C., Kennedy, A. & Sansom, D. M. In vitro analysis of CTLA-4-mediated transendocytosis by regulatory T cells. Methods Mol. Biol. 2559, 171–187 (2023).

    Article  PubMed  Google Scholar 

  51. Tekguc, M., Wing, J. B., Osaki, M., Long, J. & Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl Acad. Sci. USA 118, e2023739118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaitsu, M., Issa, F., Hester, J., Vanhove, B. & Wood, K. J. Selective blockade of CD28 on human T cells facilitates regulation of alloimmune responses.JCI Insight 2, e89381 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stockis, J. et al. Blocking immunosuppression by human Tregs in vivo with antibodies _targeting integrin αVβ8. Proc. Natl Acad. Sci. USA 114, E10161–E10168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cuende, J. et al. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci. Transl. Med. 7, 284ra256 (2015).

    Article  Google Scholar 

  56. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ye, C., Yano, H., Workman, C. J. & Vignali, D. A. A. Interleukin-35: structure, function and its impact on immune-related diseases. J. Interferon Cytokine Res. 41, 391–406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Perrot, I. et al. Blocking antibodies _targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Jarvis, L. B. et al. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun. Biol. 4, 1186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, X., Rickert, M. & Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its α, β, and γc receptors. Science 310, 1159–1163 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Wong, H. S. et al. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 184, 3981–3997.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kendal, A. R. & Waldmann, H. Infectious tolerance: therapeutic potential. Curr. Opin. Immunol. 22, 560–565 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Andersson, J. et al. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β-dependent manner. J. Exp. Med. 205, 1975–1981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 196, 255–260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mikami, N. et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl Acad. Sci. USA 117, 12258–12268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wardell, C. M. et al. Short report: CAR Tregs mediate linked suppression and infectious tolerance in islet transplantation. Preprint at bioRxiv https://doi.org/10.1101/2024.04.06.588414 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Waldmann, H., Adams, E., Fairchild, P. & Cobbold, S. Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol. Rev. 212, 301–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur. J. Immunol. 51, 2708–3145 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Pesenacker, A. M. et al. Treg gene signatures predict and measure type 1 diabetes trajectory. JCI Insight 4, e123879 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Kim, J. V. et al. Regulatory T cell biomarkers identify patients at risk of developing acute cellular rejection in the first year following heart transplantation. Transplantation 107, 1810–1819 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Wen, X. et al. Increased islet antigen-specific regulatory and effector CD4+ T cells in healthy individuals with the type 1 diabetes-protective haplotype. Sci. Immunol. 5, eaax8767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma, S. et al. Measuring anti-islet autoimmunity in mouse and human by profiling peripheral blood antigen-specific CD4 T cells. Sci. Transl. Med. 15, eade3614 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poloni, C. et al. T-cell activation-induced marker assays in health and disease. Immunol. Cell Biol. 101, 491–503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078.e16 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Saggau, C., Scheffold, A. & Bacher, P. Flow cytometric characterization of human antigen-reactive T-helper cells. Methods Mol. Biol. 2285, 141–152 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Lemieux, A. et al. Enhanced detection of antigen-specific T cells by a multiplexed AIM assay. Cell Rep. Methods 4, 100690 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McMurchy, A. N. & Levings, M. K. Suppression assays with human T regulatory cells: a technical guide. Eur. J. Immunol. 42, 27–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Dawson, N. A. J. et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci. Transl. Med. 12, eaaz3866 (2020). The function of different types of CAR-engineered human Treg cells is correlated with their ability to suppress antigen presenting cells rather than T cells.

    Article  CAS  PubMed  Google Scholar 

  83. Papp, D., Korcsmaros, T. & Hautefort, I. Revolutionising immune research with organoid-based co-culture and chip systems. Clin. Exp. Immunol. 218, 40–54 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cohrs, C. M., Chen, C., Atkinson, M. A., Drotar, D. M. & Speier, S. Bridging the gap: pancreas tissue slices from organ and tissue donors for the study of diabetes pathogenesis. Diabetes 73, 11–22 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Bertolini, T. B. et al. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell. Immunol. 359, 104251 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Bacher, P. & Scheffold, A. The effect of regulatory T cells on tolerance to airborne allergens and allergen immunotherapy. J. Allergy Clin. Immunol. 142, 1697–1709 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Bajzik, V. et al. Oral desensitization therapy for peanut allergy induces dynamic changes in peanut-specific immune responses. Allergy 77, 2534–2548 (2022). The PALISADE trial showed that oral peanut immunotherapy was very effective at inducing tolerance of peanuts in previously allergic patients and reduced the abundance of circulating peanut-reactive effector T cells, but did not influence peanut-reactive Treg cells.

    Article  CAS  PubMed  Google Scholar 

  88. Syed, A. et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J. Allergy Clin. Immunol. 133, 500–510, (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abdel-Gadir, A. et al. Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function. Clin. Exp. Allergy 48, 825–836 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sharif, H. et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 144, 738–749 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Sirvent, S. et al. Novel vaccines _targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1. J. Allergy Clin. Immunol. 138, 558–567.e511 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Nieto, A. et al. First-in-human phase 2 trial with mite allergoids coupled to mannan in subcutaneous and sublingual immunotherapy. Allergy 77, 3096–3107 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Abdel-Gadir, A. et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat. Med. 25, 1164–1174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tchitchek, N. et al. Low-dose IL-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation. JCI Insight 7, e159406 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lamikanra, A. A. et al. The migratory properties and numbers of T regulatory cell subsets in circulation are differentially influenced by season and are associated with vitamin D status. Front. Immunol. 11, 685 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fisher, S. A. et al. The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: a systematic review. PLoS One 14, e0222313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hahn, J. et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 376, e066452 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Corte-Real, B. F. et al. Sodium perturbs mitochondrial respiration and induces dysfunctional Tregs. Cell Metab. 35, 299–315.e298 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bradley, D. et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 13, 5606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, D. et al. Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol. 49, 336–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Langston, P. K. et al. Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise. Sci. Immunol. 8, eadi5377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Becker, M. et al. Regulatory T cells require IL6 receptor alpha signaling to control skeletal muscle function and regeneration. Cell Metab. 35, 1736–1751.e7 (2023). Mouse Treg cells require IL-6 signalling to mediate muscle repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harris, F., Arroyo Berdugo, Y. & Tree, T. IL-2-based approaches to Treg enhancement. Clin. Exp. Immunol. 211, 149–163 (2022).

    Article  PubMed Central  Google Scholar 

  107. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, S. X. et al. Low-dose IL-2 therapy limits the reduction in absolute numbers of circulating regulatory T cells in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211011370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79, 141–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Humrich, J. Y. et al. Low-dose interleukin-2 therapy in active systemic lupus erythematosus (LUPIL-2): a multicentre, double-blind, randomised and placebo-controlled phase II trial. Ann. Rheum. Dis. 81, 1685–1694 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Rosenzwajg, M. et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63, 1808–1821 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Murakami, N. et al. Low-dose interleukin-2 promotes immune regulation in face transplantation: a pilot study. Am. J. Transpl. 23, 549–558 (2023).

    Article  Google Scholar 

  115. Lim, T. Y. et al. Low dose interleukin-2 selectively expands circulating regulatory T cells but fails to promote liver allograft tolerance in humans. J. Hepatol. 78, 153–164 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Todd, J. A. et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: a non-randomised, open label, adaptive dose-finding trial. PLoS Med. 13, e1002139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. McQuaid, S. L. et al. Low-dose IL-2 induces CD56bright NK regulation of T cells via NKp44 and NKp46. Clin. Exp. Immunol. 200, 228–241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tchao, N. et al. Ab0432 efavaleukin alfa, a novel Il-2 mutein, selectively expands regulatory T cells in patients with sle: final results of a phase 1b multiple ascending dose study. Ann. Rheum. Dis. 81, 1343–1344 (2022).

    Article  Google Scholar 

  119. Fanton, C. et al. Selective expansion of regulatory T cells by NKTR-358 in healthy volunteers and patients with systemic lupus erythematosus. J. Transl. Autoimmun. 5, 100152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nektar announces promising new and corrected rezpegaldesleukin efficacy data which were previously reported in 2022 and incorrectly calculated by former collaborator Eli Lilly & Company. PR Newswire (7 August 2023); https://www.prnewswire.com/news-releases/nektar-announces-promising-new-and-corrected-rezpegaldesleukin-efficacy-data-which-were-previously-reported-in-2022-and-incorrectly-calculated-by-former-collaborator-eli-lilly--company-301894443.html.

  121. VanDyke, D. et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 41, 111478 (2022). An anti-IL-2 antibody complexed with IL-2 selectively expands Treg cells to protect against multiple preclinical autoimmune diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stremska, M. E. et al. IL233, a novel IL-2 and IL-33 hybrid cytokine, ameliorates renal injury. J. Am. Soc. Nephrol. 28, 2681–2693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Venkatadri, R. et al. Hybrid cytokine IL233 renders protection in murine acute graft vs host disease (aGVHD). Cell. Immunol. 364, 104345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Benne, N., Ter Braake, D., Stoppelenburg, A. J. & Broere, F. Nanoparticles for inducing antigen-specific T cell tolerance in autoimmune diseases. Front. Immunol. 13, 864403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021). A nanoparticle loaded with autoantigen-encoding m1Ψ mRNA expands Treg cells to treat a mouse model of multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  126. Prasad, S. et al. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun. 89, 112–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, Q. et al. Use of polymeric nanoparticle platform _targeting the liver to induce treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization model. ACS Nano 13, 4778–4794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Casey, L. M. et al. Conjugation of transforming growth factor beta to antigen-loaded poly(lactide- co-glycolide) nanoparticles enhances efficiency of antigen-specific tolerance. Bioconjug. Chem. 29, 813–823 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Rhodes, K. R. et al. Bioengineered particles expand myelin-specific regulatory T cells and reverse autoreactivity in a mouse model of multiple sclerosis. Sci. Adv. 9, eadd8693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kivitz, A. et al. Phase 2 dose-finding study in patients with gout using SEL-212, a novel PEGylated uricase (SEL-037) combined with tolerogenic nanoparticles (SEL-110). Rheumatol. Ther. 10, 825–847 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kishimoto, T. K. et al. Rapamycin nanoparticles increase the therapeutic window of engineered interleukin-2 and drive expansion of antigen-specific regulatory T cells for protection against autoimmune disease. J. Autoimmun. 140, 103125 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Fraser, H. et al. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol. Ther. Methods Clin. Dev. 8, 198–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hoffmann, P. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 108, 4260–4267 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Brown, M. E. et al. Human CD4+CD25+CD226- Tregs demonstrate increased purity, lineage stability, and suppressive capacity versus CD4+CD25+CD127lo/- Tregs for adoptive cell therapy. Front. Immunol. 13, 873560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Opstelten, R. et al. GPA33: a marker to identify stable human regulatory T cells. J. Immunol. 204, 3139–3148 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Seay, H. R. et al. Expansion of human Tregs from cryopreserved umbilical cord blood for GMP-compliant autologous adoptive cell transfer therapy. Mol. Ther. Methods Clin. Dev. 4, 178–191 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Motwani, K. et al. Human regulatory T cells from umbilical cord blood display increased repertoire diversity and lineage stability relative to adult peripheral blood. Front. Immunol. 11, 611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brunstein, C. G. et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127, 1044–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kellner, J. N. et al. Third party, umbilical cord blood derived regulatory T-cells for prevention of graft versus host disease in allogeneic hematopoietic stem cell transplantation: feasibility, safety and immune reconstitution. Onco_target 9, 35611–35622 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gladstone, D. E. et al. Randomized, double blinded, placebo controlled trial of allogeneic cord blood T-regulatory cell for treatment of COVID-19 ARDS. Blood Adv. 7, 3075–3079 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Caplan, H. W. et al. Human cord blood-derived regulatory T-cell therapy modulates the central and peripheral immune response after traumatic brain injury. Stem Cell Transl. Med. 9, 903–916 (2020).

    Article  Google Scholar 

  145. Lyu, M. A. et al. Allogeneic cord blood regulatory T cells can resolve lung inflammation. Cytotherapy 25, 245–253 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Dijke, I. E. et al. Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am. J. Transpl. 16, 58–71 (2016).

    Article  CAS  Google Scholar 

  147. Romano, M. et al. Isolation and expansion of thymus-derived regulatory T cells for use in pediatric heart transplant patients. Eur. J. Immunol. 51, 2086–2092 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Bernaldo-de-Quiros, E. et al. A novel GMP protocol to produce high-quality Treg cells from the pediatric thymic tissue to be employed as cellular therapy. Front. Immunol. 13, 893576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. MacDonald, K. N. et al. Consequences of adjusting cell density and feed frequency on serum-free expansion of thymic regulatory T cells. Cytotherapy 24, 1121–1135 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Bernaldo-de-Quiros, E. et al. First-in-human therapy with Treg produced from thymic tissue (thyTreg) in a heart transplant infant. J. Exp. Med. 220, e20231045 (2023). Autologous thymic Treg cells administered to a patient receiving a heart transplant enabled Treg cell engraftment and was not associated with adverse effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. MacMillan, M. L. et al. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv. 5, 1425–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Schmidt, A., Eriksson, M., Shang, M. M., Weyd, H. & Tegner, J. Comparative analysis of protocols to induce human CD4+Foxp3+ regulatory T cells by combinations of IL-2, TGF-beta, retinoic acid, rapamycin and butyrate. PLoS One 11, e0148474 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Cook, L. et al. Induction of stable human FOXP3+ Tregs by a parasite-derived TGF-β mimic. Immunol. Cell Biol. 99, 833–847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yano, H. et al. Human iPSC-derived CD4+ Treg-like cells engineered with chimeric antigen receptors control GvHD in a xenograft model. Cell Stem Cell 31, 795–802.e6 (2024). First published report of successful generation of human Treg cells from induced pluripotent stem cells.

    Article  CAS  PubMed  Google Scholar 

  155. Fong, H. et al. A serum- and feeder-free system to generate CD4 and regulatory T cells from human iPSCs. Preprint at BioRxiv https://doi.org/10.1101/2023.07.01.547333 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sato, Y. et al. Human-engineered Treg-like cells suppress FOXP3-deficient T cells but preserve adaptive immune responses in vivo. Clin. Transl. Immunol. 9, e1214 (2020).

    Article  CAS  Google Scholar 

  157. Honaker, Y. et al. Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci. Transl. Med 12, eaay6422 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Santoni de Sio, F. R. et al. Ectopic FOXP3 expression preserves primitive features of human hematopoietic stem cells while impairing functional T cell differentiation. Sci. Rep. 7, 15820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Masiuk, K. E., Laborada, J., Roncarolo, M. G., Hollis, R. P. & Kohn, D. B. Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome. Cell Stem Cell 24, 309–317.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Seng, A. et al. Coexpression of FOXP3 and a Helios isoform enhances the effectiveness of human engineered regulatory T cells. Blood Adv. 4, 1325–1339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sato, Y. et al. A novel FOXP3 knockout-humanized mouse model for pre-clinical safety and efficacy evaluation of Treg-like cell products. Mol. Ther. Methods Clin. Dev. 31, 101150 (2023). Humanized mouse model to test effects of Treg cell therapies on intestinal inflammation; proof of concept that basiliximab can be used as a safety switch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bluestone, J. A., McKenzie, B. S., Beilke, J. & Ramsdell, F. Opportunities for Treg cell therapy for the treatment of human disease. Front. Immunol. 14, 1166135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020). A multi-site, phase 1/2A trial reported that autologous polyclonal Treg cellular therapy is safe in kidney transplantation and reduces the expected incidence of viral complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Roemhild, A. et al. Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial. BMJ 371, m3734 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Brook, M. O. et al. Transplantation Without Overimmunosuppression (TWO) study protocol: a phase 2b randomised controlled single-centre trial of regulatory T cell therapy to facilitate immunosuppression reduction in living donor kidney transplant recipients. BMJ Open 12, e061864 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Brook, M. O. et al. Late treatment with autologous expanded regulatory T-cell therapy after alemtuzumab induction is safe and facilitates immunosuppression minimization in living donor renal transplantation. Transplantation 108, 2278–2286 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Meyer, E. H. et al. Transplantation of donor grafts with defined ratio of conventional and regulatory T cells in HLA-matched recipients. JCI Insight 4, 127244 (2019).

    Article  PubMed  Google Scholar 

  168. Landwehr-Kenzel, S. et al. Adoptive transfer of ex vivo expanded regulatory T cells improves immune cell engraftment and therapy-refractory chronic GvHD. Mol. Ther. 30, 2298–2314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Whangbo, J. et al. A phase 1 study of donor regulatory T-cell infusion plus low-dose interleukin-2 for steroid-refractory chronic graft-vs-host disease. Blood Adv. 6, 5786–5796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Meyer, E. H. et al. Orca-T, a precision Treg-engineered donor product, prevents acute GVHD with less immunosuppression in an early multicenter experience with myeloablative HLA-matched transplants. Blood 136, 47–48 (2020). Orca Bio’s Orca-T cell product, consisting of a dose of Treg cells and CD34+ cells followed by conventional T cell administration, reduced the risk of GVHD in patients with haematologic malignancies.

    Article  Google Scholar 

  171. Villar-Prados, A. et al. Phase 1 trial results for patients with advanced hematologic malignancies undergoing reduced intensity allogeneic HCT with orca-T donor cell therapy product and single agent tacrolimus. Blood 142, 3560 (2023).

    Article  Google Scholar 

  172. Marek-Trzonkowska, N. et al. Therapy of type 1 diabetes with CD4+CD25highCD127 regulatory T cells prolongs survival of pancreatic islets — results of one year follow-up. Clin. Immunol. 153, 23–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127 regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35, 1817–1820 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zielinski, M. et al. Combined therapy with CD4+ CD25highCD127 T regulatory cells and anti-CD20 antibody in recent-onset type 1 diabetes is superior to monotherapy: randomized phase I/II trial. Diabetes Obes. Metab. 24, 1534–1543 (2022). A combination of polyclonal Treg cells and rituximab significantly enhanced c-peptide preservation in patients with recent-onset T1D.

    Article  CAS  PubMed  Google Scholar 

  175. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Bender, C. et al. A phase 2 randomized trial with autologous polyclonal expanded regulatory T cells in children with new-onset type 1 diabetes. Sci. Transl. Med. 16, eadn2404 (2024). A phase 2 autologous polyclonal Treg cell therapy trial showed no clinical benefit in children with recent onset type 1 diabetes.

    Article  CAS  PubMed  Google Scholar 

  177. Dall’Era, M. et al. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis Rheumatol. 71, 431–440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Voskens, C. et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut 72, 49–53 (2022).

    Article  PubMed  Google Scholar 

  179. Boardman, D. A., Jacob, J., Smyth, L. A., Lombardi, G. & Lechler, R. I. What is direct allorecognition? Curr. Transpl. Rep. 3, 275–283 (2016).

    Article  PubMed  Google Scholar 

  180. Putnam, A. L. et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transpl. 13, 3010–3020 (2013).

    Article  CAS  Google Scholar 

  181. Guinan, E. C. et al. Donor antigen-specific regulatory T cell administration to recipients of live donor kidneys: a ONE Study consortium pilot trial. Am. J. Transpl. 23, 1872–1881 (2023).

    Article  Google Scholar 

  182. Tang, Q. et al. Selective decrease of donor-reactive Tregs after liver transplantation limits Treg therapy for promoting allograft tolerance in humans. Sci. Transl. Med. 14, eabo2628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ezzelarab, M. B. et al. Ex vivo expanded donor alloreactive regulatory T cells lose immunoregulatory, proliferation, and antiapoptotic markers after infusion into ATG-lymphodepleted, nonhuman primate heart allograft recipients. Transplantation 105, 1965–1979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tuomela, K., Salim, K. & Levings, M. K. Eras of designer Tregs: harnessing synthetic biology for immune suppression. Immunol. Rev. 320, 250–267 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Hull, C. M. et al. Generation of human islet-specific regulatory T cells by TCR gene transfer. J. Autoimmun. 79, 63–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Yang, S. J. et al. Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci. Transl. Med. 14, eabn1716 (2022). Generation of antigen-specific, therapeutic Treg cells by editing conventional T cells to over-express FOXP3 and diabetes relevant TCRs.

    Article  CAS  PubMed  Google Scholar 

  187. Cook, P. J. et al. A chemically inducible IL-2 receptor signaling complex allows for effective in vitro and in vivo selection of engineered CD4+ T cells. Mol. Ther. 31, 2472–2488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Boardman, D. A. & Levings, M. K. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. J. Allergy Clin. Immunol. 149, 1–11 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Dawson, N. A. et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 4, e123672 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Muller, Y. D. et al. Precision engineering of an anti-HLA-A2 chimeric antigen receptor in regulatory T cells for transplant immune tolerance. Front. Immunol. 12, 686439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wagner, J. C., Ronin, E., Ho, P., Peng, Y. & Tang, Q. Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. Am. J. Transpl. 22, 2237–2245 (2022).

    Article  CAS  Google Scholar 

  192. Boroughs, A. C. et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 5, e126194 (2019).

    Article  PubMed  Google Scholar 

  193. Rosado-Sanchez, I. et al. Regulatory T cells integrate native and CAR-mediated co-stimulatory signals for control of allograft rejection. JCI Insight 8, e167215 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Imura, Y., Ando, M., Kondo, T., Ito, M. & Yoshimura, A. CD19-_targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight 5, e136185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Bolivar-Wagers, S. et al. Murine CAR19 Tregs suppress acute graft-versus-host disease and maintain graft-versus-tumor responses. JCI Insight 7, e160674 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Doglio, M. et al. Regulatory T cells expressing CD19-_targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nat. Commun. 15, 2542 (2024). FOXP3-overexpressing CD19-CAR Treg cells restrict autoantibody production in a humanized mouse model of systemic lupus erythematosus in the absence of toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Spanier, J. A. et al. Tregs with an MHC class II peptide-specific chimeric antigen receptor prevent autoimmune diabetes in mice. J. Clin. Invest. 133, e168601 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Obarorakpor, N. et al. Regulatory T cells _targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Front. Immunol. 14, 1207108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rana, J. et al. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol. Ther. 29, 2660–2676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yoon, J. et al. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood 129, 238–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Boardman, D. A. et al. Flagellin-specific human CAR Tregs for immune regulation in IBD. J. Autoimmun. 134, 102961 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. McGovern, J., Holler, A., Thomas, S. & Stauss, H. J. Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells. J. Autoimmun. 132, 102888 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lamarche, C. et al. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc. Natl Acad. Sci. USA 120, e2219086120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lamarthee, B. et al. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat. Commun. 12, 6446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ratnasothy, K. et al. IL-2 therapy preferentially expands adoptively transferred donor-specific Tregs improving skin allograft survival. Am. J. Transpl. 19, 2092–2100 (2019).

    Article  CAS  Google Scholar 

  207. Cabello-Kindelan, C. et al. Immunomodulation followed by antigen-specific Treg infusion controls islet autoimmunity. Diabetes 69, 215–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Muckenhuber, M. et al. Optimum timing of antithymocyte globulin in relation to adoptive regulatory T cell therapy. Am. J. Transpl. 23, 84–92 (2023).

    Article  Google Scholar 

  209. Camirand, G. & Riella, L. V. Treg-centric view of immunosuppressive drugs in transplantation: a balancing act. Am. J. Transpl. 17, 601–610 (2017).

    Article  CAS  Google Scholar 

  210. Amini, L. et al. CRISPR-Cas9-edited tacrolimus-resistant antiviral T cells for advanced adoptive immunotherapy in transplant recipients. Mol. Ther. 29, 32–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Sockolosky, J. T. et al. Selective _targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl. Med. 13, eabg6986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ramos, T. L. et al. Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood 141, 1337–1352 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bittner, S. et al. Biosensors for inflammation as a strategy to engineer regulatory T cells for cell therapy. Proc. Natl Acad. Sci. USA 119, e2208436119 (2022). Expression of CARs with TNFR family cytokine receptors on the exterior portion allows Treg cells to be activated by generalized inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Sicard, A. et al. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am. J. Transpl. 20, 1562–1573 (2020).

    Article  CAS  Google Scholar 

  218. Mohseni, Y. R. et al. Chimeric antigen receptor-modified human regulatory T cells that constitutively express IL-10 maintain their phenotype and are potently suppressive. Eur. J. Immunol. 51, 2522–2530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cook, L. et al. Suppressive and gut-reparative functions of human type 1 T regulatory cells. Gastroenterology 157, 1584–1598 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hu, Y. et al. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory Non-Hodgkin’s lymphoma: a first-in-human phase I study. EClinicalMedicine 60, 102010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  222. McCallion, O. et al. Matching or genetic engineering of HLA Class I and II facilitates successful allogeneic ‘off-the-shelf’ regulatory T cell therapy. Preprint at bioRxiv https://doi.org/10.1101/2023.08.06.551956 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jo, S. et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat. Commun. 13, 3453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li, W. et al. Simultaneous editing of TCR, HLA-I/II and HLA-E resulted in enhanced universal CAR-T resistance to allo-rejection. Front. Immunol. 13, 1052717 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jandus, C. et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Invest. 124, 1810–1820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Saleh, R. & Elkord, E. FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic _targets. Cancer Lett. 490, 174–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Baur, A. S. et al. Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 122, 2185–2194 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Kawai, H. et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Sci. 112, 2426–2435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Revenko, A. et al. Direct _targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J. Immunother. Cancer 10, e003892 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Nagira, Y. et al. S-531011, a novel anti-human CCR8 antibody, induces potent antitumor responses through depletion of tumor-infiltrating CCR8-expressing regulatory T cells. Mol. Cancer Ther. 22, 1063–1072 (2023). A human CCR8 antibody depletes intratumoral Treg cells in a preclinical cancer model without inducing autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Kidani, Y. et al. CCR8-_targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc. Natl Acad. Sci. USA 119, e2114282119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Chuckran, C. A. et al. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer. Sci. Transl. Med. 13, eabf8495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

    Article  CAS  PubMed  Google Scholar 

  237. Herbst, R. S. et al. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 3383–3393 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Eynde, B. J. V. D., Baren, N. V. & Baurain, J.-F. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in melanoma? Annu. Rev. Cancer Biol. 4, 241–256 (2020).

    Article  Google Scholar 

  240. Tang, K., Wu, Y. H., Song, Y. & Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14, 68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Holmgaard, R. B. et al. _targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Hira, S. K. et al. Galunisertib drives Treg fragility and promotes dendritic cell-mediated immunity against experimental lymphoma. iScience 23, 101623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Yamazaki, T. et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial. Lancet Oncol. 23, 1189–1200 (2022).

    Article  CAS  PubMed  Google Scholar 

  244. Tan, C. L. et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 218, e20182232 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020). Tumours infiltrated with high numbers of Treg cells expressing PD-1 are at a higher risk of hyper-progressive disease post-PD-1 blockade.

    Article  CAS  PubMed  Google Scholar 

  247. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. van Pul, K. M. et al. Local delivery of low-dose anti-CTLA-4 to the melanoma lymphatic basin leads to systemic Treg reduction and effector T cell activation. Sci. Immunol. 7, eabn8097 (2022).

    Article  PubMed  Google Scholar 

  250. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Alissafi, T., Hatzioannou, A., Legaki, A. I., Varveri, A. & Verginis, P. Balancing cancer immunotherapy and immune-related adverse events: the emerging role of regulatory T cells. J. Autoimmun. 104, 102310 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Kartolo, A., Sattar, J., Sahai, V., Baetz, T. & Lakoff, J. M. Predictors of immunotherapy-induced immune-related adverse events. Curr. Oncol. 25, e403–e410 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Cortellini, A. et al. Correlations between the immune-related adverse events spectrum and efficacy of anti-PD1 immunotherapy In NSCLC patients. Clin. Lung Cancer 20, 237–247.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Tombacz, I. et al. Highly efficient CD4+ T cell _targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Monian, B. et al. Peanut oral immunotherapy differentially suppresses clonally distinct subsets of T helper cells. J. Clin. Invest. 132, e150634 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kulis, M. et al. High- and low-dose oral immunotherapy similarly suppress pro-allergic cytokines and basophil activation in young children. Clin. Exp. Allergy 49, 180–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Zhang, Y. et al. Successful milk oral immunotherapy promotes generation of casein-specific CD137+ FOXP3+ regulatory T cells detectable in peripheral blood. Front. Immunol. 12, 705615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. de Picciotto, S. et al. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat. Commun. 13, 3866 (2022). A nanoparticle carrying mRNA encoding an IL-2 mutein selectively expands Treg cells in mice and non-human primates.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Podojil, J. R. et al. Tolerogenic immune-modifying nanoparticles encapsulating multiple recombinant pancreatic β cell proteins prevent onset and progression of type 1 diabetes in nonobese diabetic mice. J. Immunol. 209, 465–475 (2022).

    Article  CAS  PubMed  Google Scholar 

  262. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Yang, H. et al. Adoptive therapy with amyloid-β specific regulatory T cells alleviates Alzheimer’s disease. Theranostics 12, 7668–7680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Sheean, R. K. et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol. 75, 681–689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Leung, O. M. et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 24, 1610–1626 (2018).

    Article  CAS  PubMed  Google Scholar 

  267. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Yshii, L. et al. Astrocyte-_targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022). Astrocyte-_targeted IL-2 delivery expands brain Treg cells that protect against mouse models of traumatic brain injury, stroke and multiple sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Park, T. Y. et al. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson’s disease. Nature 619, 606–615 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work in this area is funded by the Canadian Institutes for Health Research (CIHR; FDN-154304), Juvenile Diabetes Research Foundation Canada (3-COE-2022-1103-M-B), U.S. Department of Defense/Reconstructive Transplant Research Program (HT94252310626), and the Leona M. and Harry B. Helmsley Charitable Trust. C.M.W. is supported by a CIHR doctoral award. D.A.B. was supported by fellowships from the CIHR and Michael Smith Health Research BC. M.K.L. is Canada Research Chair in Immune Engineering and receives a Scientist Salary Award from the BC Children’s Hospital Research Institute. We thank K. Salim for providing sample flow plots displayed in Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

C.M.W. and M.K.L. conceived the article. All authors contributed to the research, writing and editing of the manuscript.

Corresponding author

Correspondence to Megan K. Levings.

Ethics declarations

Competing interests

M.K.L. is a science advisory board member for Anokion, advises for and holds shares in Integrated Nanotherapeutics, and is an inventor on patent applications related to A2-chimaeric antigen receptor regulatory T cells with licensed technology to Sangamo Therapeutics. C.M.W. and D.A.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Leonardo Ferreira and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

EudraCT: https://eudract.ema.europa.eu/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wardell, C.M., Boardman, D.A. & Levings, M.K. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov (2024). https://doi.org/10.1038/s41573-024-01089-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-024-01089-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
  NODES
admin 4
Association 1
INTERN 1
Note 2
twitter 1