
1SCIenTIFIC RepORTS | 7: 6600 | DOI:10.1038/s41598-017-06544-x

www.nature.com/scientificreports

A high-content image analysis 
approach for quantitative 
measurements of chemosensitivity 
in patient-derived tumor 
microtissues
Ilmari Ahonen1,2, Malin Åkerfelt2, Mervi Toriseva2, Eva Oswald3, Julia Schüler3 & Matthias 
Nees2

Organotypic, three-dimensional (3D) cancer models have enabled investigations of complex 
microtissues in increasingly realistic conditions. However, a drawback of these advanced models 
remains the poor biological relevance of cancer cell lines, while higher clinical significance would be 
obtainable with patient-derived cell cultures. Here, we describe the generation and data analysis 
of 3D microtissue models from patient-derived xenografts (PDX) of non-small cell lung carcinoma 
(NSCLC). Standard of care anti-cancer drugs were applied and the altered multicellular morphologies 
were captured by confocal microscopy, followed by automated image analyses to quantitatively 
measure phenotypic features for high-content chemosensitivity tests. The obtained image data were 
thresholded using a local entropy filter after which the image foreground was split into local regions, for 
a supervised classification into tumor or fibroblast cell types. Robust statistical methods were applied 
to evaluate treatment effects on growth and morphology. Both novel and existing computational 
approaches were compared at each step, while prioritizing high experimental throughput. Docetaxel 
was found to be the most effective drug that blocked both tumor growth and invasion. These effects 
were also validated in PDX tumors in vivo. Our research opens new avenues for high-content drug 
screening based on patient-derived cell cultures, and for personalized chemosensitivity testing.

Despite some recent therapeutic advances, lung cancers remain a leading cause of cancer-related deaths. In par-
ticular, late stage, aggressive non-small cell lung carcinoma (NSCLC) is a leading cause of cancer-related mortal-
ities worldwide1. NSCLCs likely derive from epithelial cells of the proximal airway (squamous cell carcinomas) 
or from distal alveolar locations (adenocarcinomas). The development of novel personalized therapeutic strate-
gies, the introduction of more predictive biomarkers including EGFR2 and successful application of novel tyros-
ine kinase inhibitors that target for example the ALK oncogene3, have improved patient response to therapies. 
However, the pronounced heterogeneity of most NSCLCs, coupled with high genetic instability contributes to the 
development of drug resistance, resulting in progression and failure of therapies. Invasion, metastasis and recur-
rence are thus the main consequences leading to poor patient outcome. The major cause of death from NSCLC 
remains to be due to local and distant metastases.

The availability of validated lung cancer models that resemble the heterogeneous histology of solid human 
tumors is still a significant bottleneck for preclinical cancer research and drug discovery. It becomes increasingly 
apparent that both established tumor cell lines, and standard mouse models based on such cell lines (subcuta-
neous xenografts), only poorly recapitulate the morphology and heterogeneity seen in clinical lung cancer biop-
sies. Genetically engineered mouse models partly fill the gap, but they remain expensive and provide very low 
experimental throughput. Furthermore, tumors derived from other species and different genomes often deviate 
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in behavior from human cancers. As a consequence, patient-derived xenografts (PDXs), derived from surgically 
resected NSCLC tumors, increasingly become established as biologically and clinically more relevant model sys-
tems4, 5. Recent results provide strong evidence that PDXs established from lung cancers indeed closely mimic 
the characteristics of patient primary tumors6, 7. The presence of integral murine stroma in PDX models, which 
rapidly replace the human counterparts after engraftment, is not necessarily a limitation for functional and che-
mosensitivity studies8.

Three-dimensional (3D) cell culture models of epithelial cancers, increasingly utilized for high-content drug 
screening methodologies, have allowed researchers to gain insight into the biological and cellular mechanisms of 
the disease9–11. During recent years, the technology and practices related to in vitro 3D cell models have greatly 
advanced, and now represent more and more realistic solutions for disease modeling. Major technological 
advances in organotypic, 3D models or microtissues have enabled the investigation of complex structures. These 
mimic the histologies observed in different solid cancers in a much more realistic fashion12, specifically also in 
lung cancers13. A major drawback even of advanced 3D models remains the uncertain biological relevance of 
the “classic” cancer cell lines that are still routinely utilized. Regardless of the level of technical sophistication, 
3D models based on cell lines that have been cultured for decades on plastic dishes cannot fully address the 
complexity and heterogeneity, nor the genetic instabilities observed in patients’ tumors. Genetic profiling of cell 
lines has shown the occurrence of large numbers of mutations probably irrelevant for the disease, as most of these 
were likely acquired in vitro. Similarities between cell lines are often more pronounced than their resemblance to 
the original tumor entity they were derived from14, 15. Clinically truly relevant and personalized in vitro disease 
models can only be achieved by utilizing patient-derived primary cell material. Small quantity of starting material 
is often a limitation for isolation of patient tumor cells directly from biopsies. However, the tumor mass can be 
increased as PDX cultures from which subsequently a larger number of tumor cells can be isolated for culture 
in vitro. Such PDX cultures represent natural co-cultures of human cancer and mouse fibroblast cells, which 
form complex epithelial tissue-like structures (organoids), surrounded by mesenchymal murine fibroblasts (the 
tumor stroma), when embedded in extracellular matrix (ECM). We have previously demonstrated that func-
tional tumor-stroma-interactions and the tumor microenvironment (TME) are important to faithfully mimic 
tumor-specific drug responses in vitro16. In addition, we and others showed that cancer-associated fibroblasts 
(CAFs) demonstrate altered, activated functions compared to normal fibroblasts17. Thus, CAFs have a significant 
impact on both tissue formation and drug sensitivity. Tumor-stroma interactions occur by the indirect cross talk 
via chemokines and growth factors as well as by direct cell-cell interactions. Mouse fibroblasts in PDX tumors 
appear to fully replace human fibroblast functions and thus compensate for their loss in both PDX and functional 
in-vitro microtissues.

A number of relatively straightforward image analysis methods, mainly for comparably simple 3D 
mono-cultures, have been described in the literature, and a collection of both general and dedicated image anal-
ysis software tools is now available for the analysis of 3D spheroid cultures. BisQue18, CellProfiler19, Icy20 and 
ImageJ21 are popular open-source software, all offering a range of functionalities for a variety of image analy-
sis problems. Instead of taking a more focused approach to a particular problem, these software applications 
generally sacrifice some of the user-friendliness for the sake of increased customizability. Also the open-source 
software BioimageXD22 maintains a high repertoire of readily available tools, but is not ready for fast analysis 
of large image sets. Another solution for high-throughput image analysis, AMIDA, has been developed in our 
laboratory23, 24. Despite a wide array of morphometric readout options available in AMIDA, the currently avail-
able functions do not yet match the detailed requirements for complex primary co-cultures, or PDX cultures. 
An advanced segmentation method suitable for complex 3D co-cultures of cancer cells with CAFs, based on 
Markov random fields, was introduced by Robinson et al.25. In addition, we have demonstrated that the complex, 
heterogeneous and dynamic interaction of tumor and stromal compartments can be simultaneously investigated 
by tracking their growth, morphogenesis and movement over time and space16. Another 3D co-culture setup of 
human prostatic tissues was presented, where their behavior was assessed through systematic measurements of 
morphology and mobility26. These findings and recent contributions by others27, 28, argue for the biological rele-
vance of 3D tumor-fibroblast co-cultures in cancer research and personalized medicine, and highlight the need 
for further development both in the laboratory and in the analysis methodology.

Here, we have established PDX microtissue cultures derived from NSCLC patients. The cultures were treated 
with standard of care drugs in order to study their drug-sensitivity. We have developed a pipeline of analyses 
suitable for the PDX microtissue image data, including the early image processing and the subsequent statistical 
analysis of specific treatment effects. A local entropy filter and a global thresholding method were used to separate 
the tissues from the background in the original image data. This foreground was then automatically classified into 
either tumor or fibroblast cells, based on a set of texture features. The overall growth of each cell type, the area 
and roundness of the multicellular organoid structures were then quantified using appropriate morphological 
features. Representative drug sensitivity tests on PDX microtissues in vitro were performed, leading to markedly 
different distributions of morphologies. These results demonstrate the potential of the analysis methods to quan-
tify individual drug responses of distinct patient samples. Thus, our results provide a promising methodology 
useful for high-content analysis of complex patient-derived cancer cultures.

Results
Establishment of patient-derived microtissue models. In order to develop cell culture models that 
resemble cancer tissues, and more reliably recapitulate the complex architecture of solid tumors in vivo, PDX cell 
culture models were established in vitro (Fig. 1A). NSCLC tumors from patients were cut into pieces, grown as 
PDX tumors in mice, and cell suspensions for these tumors were directly transferred to organotypic 3D cultures. 
This approach completely circumvents standard two-dimensional (2D) culture on plastic plates, which can dra-
matically change the characteristics of the tumor cells14. In this study, three NSCLC patient samples (LFXA 923, 
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LFXA 983, LFXA 1647) were inoculated to generate tumors in mice. The resulting PDX tumors were extracted, 
DNA was isolated, and sequenced for characterization of mutations in key regulatory proteins and drivers of 
NSCLC. The mutation hot spots investigated covered the most frequently mutated oncogenes and tumor suppres-
sor genes in lung cancer, including TP53, KRAS, EGFR, MET and LKB1 (Suppl. Table 1). LFXA 983 and LFXA 
1647 tumors displayed a homozygous deletion of TP53, whereas LXFA 923 showed a homozygous deletion of 
the LKB1 gene. LFXA 923 and LFXA 983 both displayed heterozygous deletion of KRAS. The mutation analyses 
clearly demonstrated individual differences in tumor genotypes.

Cell suspensions were generated from the PDX tumors, which consisted invariably of a mixture of mouse 
fibroblasts with human NSCLC cells. This model allows the investigation of the growth of multicellular tumor 
organoids in vitro and simultaneously monitor the proliferation of fibroblasts. 3D culture of cell suspensions 
formed natural in vitro co-cultures between tumor and stroma when embedded into biologically relevant ECM 
preparations. Under organotypic cell- and tissue culture conditions, NSCLC tumor cells either formed tight mul-
ticellular structures (organoids) or lose aggregates with variable degrees of cell-cell interactions.

To generate representative, robust and reproducible PDX microtissue-cultures based on NSCLC patient sam-
ples, we adapted a standardized and miniaturized protocol16, 23. According to real-time cell monitoring, almost 
every single tumor cell seeded into ECM gave rise to a multicellular tumor organoid with clonal origin. To guar-
antee this strictly clonal approach, single cell suspensions were meticulously tested not to contain any cell clusters. 
Furthermore, cell seeding density was restricted (300–700 cells/well) in order to avoid early fusion of emerging 
organoids as the result of close-by neighbors. Hundreds of isolated, independent organoids spontaneously formed 
per well. To find the most suitable ECM composition to support the growth of both, tumor cells and stromal 
fibroblasts, three types of ECM were utilized: Matrigel, rat tail type I collagen, and a mixture of these (1:1). In 
accordance with our previous findings16, in collagen, the fibroblasts displayed elongated and branching morphol-
ogy which formed an extensive network, but remained only small and round in Matrigel (Fig. 1B). A mixture of 

Figure 1. Patient-derived xenograft (PDX) microtissue models of non-small cell lung carcinoma (NSCLC). (A) 
Cells from NSCLC patients were isolated and propagated as mouse xenografts to maintain and enrich for the 
tumor material. Tumor and stromal cells were isolated as single cell suspensions, a fraction of which was directly 
cultured for 12 days as organotypic cultures embedded in extracellular matrix (ECM). (B) Optimization of 
extracellular matrix (ECM) preparations used for 3D culture, using Matrigel, type I collagen, and a 1:1 mixture 
of both. (C) Spontaneous PDX microtissue generation (LXFA 1647) from single cells, for 9 days of culture in 
ECM (Matrigel-collagen). (D) Live-cell staining for living cells with Calcein AM (green). Confocal imaging of 
representative PDX microtissues shows characteristic morphologies formed by PDX tumors LXFA 923, LXFA 
983, and LXFA 1647. A blow up image is shown on the right. Scale bars: 100 μm. The first two images in A are 
distributed on pixabay.com under CC0 Public Domain Licence.
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both Matrigel and collagen provided a suitable compromise that supports the growth of both epithelial tumor 
cells and mesenchymal fibroblasts.

Further microtissue model development focused on the 1:1 mixture of Matrigel and collagen, which best 
recapitulates the formation of characteristic in vivo morphologies of both compartments of solid tumors. The 
growth and spread of the cancer and fibroblast cells in ECM was further investigated by real-time monitoring, 
using the IncuCyteTM live-cell imaging system (Fig. 1C), which relies on phase contrast microscopy. Functional 
microtissues started to emerge after 2–3 days, and larger organoids or loose clusters of tumor cells were generated 
over 2–5 days. These were surrounded by a dense meshwork of fibroblasts, many of which were in direct physical 
contact to the tumor aggregates at multiple positions. At day 10 of 3D culture, cultures were stained with Calcein 
AM live cell dye and high-resolution image stacks of living PDX co-cultures were acquired by spinning-disc 
confocal microscopy. Calcein AM staining revealed the formation of multiple, multicellular organoids with clear 
morphological differences between the three PDX cultures (Fig. 1D). Many loose and grape-like structures were 
observed that indicate tumor aggregates or clusters with limited cell-cell-contacts; characteristic of aggressive 
tumors like advanced lung cancers. LXFA 983 contained many fibroblasts, which caused severe contraction of 
the 3D culture well after day 8–10. In contrast, both LXFA 923 and LXFA 1647 tumor suspensions, which con-
tained less fibroblasts, generated stable and reproducible microtissues. At day 8–10, these cultures were suffi-
ciently mature for drug target validation and phenotypic screening. The differences in the genotype and mutation 
spectra between the three different patient cells (Suppl. Table 1) offer possible justifications to the variations in 
the observed phenotype.

To establish accurate computational methods for the analysis of confocal images of the PDX microtissues, the 
two cell populations first needed to be reliably identified and distinguished from each other. Immunofluorescence 
stainings with monoclonal antibodies targeting selected mouse and human proteins specific for each cell type 
were performed. In Matrigel, the roundish multi-cellular structures typically expressed human E-cadherin, a 
marker for epithelial cells (Fig. 2A). Large and small cancer expressing smooth muscle actin (αSMA), a mesen-
chymal marker often expressed by fibroblasts. In contrast, in Matrigel/collagen mixture the αSMA expressing 
fibroblasts rapidly spread and formed characteristic branches, whereas the tumor cells generated multicellular 
tumor organoids (Fig. 2B).

Generation of image data on diverse PDX microtissue cultures for method evaluation. To 
evaluate the image analysis method, we generated a low resolution confocal image data set of PDX microtissue 
cultures. This data set was of exploratory nature, containing images from all three NSCLC patient cells (LXFA 
923, LXFA 983 and LXFA 1647) and from three distinct culture conditions: 1) “Freezer”: the PDX cell suspensions 

Figure 2. Characterization of PDX microtissues using immunofluorescence. The fibroblasts-tumor interaction 
was characterized in different ECM preparations. (A) Matrigel and (B) in Matrigel/collagen mixture. Fibroblasts 
require collagen for growth and spreading. Roundish tumor organoids express epithelial markers such as 
E-cadherin (Ecadh; green), whereas the fibroblasts express mesenchymal markers such as alpha-Smooth Muscle 
Actin (aSMA; red). Nuclei are stained with Draq5 (Blue). Scale bars: 100 μm.
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were immediately propagated after thawing, and directly placed into ECM to circumvent even short-term 2D 
cultures. 2) “Pre-cultured”: these cells were also thawed but first cultured for three days in a 10 cm petri dish. 
Here, a large portion of fibroblasts were able to attach the plastic surface. This approach positively selected for 
tumor cells that remained in the non-adherent fraction. 3) “Cell line”: the mouse fibroblast “contamination” was 
completely removed by magnetic cell sorting. These isolated, exclusively human tumor cells were then cultured 
for a limited number of passages in standard 2D monolayer culture, prior to their transfer into organotypic cell 
culture. Using these three different pre-conditions prior to seeding into 3D cultures, the number of fibroblasts 
and the ratio of fibroblasts to tumor cells originally present in the PDX suspensions were effectively diminished 
and could be strictly controlled.

Live cell confocal images of Calcein-stained PDX cultures were obtained at day 12 of 3D culture. The final 
image data sets were highly diverse and captured a broad view of the spectrum of possible morphologies that 
form in organotypic 3D cultures. These image series formed the solid basis for optimizing appropriate and effec-
tive image analysis tools. To a subset of these experiments, paclitaxel was administered. This standard anti-cancer 
drug was used in 2 different concentrations to further increase the variability of the resulting data.

Four image stacks were obtained from each well. These stacks were subsequently transformed into 
maximum-projected images that retained the majority of topical information. The four images were then collated 
or “stitched” to form one single, large image that captures the entire well. This image data set was utilized mainly 
for testing and evaluating the various analytical methods. A total of 60 wells were imaged per plate, with two 
replicate wells for each patient-treatment-combination. This experimental design is illustrated in Supplemental 
Fig. 1. The quality of the images varied, and images from 4 wells were excluded for being largely out-of-focus 
(missing wells in the figure).

Local entropy filtering accompanied with global thresholding provides optimal results in com-
parison to manual ground truth. Next, the computational methods utilized in the study were evaluated. 
A full illustration of the image processing and the following statistical analyses is displayed in Fig. 3 while exam-
ples of the image data at various steps of the procedure are shown in Fig. 4. As a logical first step in the analysis, 
representative image areas that contained characteristic tumor tissue structures needed to be identified. This 
was achieved with thresholding, meaning the separation of the pixels that belong to the organoids or individual 
cells from those pixels that belong to the background (Fig. 3 left). Compared to standard 2D cultures of cell lines 
imaged by fluorescence microscopy, the complex multicellular structures found in the PDX microtissue data pose 
a considerably more difficult thresholding task. As observed in the example images in Fig. 4, some key character-
istics needed to be considered when applying thresholding methods on these PDX cultures: 1) the images consist 
of a dark background with bright foreground, 2) the brightness of the objects varies greatly across and within 
the images. This depends 3) on the efficacy of live-cell staining as well as the position of objects within the stack 
of confocal images, and 4) the amount of content in each image varies greatly from practically empty images to 
images almost fully covered by structures. Given these extreme characteristics, conventional thresholding pro-
cedures are unlikely to reach optimal results. Thus, we carefully considered the choice of different thresholding 
methods, which may be suitable for our complex PDX cell models.

We propose a thresholding method based on local entropy filtering with an automatically obtained threshold 
value. This filter has been successfully used as a basis for the detailed 3D segmentation of 3D co-cultures of cell 

Figure 3. The complete chain of computational methods and their derivation. Below, the data processing steps 
are illustrated starting from the raw image data and ending with the classified and segmented data. Above, the 
development of the related methods is shown and their points of application are specified. The raw data are 
first thresholded using Otsu’s method on the local entropy filtered images. This approach was evaluated using a 
manually generated ground truth. The thresholded data are then classified between the two cell types with the 
SVM trained using 10-fold cross-validation. The data are then segmented into individual cell structures using 
the well-known Watershed algorithm. Finally, the overall growth, morphology and the number of very small 
structures are subjected to statistical analysis.
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lines25. The same method can also be applied directly for thresholding of more complex patient-derived 3D cul-
tures, permitting a higher throughput context. The local entropy filter places large values on pixel neighborhoods 
with high variability in pixel intensities. In contrast, regions with entropy close to 0 have only a few unique pixel 
values. In the context of fluorescence microscopy images, it is thus natural to assume that the image foreground 
should have higher entropy than the background. Examples of entropy-filtered images shown in Fig. 4 clearly 
support this assumption. Importantly, local entropy does not depend on either the local or global brightness 
of the images, but only on the variability among pixel intensities, thus addressing the heterogeneous brightness 
conditions. This standardizing effect is clearly visible in Fig. 4, where both bright and darker structures are equally 
illuminated.

Next, two widely used thresholding methods, one adaptive and one global, were tested: Otsu’s and Tsai’s meth-
ods. Otsu’s method29 is a popular clustering-based approach that separates the background and foreground pixels 
by minimizing the weighted sum of variances in the two classes. The method is parameter-free and adaptable 
to cases, in which the ratio of foreground versus background varies strongly30. Tsai’s method31 finds a threshold 
value that maintains the three first central moments of the pixel intensities as close as possible. This method does 
not have tuning parameters and is adaptable to distributions with varying shapes.

Both thresholding methods were applied to the original images and to the local entropy filtered images, in 
order to demonstrate the advantages or disadvantages of the filter. Each method was followed by a set of addi-
tional operations that take the data-specific conditions and existing prior knowledge into account. The full pro-
cess then consisted of the following five steps: i) obtain the image mask by applying the chosen thresholding 
method, ii) place pixels with a grayscale value larger than 0.2 in the original image to the foreground, iii) apply a 
thinning algorithm to the mask, if the thresholding was applied to local entropy filtered image, iv) set any struc-
tures with maximum diameter of less than 10 pixels to the background, v) set any holes in the foreground smaller 
than 100 pixels to the foreground. In step ii, we took advantage of the prior knowledge that bright pixels always 

Figure 4. The suggested segmentation sequence and subsequent steps enable classification of different cell 
types in confocal images from PDX microtissue cultures. The original calcein-labeled live cell images, consisting 
of multicellular tumor organoids and fibroblasts were first local entropy filtered. Next, their foreground was 
separated from the background to obtain the segmentation masks. These masks were then split into individual 
regions that were subsequently classified into the two main cell types trained for. These were shown with 
distinct colors (Tumor cells: orange, CAFs/Fibroblast: blue). The color shading indicates the certainty of the 
classification. Cultures started directly from frozen cultures, from pre-cultured cells or by the use of cell lines, 
illustrate the impact of controlling the amount of fibroblasts included into 3D cultures. These example images 
were not part of the ground truth training set.
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belong to the foreground. The boundary of 0.2 is very conservative but still benefitted the segmentation of very 
bright and smooth objects that could be missed by the entropy filter. Another drawback of the entropy filter was 
that it has the tendency to expand the structure boundaries. To correct for this trend, a thinning algorithm32, was 
applied to the obtained foreground in step iii). Importantly, this algorithm maintains the topological properties 
of the mask and no structures were lost or cut in two. The details of the algorithm are presented in Supplemental 
methods. In steps iv) and v), unrealistically small structures such as cell debris and holes in the organoids, were 
removed.

The different thresholding methods were tested with a representative sample of nine confocal images, one 
selected from each combination of patients and culture method. Each image was manually thresholded by four 
individual cell biology experts, according to the information obtained from the microtissue characterizations 
(Fig. 2). This allowed additional investigation of expert-to-expert variation in this task, on top of the generation 
of reference images. In addition, the observed disagreement between manual human segmentations can be used 
to set a realistic reference for the accuracy of the automated methods. To obtain a single ground truth for each 
image, the manual thresholding results were averaged over the experts, resulting in the nine images displayed 
in Fig. 5. The performance of the thresholding methods was then evaluated against these reference images. The 
original images are shown in Supplemental Fig. 3.

To compare the automatically obtained foregrounds to the reference images, continuous analogues for false 
positive (FPR) and false negative (FNR) rates were defined:

∑ ∑= − = −+ −FPR
N

f r FNR
N

f r1 ( ) 1 ( ) ,
(1)i

i i
i

i i

where N is the total number of pixels in the image, i∈{1, …, 672} × {1, …, 512} is the pixel index and fi and ri 
denote the pixel intensities in the automatically thresholded image and in corresponding reference image. FPR 
thus measures the average amount of excess foreground, compared to the reference image while FNR relates to 
the lack of foreground. The measures were calculated for each of the nine reference images, resulting in a total of 
18 measures for each method candidate as displayed in Fig. 6.

Figure 5. The manual thresholding for nine samples of confocal images averaged over the four experts PDX 
microtissue cultures are labelled in white (both tumor and stroma). White and black colors indicate a perfect 
agreement among the experts, whereas gray shades result from differing pixel assignments.
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All methods performed relatively well in terms of precision and did not falsely identify many background 
pixels as foreground (Fig. 6). The methods based on local entropy were more liberal in this regard, whereas the 
methods applied to the raw data remained very conservative. This conservatism was reflected in the FNR, where 
these two reference methods were in some cases having difficulties to capture the full foreground. The expert 
average FPR and FNR revealed that some images, namely 2, 7 and 9, were significantly more difficult to seg-
ment than the others and the expectations placed on the automated methods should thus be relaxed accordingly. 
Overall, the methods that included the local entropy filtering were preferable, despite the moderately increased 
FPR. Although the differences between the two candidates were not as pronounced, the method utilizing the 
Otsu’s threshold arguably provided the best overall results. The chosen method has an overall good performance 
with both the FPR and FNR below 10% in every image, except the very difficult image number 9.

Local texture features allow accurate classification of the PDX microtissues. The two cell types, 
tumor cells and fibroblasts, typically form complex, interlaced superstructures (Fig. 4). Depending on their gen-
otype and stimuli provided by their microenvironment, the tumor cells generally form organoids that can be 
either rounded or form grape like structures, in some cases even “stellate” structures with invasive “appendages”. 
In contrast, the fibroblasts are typically loosely grouped, rarely form cell clusters, and stretch out to form a more 
or less dense meshwork of cells throughout the entire cell culture area. Without any additional color labels to sep-
arate the cell classes from each other, and only gradual differences in live cell labeling via exposure to the Calcein 
AM dye, we cannot expect direct and simple segmentation approaches such as the method utilized by Di et al.33 
to yield convincing results. Therefore, we first split the obtained image foreground into disjoint regions, which we 
then aimed to accurately classify into either the fibroblast/CAF or tumor cell type in a supervised manner (Fig. 3 
middle). Conventional segmentation techniques, such as those used in23, 34, can then be applied to the labeled 
foreground, and allow a straightforward analysis of multicellular (tumor) or individual (fibroblast) cell structures.

In addition to the nine detailed ground truth images, a set of 18 only roughly segmented images curated by 
just one expert, was added to increase the size of the classifier training set to 27 images. These additional training 
images separate the foreground into the two cell types, but do not accurately portray the boundaries of multi-
cellular structures. Generating such training material was relatively straightforward and fast, thus allowing the 
classifier to be retrained for new data with manageable effort.

In the PDX microtissues, single, most likely dead and/or apoptotic cells demonstrated a small and round 
phenotype regardless of their cell type. Differentiating between fibroblast and tumor cells in these cases was not 
attempted; and it is likely that both cell types are presented in this group. Instead, small objects with a maximum 
diameter of less than 30 pixels and roundness of at least 0.5 (50% roundness compared to ideal sphere) were 
excluded from the training and simply labelled as “rounded single cells”. However, these data were not excluded 
from the subsequent analyses, but were displayed as a third class of cells. The roundness measure is defined in 
detail later in the section describing the statistical analyses.

After the removal of single “dead” cells, the foreground of the 27 training images was identified using the pro-
posed thresholding method and then split into individual disjoint Voronoi regions, using a propagation algorithm 
described by Jones et al.35. Importantly, the regions obtained with this algorithm respect the borders of the fore-
ground but their general shape and size can be controlled via the supplied seed pixels of the regions. For optimal 
segmentation results, the regions should be large enough to retain the amount of information necessary for the 
classification, but still small enough to allow accurate segmentation. Here, we opted to use hexagonal regions of 
approximately 350 pixels, roughly the size of one large cell or a small multicellular structure. An example of the 
resulting (and classified) regions is shown in Fig. 4. A total of 2851 regions labeled as “fibroblast” and 2739 as 
“tumor” were obtained from the 27 images.

The ground truth labels for the regions were decided with a majority vote over the manually labeled images: 
the total number of pixels colored as cancer and as fibroblast in the region across all ground truth images was 
calculated, after which the label of the region was set to which ever total was higher. For the large majority of the 
regions (85%), the decision was close to unambiguous with one of the two labels getting over 90% of the votes.

A set of 37 numerical features describing the texture of each region was extracted:

Figure 6. Comparison of the thresholding methods. The Expert average measures the variation between the 
experts and gives a reasonable bound for the obtainable results.
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•	 Standardized entropy of all the pixels in the region calculated in the same manner as for the individual win-
dows in the thresholding phase (1 feature)

•	 Standard deviation of the pixel values in the region (1 feature)
•	 Local binary pattern histogram (LBP)36 from 3 × 3 windows in the smallest form mapping with non-uniform 

patterns grouped under one label (9 features). LBPs are a powerful family of texture features that utilize a 
small set of codes that relate to local pixel neighborhood characteristics such as edges, corners and rough sur-
faces. The relative frequencies of these codes is calculated for a given region, forming the final feature vector. 
Here, we extracted a total of 10 binary patterns and thus a 10-dimensional feature vector.

•	 Haralick features37 (26 features). These features are a well-established set of image texture descriptors based 
on the symmetric pixel co-occurrence matrix C. The entries C(i,j), i,j = 0, …, 255 denote the probability that 
two randomly picked adjacent pixels in the image have the values i and j. The actual features are various prop-
erties of the co-occurrence matrix such as the energy, entropy, or correlation. A total of 26 such features are 
readily available and documented in the EBImage38 R-package39.

Importantly, these features do not depend on the alignment, or the overall brightness of the regions. Some 
of the features mentioned above were very highly correlated, to the extent that they caused problems in the 
subsequent classifier training phase. This redundancy was tackled by substituting the features by a set of their 
principal components40. The features were first standardized to have a mean 0 and variance 1 for equal weighting, 
after which the first 23 principal components were extracted. Together, these components accounted for 95% 
of the variance in the data. Finally, the culture method was added as a categorical variable among the principal 
components.

A set of classifiers was considered:

•	 logistic regression with main effects41

•	 random forest (RF)42, 43 with 1000 trees and ≈24 5 components sampled at each split. The size of the trees 
was controlled by varying the minimum proportion of observations allowed in the terminal nodes of the 
trees, specific values being 2.5%, 5% and 10%.

•	 support vector machine (SVM)44 with a Gaussian kernel. The hyper parameter σ controlling the Gaussian 
kernel’s shape was estimated automatically from the data using the method implemented in the R package 
kernlab45. The SVM algorithm is controlled by a cost parameter C for which we considered values 1,10 and 
100.

•	 A bundle of logistic regression, using 5-nearest neighbors and 10-nearest neighbors. Bundling combines the 
ideas of ensemble learning46 and bootstrap aggregation, or bagging47, of decision trees and has often been 
found to produce superior results when compared to single learners. A bootstrap sample is taken from the 
training data and the out-of-bag samples are used for training the chosen ensemble of learners. The predic-
tions of these learners are supplied as additional covariates to a decision tree that is then trained on the in-bag 
samples. A total of 20 such bootstrap iterations are run, after which the final prediction is obtained as an 
average over the 20 trees.

The performance of the classifiers was assessed with a 10-fold cross-validation48. The results for each cell 
culture variation are shown in Table 1. Only moderate differences were observed between the methods, however 
the overall results seem to favor the SVM classifier, which was chosen as the final model. The overall accuracy 
of approximately 80% can be considered as solid performance in such a complex image classification task and 
good enough for obtaining sufficient accuracy for subsequent analyses. The ROC-curves of the SVM model and 
additional, more detailed characteristics are illustrated in Supplemental Fig. 4. The trade-off between a classifiers 
sensitivity and its specificity can be controlled by adjusting the decision threshold of the predictions. Since there 
was no reason to favor one cell type over the other, a threshold that results in equal sensitivity and specificity was 
used. Finally, the chosen classifier was used for estimating the total growth of the microtissues displayed in the 
Supplemental Fig. 1.

The computational methods generalize to cell line co-culture data. To validate the proposed image 
analysis method and to test its applicability to cell line cultures, we refer to an image data set previously pub-
lished by Åkerfelt et al.16. The data set consisted of organotypic 3D co-cultures, using fluorescence-tagged cell 

method

Freezer N = 382/143 Precultured N = 1946/294

AUC ACC F1 SensSpec AUC ACC F1 SensSpec

Logistic regression 85.1 77.5 65.3 77.6 89.1 81.7 53.9 81.6

Random forest 87.8 80.4 69.1 80.4 86.3 78.8 49.5 78.9

SVM 92.0 82.7 72.2 82.5 88.2 79.9 51.1 79.9

Bundle 88.4 78.3 65.9 76.9 88.4 80.8 52.6 81.0

Table 1. Cross-validation results for the different classifier candidates. The results are displayed separately 
for the two culturing methods that are relevant to the task. The metrics are AUC = area under the ROC curve, 
ACC = Accuracy, F1 = the harmonic mean of precision and recall, and SensSpec = the sensitivity and specificity 
of the classifier. Images of cells cultured as cell lines do not contain any fibroblasts and are classified perfectly by 
each of the tested classifiers. The best variation of each method was chosen based on the area under the AUC. 
Reference class for the metrics is cancer.
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lines. Specifically, the co-cultures comprised of fluorescent prostate cancer cell line LNCaP (stably expressing the 
dsRed marker) and the non-transformed PF179T fibroblast cell line, expressing green-fluorescent protein (GFP). 
Importantly, the stably expressed fluorescent labels separated the two cell types clearly into different color chan-
nels. The image data set included a total of 9 drug treatments in two concentrations, and a DMSO vehicle control. 
The same ECM composition of Matrigel and type I collagen, as well as the same type of live cell confocal imaging 
was used as in our PDX experiments.

The original red-and-green images were transformed to grayscale using the luminance preserving transfor-
mation: 0.2126R + 0.7152G + 0.0722B in order to mimic the black-and-white PDX data. 9 accurately segmented 
ground truth images were generated to measure the accuracy of the proposed thresholding method, while the 
SVM classifier was trained on the full set of color-separated images.

Our proposed thresholding method–in the absence of labeled marker expression–achieved an overall accu-
racy of 94.1% with FPR and FNR equal to 5.0% and 0.8% correspondingly. The overall cross-validated accuracy 
of the trained classifier was measured to be 92.2% with an AUC of 97.3%. Both results were highly satisfactory, 
demonstrating that the method can also be successfully applied to microtissue culture data of traditional cell lines. 
Examples of segmented images from these data are shown in the Supplemental Fig. 5.

High-content image analysis of anti-cancer drug treatments on PDX microtissues. Next, a 
small-scale drug chemosensitivity test was performed using standard-of care drug treatments for NSCLC. PDX 
cell suspensions from two selected patient-derived xenografts (LXFA 923 and LXFA 1647), which were selected 
due to their robust microtissue formation in 3D cultures, were cultured using the “pre-culture” method; mean-
ing excess fibroblasts were removed prior to seeding into ECM. These PDX microtissues were then treated with 
cisplatin, docetaxel and gemcitabine, in three different concentrations. Here, our focus was shifted towards the 
estimation of drug responses and interpretation of the phenotypic responses of the drug treatments. One 60-well 
plate was prepared for each patient, resulting in a total of 120 imaged wells. The design of this study is shown in 
Supplemental Fig. 2. After 12 days of organotypic 3D culture, the PDX microtissues were imaged using live cell 
confocal microscopy.

To first test the generalizability of the classifier, rough, manually segmented images were generated from this 
new set of confocal images. One well was picked from each patient-drug-concentration combination, resulting in 
20 curated ground truth images. Regardless of the nominally equal experiment conditions, the trained classifier 
did not generalize well concerning the second PDX data set. The observed initial accuracy with the chosen deci-
sion threshold value was only an unsatisfactory 74.4%. This indicated that the classifier was still sensitive towards 
small uncontrollable variation between the experiments and its performance should be checked before applying 
to new data. The classifier was retrained using the newly generated ground truth images, after which it reached 
84.3% overall accuracy and 89.8% AUC.

After the PDX microtissue classification, the detected tumor and fibroblast foregrounds were further seg-
mented into individual structures. This was achieved using a previously described method23, 34, by applying 
the watershed algorithm49 to the distance-transformed mask of the foreground (Fig. 3 right). In practice, this 
approach separates structures that are connected only by a small number of pixels.

Statistical analysis of PDX microtissue growth and structure morphology shows differences 
between individual patient samples. By thresholding and classifying the foreground of the PDX data, 
we obtained an overview of the growth of the PDX microtissue cultures, and how this was affected by the differ-
ent drug treatments (Fig. 7A). The estimated total growth of tumor cells and fibroblasts, as well as the number 
of rounded single dead or dying cells, is shown in Fig. 7B. Surprisingly, cisplatin did not show a significant effect 
on any cell population, and only slightly reduced the fibroblast growth in patient sample LXFA1647. Docetaxel 
was clearly the most effective treatment, and it significantly reduced the growth of tumor organoids (4–28%) and 
fibroblasts (44–59%), already at low concentrations (1 nM), compared to the control treatment. In addition, a 
marked increase of rounded single cells was detected in both patient samples, implying a significant increase in 
cytotoxicity and cell death. Gemcitabine was able to block both tumor organoid and fibroblast growth in patient 
sample LXFA 1647 at a higher concentration (10 μM), while only fibroblasts were affected in patient sample 
LXFA923 (Fig. 7B). These results suggest an individual drug response pattern in the different patient samples. For 
this reason, we decided to conduct a detailed investigation of the individual tumor organoid morphology, in order 
to better understand the effects of the different treatments.

The distributions of two morphological features of the tumor organoids, area and roundness, across the patient 
samples and treatments were measured and are illustrated in Fig. 8A. Area measures the growth and thus prolif-
eration of the living tumors, while roundness indicates the level of epithelial differentiation, which typically leads 
to pronounced cell-cell-contacts between tumor cells and therefore rounded organoids. The Roundness measure 
indicates the opposite of tumor invasion, as well-differentiated organoids are typically surrounded by an intact 
basement membrane, which effectively blocks invasive tendencies. Increased roundness can also be the result of 
growth inhibition and is therefore often observed in small or effectively drug-treated organoids. The tumor area 
is simply measured as the number of pixels in the structure, while roundness is obtained as a function of the area 
(A) and the maximum structure diameter D: 4πA/(πD)2. Roundness is thus a measure of a structure’s deviation 
from a perfect circle, where larger values indicate greater circularity. Here, we explored the effects of different 
treatments in the two patient samples (Fig. 8A). Docetaxel significantly reduced the size and increased the round-
ness of the LXFA 1674 tumor organoids, resulting in smaller and rounder shapes compared to the DMSO control. 
This demonstrates that both tumor organoid growth and invasion were effectively blocked with docetaxel, as 
irregular structures became smaller, they also became more round. In contrast, the effects of both cisplatin and 
gemcitabine were not pronounced: significant growth reduction was only detected at the highest concentration 
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of both drugs in patient sample LFXA 1647. Cisplatin and gemcitabine did not block invasion, indicated by no 
increase in the roundness of the organoids in any of the patient-derived xenograft samples.

To measure the possible increase in cell death caused by the treatments, we also calculated the frequency of 
the non-classified single, small and rounded structures in each well. These small rounded structures are indicative 
of dead and dying cells. The average numbers of round cells are shown in Fig. 8B. A dramatic effect was observed 
for both patient tissues with docetaxel treatment, demonstrating a clear increase in the response at higher drug 
doses. These results imply that although docetaxel treatment effectively blocks tumor growth and invasion, it also 
has a high level of cytotoxicity in both patient samples at high concentrations (Fig. 8A). In contrast, cisplatin and 
gemcitabine showed almost no cytotoxic effects (Fig. 8B) even at higher concentrations, but they also failed at 
blocking tumor cell invasion (Fig. 8A).

Figure 7. Segmentation and quantification of drug responses in PDX microtissues. (A) Examples of original 
segmented images from two patient samples (LXFA 1647 and LXFA 923) treated with standard-of-care drugs, 
cisplatin, docetaxel and gemcitabine. Only example segmented images of the highest drug concentrations are 
shown. Different cell types are depicted by distinct colors. (B) The estimated area covered by the three cell 
types: tumor, fibroblast and rounded single cells. The data are based on the estimates given by the proposed 
segmentation sequence. Each bar corresponds to one well. The stars denote the p-value of the robust Van den 
Waerden test63 against the DMSO control: *p < 0.05, **p < 0.01, ***p < 0.001.
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A correspondence in drug response between in vitro and in vivo. To further validate the results 
obtained in the in vitro PDX microtissue models, the drug responses were compared to the responses in in vivo 
PDX tumors utilizing the same set of drug treatments. Tumor material from patients LXFA 1647 and LXFA 923 
was implanted into mice and observed for 25 days. The efficacy of the administered drugs was measured as the 
reduction in tumor volume over time. The results of the in vivo PDX experiments were in agreement with our 
previous findings in the PDX microtissue models, thereby validating the in vitro results (Fig. 9). Only Docetaxel 
(150 mg/kg/day) demonstrated a strong tumor growth inhibitory effect, while the efficacies of cisplatin (5 mg/kg/
day for LXFA923 and 8 mg/kg/day for LXFA 1647) and gemcitabine (200 mg/kg/day) were found to be less consist-
ent. An in vivo measurement for the toxicity of the drug treatments was obtained by observing the weight of the 
mice throughout the study (Supplemental Fig. 6). In addition, docetaxel was the least toxic drug at the organism 
level, as it was the only treatment in addition to the control that displayed a positive weight growth. Although 
in vivo toxicology cannot be directly compared to in vitro, docetaxel was found to be the most toxic substance 
at the cellular level (Fig. 8B). Taken together, our results indicate that a combination of both in vitro and in vivo 
PDX models may be a suitable strategy for predicting the drug sensitivity in cancer patients, as the 3D cultures 
predicted the outcome of mouse drug exposures.

Materials and Methods
PDX cell suspensions. The PDX NSCLC cell suspensions were obtained from Charles River Discovery 
Research Services Germany GmbH. Primary tumor cell pieces were originally isolated from the three different 
patients, and were then amplified for 9–20 passages as mouse xenografts. Patient donor tissue was obtained dur-
ing surgery and implanted within 2–3 hours subcutaneously under isoflurane anesthesia in NMRI nude mice 

Figure 8. Morphometric analysis of tumor organoids. (A) The distributions of area and roundness of the 
tumor organoids, treated with standard-of-care drugs. Two patient-derived xenograft samples, LXFA 1647 and 
LXFA 923, were treated with standard-of-care drugs, cisplatin, docetaxel and gemcitabine in three different 
concentrations. Only tumor organoids were included and single rounded, dying cells were excluded from the 
analysis. The stars denote the p-value of the robust Van den Waerden test63 against the DMSO control: *p < 0.05, 
**p < 0.01, ***p < 0.001. The sample size and the median value are displayed on top of the graphs. (B) 
Quantification of single, rounded cells that indicate cell death, across drug treatments. Mean and its standard 
error are shown. The stars denote the p-value of the robust Van den Waerden test63 against the DMSO control. 
Sample size in each group is 6.
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(Charles River, Germany). When tumors develop, mice were sacrificed and tumor tissue fragments re-implanted 
into recipient mice of the same strain.

Cell suspensions and cell lines. All three NSCLC PDX cell suspensions and PDX cell lines were cultured in 
DMEM medium (Sigma-Aldrich) supplemented with 10% FBS, 1% penicillin/streptomycin and 1% L-glutamine, 
25 mM Hepes, and 1% non-essential amino acids. Prostate cancer cell line LNCaP and PF179T cancer associated 
fibroblasts (CAFs) were both propagated in RPMI-1640 medium (Sigma-Aldrich), supplemented with 10% FBS, 
1% penicillin/streptomycin and 1% L-glutamine.

Miniaturized organotypic cultures in ECM. All organotypic cultures were performed in 96-well angi-
ogenesis plates (Ibidi)23. These plates allow cells to be embedded in a defined and narrow focal plane between 
two layers of ECM. The volume of a single 3D experiment requires only 30 μl of ECM: growth factor-reduced 
Matrigel (Corning), stock 8 mg/ml and type I collagen (Corning), stock 3 mg/ml, or a 1:1 mixture of both. The pH 
of collagen solution was neutralized with NaOH prior to use. Organotypic co-culture that generates microtissues 
were prepared as described previously16. In short, bottom wells of the plates were filled with 10 μl of 50% ECM 
in medium. Single cell suspensions were mixed with 25% ECM in medium and 20 μl was placed on top of the 
polymerized bottom gel at a density of 1000 cells/well. Hence, one tumor organoid is typically generated from a 
single cell (clonal approach). The wells were then filled with medium, which was changed every 2nd – 3rd day.

Live-cell monitoring using Incucyte FLR. Live-cell imaging was carried out in a systematic, standardized 
fashion. Incucyte FLR live-cell fluorescent imaging device (Essen Bioscience) was utilized for continuous moni-
toring of 3D culture for up to two weeks. These images were based on phase contrast microscopy.

Live cell staining and confocal image acquisition. The organotypic cultures were stained with live cell 
dye Calcein AM to visualize living cells (Thermo Fisher Scientific). At the endpoint, day 12 of organotypic culture, 
3D confocal images were acquired with a Zeiss Axiovert-200M microscope, equipped with Yokogawa CSU22 
spinning disc confocal unit using Zeiss Plan-Neofluar 5x objective. Maximum intensity projections and subse-
quent background noise removal were performed with SlideBook 6 (3i Intelligent Imaging Innovations Inc.).

Confocal image data pre-processing. In each data set, four image stacks of 16 layers were obtained from 
each well using confocal imaging. The stacks were then max-projected into 240 8-bit grayscale images with a res-
olution of 672x512 pixels, each pixel having a value between 0 and 1. However, instead of imaging four completely 

Figure 9. Drug sensitivity tests in PDX models. Two PDX models, LXFA 1647 and LXFA 923, were treated 
with standard-of-care drugs, cisplatin (5 mg/kg/day for LXFA923 and 8 mg/kg/day for LXFA 1647), docetaxel 
(150 mg/kg/day) and gemcitabine (200 mg/kg/day). Each black line represents repeated measurements of tumor 
volume from an individual mouse, blue solid line the treatment average and red dashed line the control average. 
The average fits are obtained with a simple second degree polynomial. Two statistical tests are performed: one 
against the control treatment and one against the baseline. The statistical tests were performed using robust and 
non-parametric methods for repeated measurements62. These methods are less vulnerable to the heterogeneous 
variance and variable trends of the growth curves compared to conventionally used parametric models.
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separate regions, these images have a slight overlap, the amount of which varies from well to well. On average, 
27% of the total number of pixels within the images were redundant in each set. To avoid analyzing duplicated 
data, the four images were collated together to form a single well-wide image. This is achieved by finding the 
phase correlation of their fast Fourier transforms as described for instance by Reddy and Chatterji50. For the sake 
of clarity, the figures of this study contain mostly original 672x512 pixel images, however all statistical analyses 
were performed on the collated images.

The local entropy filter. The local entropy filtered value ei for a pixel xi, i∈{1, …, 672} × {1, …, 512} is 
defined as the observed entropy in a neighborhood wi around the pixel:

∑=
∈
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where V is the set of all unique pixel values in wi and pv is the proportion of pixels with value v in wi. For windows 
that exceed the image borders, the amount of pixels available for calculating the entropy is reduced. To obtain a 
measure that does not depend on the number of pixels, we used a standardized version of the local entropy:
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where #wi is the number of pixels in the neighborhood wi and log2(#wi) is the maximum obtainable entropy for 
#wi pixels. The score was thus standardized on the interval [0, 1]. A window size of 7 × 7 pixels was used, reflect-
ing the low resolution of the images.

Immunofluorescence of organotypic cell cultures. The organotypic cultures were fixed in the 
μ-angiogenesis wells with 2% paraformaldehyde (PFA) in PBS for 20 min, washed with cold PBS and blocked in 
20% horse serum. Cell permeabilization was performed by addition of 0.7% Triton X-100 (Sigma-Aldrich). Fixed 
cultures were incubated at 4 °C overnight with primary antibodies (1:100), washed with PBS and incubated for 
3–4 h at RT with secondary antibodies (1:500) and Draq5 (1:1000, Cell Signaling Technology), to visualize the 
nuclei. The following primary antibodies were used: anti-E-cadherin (HECD-1, Abcam), and anti-smooth muscle 
actin (sc-53015, Santa Cruz). Images were taken with the Zeiss Axiovert-200 M spinning disc confocal micro-
scope, using a 20x objective. Z-stacks were acquired with a step-size of 8 μm. The images were pre-processed 
using SlideBook 6 and NIH Image J.

Drug treatments of in vitro organotypic cultures. All drugs were dissolved in DMSO. Standard-of-care 
drugs were selected for treating the organotypic PDX cell cultures; Paclitaxel, Cisplatin (Selleck), Docetaxel and 
Gemcitabine (Tocris). Two or three different concentrations of each drug were utilized, and all drug exposures 
were performed in triplicate wells, including vehicle control. Drug treatments were initiated after 4 days of 3D 
culture, when significant organoids had already formed, and continued for an additional 8 days.

Drug treatments of in vivo PDXes. For treatment experiments, NMRI nude mice (Charles River, 
Germany) were implanted subcutaneously with fragments of LXFA 923 or LXFA 1647 tumors. When median 
tumor volume reached 100–200 mm3, individual animals were stratified into different treatment groups (group 
size n = 5). Mice received either: Control Vehicle (NaCl, 5–10 ml/kg), Cisplatin (5 or 8 mg/kg/d, days: 1, 14; sub-
cutaneously), Docetaxel (15 mg/kg/d, days: 0, 7, 14; intravenously) or Gemcitabine (200 mg/kg/, days: 0, 7, 14; 
intravenously). Tumor volume was determined by caliper measurement twice a week together with body weight 
determination.

Ethical statement. Charles River Discovery Research Services Germany GmbH runs an AAALAC 
accredited animal facility. All experiments were performed in accordance with German law (license nr G13/13 
Regierungspräsidium Freiburg) and the respective AAALAC guidelines. All patients gave their informed consent 
and their data were anonymized at the respective clinical institution. The study was approved by the ethical com-
mittee Freiburg, Germany.

Data Availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Discussion
In this study, we have explored the feasibility and biological relevance of organotypic cultures of primary cells 
isolated from PDX tumors cultures, and their reliability in predicting patient response to anti-cancer treatments. 
For this purpose, we developed a chain of image analysis procedures that initiate with the processing of the orig-
inal, confocal microscope images, and is completed with the statistical analysis of morphometric or phenotypic 
data. We then show that these numerical measures obtained correspond to specific chemosensitivity and drug 
treatment effects.

Each step of the image analyses represents also a possible source of bias and error. In a hypothetical case 
involving a wealth of ground truth data and computation time, the optimal solution to the problem would likely 
be a single deep learning neural network51 that would simultaneously tackle both the important thresholding and 
cell classification tasks. However, given the practical limitations, such as limited computation time, a more tai-
lored solution had to be designed. This was achieved by exploiting available problem-specific context knowledge 
where possible, and by splitting the task into multiple smaller and more tractable sub-problems. The performance 
of different thresholding methods was tested against manually generated ground truth data. While such valida-
tion is considered standard practice in image analysis, the comparison of multiple experts is a novel approach in 
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the field of cell imaging and thus a valuable contribution on its own. Indeed, significant variation between the 
experts was observed in some images, clearly demonstrating the need for the multiple-expert-approach in future 
studies on similar data.

After thresholding, the obtained image foreground was split into local regions that were then classified 
between the two cell types based on (principal components of) a set of texture features. A more ambitious 
approach would consider classifying each pixel at a time based on its local neighborhood however this would 
significantly increase the required computation time. Furthermore, the local regions remain small enough to 
estimate of the boundary between the cell types with reasonable accuracy. Given the novelty of the PDX data, 
examples of such texture classification are not common in the literature. Approaches to supervised phenotypical 
classification of individual cells and cell structures do exist19, 52, 53, however our problem comes closer to sepa-
rating between tissue types in in vivo images from histologic tissue sections54, 55. In contrast to PDX data, these 
sections are characterized by high resolution and abundant available training data. Specifically, the increased 
resolution allows for the utilization of rectangular local regions without a significant loss of accuracy and also 
simplifies the feature extraction. These differences made the direct application of the existing methods to our 
PDX data impractical.

The computational time required for performing the image processing is important, since this could be a lim-
iting factor for performing larger scale phenotypic screening projects. The proposed methods are fast enough to 
allow high-throughput analyses, as the average time taken to threshold and classify one collated PDX well image 
was 31.8 seconds leading to an approximately 95 minute computation time for 180 images in the two data sets. 
This time can be significantly reduced if multiple CPUs are utilized. The calculations were performed using a 
single core on an Intel®Xeon®X5450 3.00 GHz processor.

After the initial image processing, both in vitro and in vivo treatment effect data were subjected to statistical 
analysis. Modern robust statistical methods were used throughout the analysis in order to mitigate the effects 
of possible anomalies (outliers) and to relax the usually applied assumption of normally distributed data. This 
ensures that the proposed methods can be applied as such for future datasets that might not have similar dis-
tributional properties. The mindset also applies more generally to the whole quantitative part of this study. The 
gathered methodology is efficiently applied both in terms of computational burden and manual labor. The cho-
sen methods are also likely to generalize well to new similar data, although retraining the cell type classifier is 
recommended.

In addition to challenges related to accurate, quantitative analysis of in vitro cancer models that are currently 
utilized in drug discovery and pre-clinical chemosensitivity testing, another drawback is their poor or unknown 
biological relevance. In NSCLC, this is even more pronounced than in other cancer types7. In contrast to the 
majority of established cell lines, the use of patient-derived, primary cell cultures allow for personalized drug 
screens with increased clinical relevance. The similarity of PDX tumors with primary tumors has been reported 
repeatedly. PDX models show individual responses to both classical chemotherapy and targeted anti-epidermal 
growth factor receptor agents, just as NSCLC tumors in patients. PDX tumors maintain much of the original 
tumor heterogeneity and allow important studies that rely on the preservation of specific tumor cell subpop-
ulations. This further indicates that in PDXs, modulation of such cell populations after drug treatment may be 
comparable to patient tumors4. In addition, the order of developing the in vitro PDX models is likely to be impor-
tant. Primary tumor cell suspensions can, for example, be directly used for drug sensitivity testing in organo-
typic cultures56. The resulting organoid cultures can later be transferred into PDXes57. For some tumor types 
this approach has been successful58. However, the amount of primary tumor material available for implanting is 
often limited, original fibroblasts may get be lost, and for many tumor types it is still inefficient and technically 
challenging to establish 3D organoid cultures in vitro. This, in turn, limits the material that can later be used 
for successful generation of PDXes. Therefore, our approach may provide a straightforward and effective way 
to expand the patient-derived tumor population in the PDXes, prior to conducting drug sensitivity tests in the 
PDX-microtissues. This approach may also increase the likelihood that patient-derived materials from a larger 
fraction of patients will be available for precision medicine. During the amplification step, the tumors are also 
re-populated by mouse fibroblasts, which remain present as a stromal component in the PDX-microtissue in vitro 
models.

Overall, the response rates observed in PDX were well in accordance with the results of matching clinical 
studies5. Furthermore, PDX models show essentially the same genetic profiles of mutations, gains and losses of 
DNA6, although some minor genetic drift has been observed that may be due to in vivo selection after grafting. 
At least some mutations can show higher allele frequencies in the PDXs than in the original patient tumors. This 
suggests some possibility of tumor cell enrichment, changes in subpopulations and thus of altered heterogeneity 
in PDXs compared to primary tumors59, however, on a scale much lower than the vast numbers of mutations 
observed in cell lines that may accumulate after decades of culture in vitro. One of the key observations related to 
the biological relevance of PDX for human tumor biology is the rapid replacement of human fibroblasts by mouse 
stroma. PDX tumors maintain the human microenvironment only for a measure of weeks after engraftment. This 
is followed by complete substitution with murine stroma which occurs after only 2–3 passages in the mouse4. 
Nevertheless, there is plenty of indication that mouse fibroblasts replace the function of their human counter-
parts almost completely. Therefore, PDX remain a promising model even for studies of tumor-microenvironment 
interactions.

The major drawback for personalized chemosensitivity testing in vitro is the lack of standardized protocols. 
Primary tumor cell culture is hampered by many technical difficulties, including poor cell viability, weak growth, 
and contamination by host cells, especially fibroblasts. In vitro propagation may also change the ratio of original 
cell populations present in the tumor. Currently, no routine protocols exist that would circumvent all of these 
compromising technical difficulties. In breast cancers, successful initiation of primary cultures as well as PDX 
correlates closely with tumor aggressiveness and progression60, indicating a tendency towards enrichment of the 
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most aggressive and proliferative cell populations in both methods. To establish primary tumor cell cultures of 
NSCLC, very few successful protocols have been published to date. Some of these involve a technique to consist-
ently retain cell – cell contacts during all steps of preparation. After tumor biopsy specimens have been partially 
digested and cultured in a serum-free medium, the tumor fragments spontaneously form organoids61 and can 
be successfully maintained in vitro. The seeding of cell suspensions isolated from PDX tumors in our hands 
uses a similar principle, in particular the “freezer” strategy. Our results indicate that the isolation of tumor cell 
populations from PDX is technically less demanding and the amount of cells that can be used for screening is 
significantly increased compared to methods that rely entirely on fresh patient biopsies. Characterization of PDX 
tumors has convincingly indicated that the majority of genetic properties and cellular heterogeneity is retained 
or only slightly compromised.

PDX-derived cell suspensions were used for generation of in vitro organotypic 3D cultures, which were then 
used for drug chemosensitivity tests. This strategy required development of robust methods not only for stand-
ardizing cell- and tissue-culture protocols, but also for successful high-content imaging and subsequent image 
analyses. Accordingly, the experimental approach had to avoid the formation of dense, opaque and solid struc-
tures that cannot be effectively imaged by automated confocal microscopy. Therefore, all drug chemosensitivity 
assays were performed prior to the formation of dense tumor and stromal tissue structures. Our results from in 
vitro drug tests using PDX cultures demonstrated that docetaxel was the most effective drug, as it significantly 
reduced the overall growth of tumor organoids. Docetaxel targeted the fibroblasts already at low concentrations, 
but also the growth and invasion of individual tumor islands were effectively blocked. In comparison, both cis-
platin and gemcitabine showed significant growth reduction only at the highest drug concentrations, and did not 
specifically block tumor cell invasion in any of the patient samples. Docetaxel was therefore the most effective 
treatment in vitro, as corresponding drug effects could be validated in the original PDX tumors in vivo.

We suggest that PDX-derived microtissues in 3D organotypic cultures may serve as a “missing link” between 
in vivo PDX models and classic 2D cell-culture based drug sensitivity assays. This approach opens new oppor-
tunities for early stage drug discovery and lead optimization. PDX microtissues may potentially bridge the gap 
between relatively high experimental throughput and low costs of phenotypic screening methods, compared to 
the notoriously cost-intensive and low throughput of animal models. A crucial component in this development 
is the availability of practical and efficient computational methods, which we have shown to be achievable with 
a combination of both novel and existing image analytic practices and robust statistical analysis. A prerequisite 
for expanding the scope of PDX cell culture-based drug testing in vitro, is thorough experimental validation of 
mouse versus cell culture models. For our NSCLC PDX cultures, the obtained drug responses showed a similar 
trend in in vitro and in vivo (Figs 6 and 9). Most importantly, the scope or total number of compounds that can 
be tested in PDX models can be significantly expanded by complementing such tests with matching organotypic 
PDX 3D cultures. These can serve as a valid, relatively inexpensive tool for excluding compounds that will likely 
prove ineffective in vivo. Therefore, drug doses likely to be effective in animals could be pre-screened in vitro, and 
potential toxic side effects might be recognized and avoided. Taken together, our newly developed biological and 
computational methods open up novel opportunities for high-content drug screening based on patient-derived 
cell cultures, and personalized chemosensitivity testing.
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