Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Measuring and improving the cradle-to-grave environmental performance of urological procedures

Abstract

An urgent need for societal transformation exists to reduce the environmental impact of humanity, because environmental health affects human health. Health care causes ~5% of global greenhouse gas emissions and other substantial and ongoing environmental harms. Thus, health-care professionals and managers must lead ongoing efforts to improve the environmental performance of health systems. Life-cycle assessment (LCA) is a methodology that enables estimation of environmental impacts of products and processes. It models environmental effects from ‘cradle’ (raw material extraction) to ‘grave’ (end of useful life) and conventionally reports a range of different impact categories. LCA is a valuable tool when used appropriately. Maximizing its utility requires rational assumptions alongside careful consideration of system boundaries and data sources. Well-executed LCAs are detailed and transparently reported, enabling findings to be adapted or generalized to different settings. Attention should be given to modelling mitigation solutions in LCAs. This important step can guide health-care systems towards new and innovative solutions that embed progress towards international climate agreements. Many urological conditions are common, recurrent or chronic, requiring resource-intensive management with large associated environmental impacts. LCAs in urology have predominantly focussed on greenhouse gas emissions and have enabled identification of modifiable ‘hotspots’ including electricity use, travel, single-use items, irrigation, reprocessing and waste incineration. However, the methodological and reporting quality of published urology LCAs generally requires improvement and standardization. Health-care evaluation and commissioning frameworks that value LCA findings alongside clinical outcomes and cost could accelerate sustainable innovations. Rapid implementation strategies for known environmentally sustainable solutions are also needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life-cycle stages modelled in cradle-to-grave and cradle-to-gate assessments.
Fig. 2: Impact categories covered in the ReCiPe 2016 method.
Fig. 3: Per-use GHG emissions of reusable flexible ureteroscopes with different national and regional GHG electricity emission factors substituted to produce different estimates.
Fig. 4: Per-use greenhouse gas emissions attributable to manufacturing and repair of reusable ureteroscopes according to the number of lifetime uses.

Similar content being viewed by others

References

  1. IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2023).

  2. Kenny, C. & Priyadarshini, A. Review of current healthcare waste management methods and their effect on global health. Healthcare 9, 284 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tennison, I. et al. Health care’s response to climate change: a carbon footprint assessment of the NHS in England. Lancet Planet. Health 5, e84–e92 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lenzen, M. et al. The environmental footprint of health care: a global assessment. Lancet Planet. Health 4, e271–e279 (2020).

    Article  PubMed  Google Scholar 

  5. Romanello, M. et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 402, 2346–2394 (2023).

    Article  PubMed  Google Scholar 

  6. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  PubMed  Google Scholar 

  7. Drew, J., Christie, S. D., Rainham, D. & Rizan, C. HealthcareLCA: an open-access living database of health-care environmental impact assessments. Lancet Planet. Health 6, e1000–e1012 (2022).

    Article  PubMed  Google Scholar 

  8. Shackley, D. C. et al. Variation in the prevalence of urinary catheters: a profile of National Health Service patients in England. BMJ Open 7, e013842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rassweiler, J. J. et al. Future of robotic surgery in urology. BJU Int. 120, 822–841 (2017).

    Article  PubMed  Google Scholar 

  10. Checcucci, E. et al. New ultra-minimally invasive surgical treatment for benign prostatic hyperplasia: a systematic review and analysis of comparative outcomes. Eur. Urol. Open Sci. 33, 28–41 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lang, J., Narendrula, A., El-Zawahry, A., Sindhwani, P. & Ekwenna, O. Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of Global Burden of Disease study data. Eur. Urol. Open. Sci. 35, 37–46 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferraro, P. M., Curhan, G. C., D’Addessi, A. & Gambaro, G. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J. Nephrol. 30, 227–233 (2017).

    Article  PubMed  Google Scholar 

  13. Strohmaier, W. L. Course of calcium stone disease without treatment. What can we expect? Eur. Urol. 37, 339–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Geraghty, R. M. et al. Best practice in interventional management of urolithiasis: an update from the European Association of Urology guidelines panel for urolithiasis 2022. Eur. Urol. Focus 9, 199–208 (2023).

    Article  PubMed  Google Scholar 

  15. MacNeill, A. J., Lillywhite, R. & Brown, C. J. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 1, e360–e367 (2017).

    Article  Google Scholar 

  16. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 10, 63–89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Babjuk, M. et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur. Urol. 81, 75–94 (2022).

    Article  PubMed  Google Scholar 

  18. Alfred Witjes, J. et al. European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2023 guidelines. Eur. Urol. 85, 17–31 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Mottet, N. et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Ljungberg, B. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. 82, 399–410 (2022).

    Article  PubMed  Google Scholar 

  21. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    Article  PubMed  Google Scholar 

  22. Di Paolo, L., Abbate, S., Celani, E., Di Battista, D. & Candeloro G. Carbon footprint of single-use plastic items and their substitution. Sustainability 14, 16563 (2022).

    Article  CAS  Google Scholar 

  23. Sun, A. J., Comiter, C. V. & Elliott, C. S. The cost of a catheter: an environmental perspective on single use clean intermittent catheterization. Neurourol. Urodyn. 37, 2204–2208 (2018).

    Article  PubMed  Google Scholar 

  24. Zhao, C. C., Comiter, C. V. & Elliott, C. S. Perspectives on technology: single-use catheters — evidence and environmental impact. BJU Int. 133, 638–645 (2024).

    Article  PubMed  Google Scholar 

  25. Brighton & Sussex Medical School, Centre for Sustainable Healthcare & UK Health Alliance on Climate Change. Green surgery: reducing the environmental impact of surgical care (UKHACC, 2023).

  26. Stothers, L. & Macnab, A. Global implementation of advanced urological care: policy implementation research. Can. Urol. Assoc. J. 11, 157–160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toolan, M. et al. Environmental impact assessment in health technology assessment: principles, approaches, and challenges. Int. J. Technol. Assess. Health Care 39, e13 (2023).

    Article  PubMed  Google Scholar 

  28. Seifert, C., Koep, L., Wolf, P. & Guenther, E. Life cycle assessment as decision support tool for environmental management in hospitals: a literature review. Health Care Manag. Rev. 46, 12–24 (2021).

    Article  Google Scholar 

  29. Hendrickson C. T. et al. Comparing two life cycle assessment approaches. In Proceedings of the 1997 IEEE International Symposium on Electronics and the Environment (IEEE, 1997).

  30. Pan, X. & Kraines, S. Environmental input-output models for life-cycle analysis. Env. Resour. Econ. 20, 61–72 (2001).

    Article  Google Scholar 

  31. Schaubroeck, T., Schrijvers, D., Schaubroeck, S. & Moretti, C. Definition of product system and solving multifunctionality in ISO 14040–14044: inconsistencies and proposed amendments — toward a more open and general LCA framework. Front. Sustain. 3, 778100 (2022).

    Article  Google Scholar 

  32. Yang, Y., Heijungs, R. & Brandão, M. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. J. Clean. Prod. 150, 237–242 (2017).

    Article  Google Scholar 

  33. Staffell, I. Measuring the progress and impacts of decarbonising British electricity. Energy Policy 102, 463–475 (2017).

    Article  Google Scholar 

  34. Hauschild, M. Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 18, 683–697 (2013).

    Article  CAS  Google Scholar 

  35. Cain, M. et al. Methane and the Paris Agreement temperature goals. Philos. Trans. R. Soc. A 380, 20200456 (2022).

    Article  CAS  Google Scholar 

  36. International Organization for Standardization. ISO 14040:2006. Environmental Management — Life Cycle Assessment — Principles and Framework (International Organization for Standardization, 2006).

  37. International Organization for Standardization. ISO 14044:2006. Environmental Management — Life Cycle Assessment — Requirements and Guidelines (International Organization for Standardization, 2006).

  38. European Commission. International Reference Life Cycle Data System (ILCD) Handbook General guide for Life Cycle Assessment Provisions and Action Steps (JRC Publications Repository, 2010).

  39. BP X30-323-0. General priniciples for an environmental communication on mass market products: part 0: general principles and methodological framework. Association Française de Normalisation https://www.boutique.afnor.org/en-gb/standard/bp-x303230/general-principles-for-an-environmental-communication-on-mass-market-produc/fa059632/45364 (2015).

  40. International Organization for Standardization. ISO 14067:2018. Greenhouse gases — Carbon Footprint of Products — Requirements and Guidelines for Quantification (International Organization for Standardization, 2018).

  41. BSI. PAS 2050:2011 (British Standards Institution, 2011).

  42. World Resources Institute. Greenhouse Gas Protocol. Product Life Cycle Accounting and Reporting Standard (World Resources Institute, 2011).

  43. Allison, C., Collins, M., Fisher, K. & Penny T. Greenhouse gas accounting sector guidance for pharmaceutical products and medical devices (Environmental Resources Management, 2012).

  44. Pålsson, A.-C. & Riise, E. Defining the goal and scope of the LCA study. Tosca https://tosca-life.info/getting-started-guides/life-cycle-assessment/how-to-perform-an-lca/phases-in-an-lca-study/goal-and-scope/ (2011).

  45. Pålsson, A.-C. & Riise, E. Performing the inventory in the LCA study. Tosca https://tosca-life.info/getting-started-guides/life-cycle-assessment/how-to-perform-an-lca/phases-in-an-lca-study/inventory/ (2011).

  46. McGeoch, L., Hardie, T., Coxon, C. & Cameron G. Net Zero Care: What Will It Take? (The Health Foundation, 2023).

  47. Barratt, A. L., Bell, K. J. L., Charlesworth, K. & McGain, F. High value health care is low carbon health care. Med. J. Aust. 216, 67–68 (2022).

    Article  PubMed  Google Scholar 

  48. Morgan, D. J., Dhruva, S. S., Coon, E. R., Wright, S. M. & Korenstein, D. Update on medical overuse. JAMA Intern. Med. 178, 110–115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brownlee, S. et al. Evidence for overuse of medical services around the world. Lancet 390, 156–168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhi, M., Ding, E. L., Theisen-Toupal, J., Whelan, J. & Arnaout, R. The landscape of inappropriate laboratory testing: a 15-year meta-analysis. PLoS ONE 8, e78962 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. John, J. B., Gray, W. K., O’Flynn, K., Briggs T. W. R. & McGrath J. S. The Getting It right First Time (GIRFT) programme in urology; rationale and methodology. BJU Int. 134, 141–147 (2024).

    Article  PubMed  Google Scholar 

  52. Syed, S. T., Gerber, B. S. & Sharp, L. K. Traveling towards disease. J. Community Health 38, 976–993 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Getting It Right First Time. Clinically-led specialty outpatient guidance. Practical OPD guidance for 17 services to maximise efficiency and reduce waiting times for patients (NHS England, 2023).

  54. Get it Right First Time, British Association of Day Surgery & Centre for Perioperative Care. National day surgery delivery pack. GIRFT, BADS & CPOC https://cpoc.org.uk/national-day-surgery-pathway-delivery-pack-published-0 (2020).

  55. Harrison, S. Urology: GIRFT Programme National Specialty Report (GIRFT, 2018).

  56. Snowden, C. & Swart, M. Anaesthesia and Perioperative Medicine. GIRFT Programme National Specialty Report (GIRF, 2021).

  57. Rayman, G. & Kar, P. Diabetes. GIRFT Programme National Specialty Report (GIRFT, 2020).

  58. GIRFT. Getting it Right First Time. Frequently Asked Questions. GIRFT https://gettingitrightfirsttime.co.uk/wp-content/uploads/2017/12/Frequently-Asked-Questions-FINAL.pdf (2017).

  59. van Hove, M. et al. Unwarranted variation and the goal of net zero for the NHS in England: exploring the link between efficiency working, patient outcomes and carbon footprint. Anaesthesia 79, 284–292 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Leapman, M. S. et al. Environmental impact of prostate magnetic resonance imaging and transrectal ultrasound guided prostate biopsy. Eur. Urol. 83, 463–471 (2023).

    Article  PubMed  Google Scholar 

  61. Asif, A. et al. Comparing biparametric to multiparametric MRI in the diagnosis of clinically significant prostate cancer in biopsy-naive men (PRIME): a prospective, international, multicentre, non-inferiority within-patient, diagnostic yield trial protocol. BMJ Open 13, e0702080 (2023).

    Article  Google Scholar 

  62. Mcalister, S. et al. The carbon footprint of hospital diagnostic imaging in Australia. Lancet Reg. Health West. Pac. 24, 100459 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Eldred-Evans, D. et al. An evaluation of screening pathways using a combination of magnetic resonance imaging and prostate-specific antigen: results from the IP1-PROSTAGRAM Study. Eur. Urol. Oncol. 6, 295–302 (2023).

    Article  PubMed  Google Scholar 

  64. Moore, C. M. et al. Prevalence of MRI lesions in men responding to a GP-led invitation for a prostate health check: a prospective cohort study. BMJ Oncol. 2, e000057 (2023).

    Article  Google Scholar 

  65. Ilic, D. et al. Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer. Cochrane Database Syst. Rev. 9, CD009625 (2017).

    PubMed  Google Scholar 

  66. Fuschi, A. et al. The impact of radical prostatectomy on global climate: a prospective multicentre study comparing laparoscopic versus robotic surgery. Prostate Cancer Prostatic Dis. 27, 272–278 (2023).

    Article  PubMed  Google Scholar 

  67. Rizan, C. et al. The carbon footprint of surgical operations: a systematic review. Ann. Surg. 272, 986–995 (2020).

    Article  PubMed  Google Scholar 

  68. Gani, A., Asjad, M., Talib, F., Khan, Z. A. & Siddiquee, A. N. Identification, ranking and prioritisation of vital environmental sustainability indicators in manufacturing sector using Pareto analysis cum best-worst method. Int. J. Sustain. Eng. 14, 226–244 (2021).

    Article  Google Scholar 

  69. Chuter, R. et al. Towards estimating the carbon footprint of external beam radiotherapy. Phys. Med. 112, 102652 (2023).

    Article  PubMed  Google Scholar 

  70. NOAA. Sulphur hexafluoride. NOAA https://gml.noaa.gov/hats/combined/SF6.html (2024).

  71. Choudhury, A. et al. Hypofractionated radiotherapy in locally advanced bladder cancer: an individual patient data meta-analysis of the BC2001 and BCON trials. Lancet Oncol. 22, 246–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Misrai, V. et al. A standardized method for estimating the carbon footprint of disposable minimally invasive surgical devices. Ann. Surg. 2, e094 (2021).

    Article  Google Scholar 

  73. Leong, J. Y., Tokarski, A. T., Roehrborn, C. G. & Das, A. K. UroLift and Rezum: minimally invasive surgical therapies for the management of benign prostatic hyperplasia. Can. J. Urol. 28, 2–5 (2021).

    PubMed  Google Scholar 

  74. Macneill, B. A. J. et al. Transforming the medical device industry: road map to a circular economy. Environ. Health 39, 2088–2097 (2020).

    Google Scholar 

  75. Davis, N. F. et al. Carbon footprint in flexible ureteroscopy: a comparative study on the environmental impact of reusable and single-use ureteroscopes. J. Endourol. 32, 214–217 (2018).

    Article  PubMed  Google Scholar 

  76. Baboudjian, M. et al. Life cycle assessment of reusable and disposable cystoscopes: a path to greener urological procedures. Eur. Urol. Focus 9, 681–687 (2023).

    Article  PubMed  Google Scholar 

  77. Kemble, J. P. et al. Environmental impact of single-use and reusable flexible cystoscopes. BJU Int. 131, 617–622 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Wombwell, A., Holmes, A. & Grills, R. Are single-use flexible cystoscopes environmentally sustainable? A lifecycle analysis. J. Clin. Urol. https://doi.org/10.1177/20514158231180661 (2023).

  79. Hogan, D., Rauf, H., Kinnear, N. & Hennessey D. B. The carbon footprint of single-use flexible cystoscopes compared with reusable cystoscopes. J. Endourol. 36, 1460–1464 (2022).

    Article  PubMed  Google Scholar 

  80. Tauqeer, M. A. & Bang, K. E. Servitization: a model for the transformation of products into services through a utility-driven approach. J. Open. Innov. Technol. Mark. Complex. 4, 60 (2018).

    Article  Google Scholar 

  81. Li, K., Wang, J., Feng, L. & Zhu, L. Re-discussion of servitization strategy and firm performance. Front. Psychol. 13, 1022648 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rizan, C. & Bhutta, M. Re: the carbon footprint of single-use flexible cystoscopes compared with reusable cystoscopes: methodological flaws led to the erroneous conclusion that single-use ‘is better’. J. Endourol. 36, 1466–1467 (2022).

    Article  PubMed  Google Scholar 

  83. Simera, I. et al. Transparent and accurate reporting increases reliability, utility, and impact of your research: reporting guidelines and the EQUATOR Network. BMC Med. 8, 24 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. John, J. B. et al. The carbon footprint of the perioperative transurethral resection of bladder tumour pathway. BJU Int. https://doi.org/10.1111/bju.16477 (2024).

  85. GIRFT. Urology: towards better care for patients with bladder cancer (GIRFT, 2022).

  86. Association of the British Pharmaceutical Industry. ABPI Blister Pack Carbon Footprint Tool (ABPI, 2023).

  87. Budzinski, K. et al. Introduction of a process mass intensity metric for biologics. N. Biotechnol. 49, 37–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Parvatker, A. G. et al. Cradle-to-gate greenhouse gas emissions for twenty anesthetic active pharmaceutical ingredients based on process scale-up and process design calculations. Sustain. Chem. Eng. 7, 6580–6591 (2019).

    Article  CAS  Google Scholar 

  90. Budzinski, K. et al. Streamlined life cycle assessment of single use technologies in biopharmaceutical manufacture. N. Biotechnol. 68, 28–36 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Mcgain, F., Moore, G. & Black, J. Hospital steam sterilizer usage: could we switch off to save electricity and water? J. Health Serv. Res. Policy 21, 166–171 (2016).

    Article  Google Scholar 

  92. McGain, F., Moore, G. & Black, J. Steam sterilisation’s energy and water footprint. Aust. Heal. Rev. 41, 26–32 (2017).

    Article  Google Scholar 

  93. Rizan, C., Lillywhite, R., Reed, M. & Bhutta, M. F. Minimising carbon and financial costs of steam sterilisation and packaging of reusable surgical instruments. Br. J. Surg. 109, 200–210 (2022).

    Article  PubMed  Google Scholar 

  94. AHSN. An Innovation Agency report for the NHSE Sustainable Procurement Team. Surgical instrument set rationalisation: understanding the benefits and replicating the process (Innovation Agency, 2023).

  95. Boag, K. et al. Introducing green innovation into clinical practice. Bull. R. Coll. Surg. Engl. 104, 140–144 (2022).

    Article  Google Scholar 

  96. Rizan, C., Bhutta, M. F., Reed, M. & Lillywhite, R. The carbon footprint of waste streams in a UK hospital. J. Clean. Prod. 286, 125446 (2021).

    Article  CAS  Google Scholar 

  97. Thiel, C. L., Woods, N. C. & Bilec, M. M. Strategies to reduce greenhouse gas emissions from laparoscopic surgery. Am. J. Public Health 108, S158–S164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sustainable Development Unit. Public opinion survey 2015. Sustainability and the NHS, Public Heath and Social Care system — Ipsos Mori survey (NHS England, 2016).

  99. Enventure Resarch. NHS Sustainable Development Unit Study Report (NHS England, 2017).

  100. Phull, M. et al. Potential carbon savings with day-case compared to inpatient transurethral resection of bladder tumour surgery in England: a retrospective observational study using administrative data. Eur. Urol. Open Sci. 52, 44–50 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. John, J. B. et al. Carbon footprint of hospital laundry: a life cycle assessment. BMJ Open 14, e080838 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Benedettini, O. Green servitization in the single-use medical device industry: how device OEMs create supply chain circularity through reprocessing. Sustainability 14, 12670 (2022).

    Article  Google Scholar 

  103. Lepp, K., Vornanen, L. & Savinen, O. Lifecycle extension of single-use medical device sensors: case study of an engineering sustainability transition program. J. Clean Prod. 423, 138518 (2023).

    Article  Google Scholar 

  104. Bhutta, M. F. Our over-reliance on single-use equipment in the operating theatre is misguided, irrational and harming our planet. Ann. R. Coll. Surg. Engl. 103, 709–712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Powles, T. et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23, 1133–1144 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Gourd, E. Neoadjuvant pembrolizumab in bladder cancer. Lancet Oncol. 19, e669 (2018).

    Article  PubMed  Google Scholar 

  107. Cristobal-Garcia, J., Pant, P., Reale, F. & Sala, S. Life Cycle Assessment for the Impact Assessment of Policies (European Union, 2016).

  108. Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article  Google Scholar 

  109. Forster, P. et al. in Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge University Press, 2023).

  110. Lindsey, R. Climate change: atmospheric carbon dioxide. NOAA https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (2024).

  111. NASA. Carbon dioxide. NASA https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 (2024).

  112. NASA. A global view of methane. NASA Earth Observatory https://earthobservatory.nasa.gov/images/87681/a-global-view-of-methane (2016).

  113. Global Monitoring Laboratory. Trends in CO2, CH4, N2O, SF6. NOAA https://gml.noaa.gov/ccgg/trends/ (2024).

  114. US Environmental Protection Agency. Climate change indicators: atmospheric concentrations of greenhouse gases. EPA https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases (2024).

  115. Busenberg, E. & Plummer, N. Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour. Res. 36, 3011–3030 (2000).

    Article  CAS  Google Scholar 

  116. NOAA. HFC-32. NOAA https://gml.noaa.gov/hats/gases/HFC32.html (2024).

  117. NOAA. HFC-134a. NOAA https://gml.noaa.gov/hats/gases/HFC134a.html (2024).

  118. NOAA. CFC-11. NOAA https://gml.noaa.gov/hats/combined/CFC11.html (2024).

  119. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  120. NOAA. CF4 (Tetrafluoromethane). NOAA https://gml.noaa.gov/hats/gases/CF4.html (2024).

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.B.J. researched data for the article. J.B.J., W.K.G. and J.S.M. contributed substantially to discussion of the content. J.B.J. and W.K.G. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joseph B. John.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Antonio Pastore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ecoinvent database (v3.10): https://support.ecoinvent.org/ecoinvent-version-3.10

EQUATOR network: https://www.equator-network.org/

GIRFT: https://gettingitrightfirsttime.co.uk/what-we-do/

GIRFT academy resources: https://gettingitrightfirsttime.co.uk/academy-resources/

GIRFT all clinical metrics: https://model.nhs.uk/home

Greener NHS areas of focus: https://www.england.nhs.uk/greenernhs/a-net-zero-nhs/areas-of-focus/

Greener NHS net zero supplier roadmap: https://www.england.nhs.uk/greenernhs/get-involved/suppliers/

Sustainable Healthcare Coalition core pathway carbon calculator: https://shcoalition.org/care-pathway-carbon-calculator-2/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, J.B., Gray, W.K., Briggs, T.W.R. et al. Measuring and improving the cradle-to-grave environmental performance of urological procedures. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00937-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00937-0

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene
  NODES
admin 1
Association 7
COMMUNITY 1
innovation 4
INTERN 12
Note 2
twitter 1