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Modes of the antibiotic activity of 
amphotericin B against Candida 
albicans
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Malgorzata Cytrynska3, Monika Wlodarczyk   1,4, Wojciech Grudzinski   1, Rafal Luchowski1* 
& Wieslaw I. Gruszecki   1*

Amphotericin B is an antibiotic used as the “gold standard” in the treatment of life-threatening 
fungal infections. Several molecular mechanisms have been proposed to explain exceptionally high 
effectiveness of amphotericin B in combating fungi. In the present work, we apply fluorescence 
lifetime imaging microscopy to track, step by step, modes of the toxic activity of amphotericin B 
towards a clinical strain of Candida albicans. The images recorded reveal that the antibiotic binds 
to cells in the form of the small aggregates characterized by a relatively short fluorescence lifetime 
(0.2 ns). Amphotericin B binds preferentially to the cell walls of mature cells but also to the plasma 
membranes of the daughter cells at the budding stage. The images recorded with the application of 
a scanning electron microscopy show that the antibiotic interferes with the formation of functional 
cell walls of such young cells. The results of imaging reveal the formation of the amphotericin B-rich 
extramembranous structures and also binding of the drug molecules into the cell membranes and 
penetration into the cells. These two modes of action of amphotericin B are observed in the time scale 
of minutes.

The dramatic increase in systemic fungal infections, that is observed over the last decades, is a challenge 
for research centres worldwide, active in elaboration of effective and safe antimycotic pharmaceuticals1–3. 
Amphotericin B (AmB) has been used as the “gold standard” to treat life-threatening mycoses, owing to the 
high effectiveness of this antibiotic and despite the severe toxic side effects4 (see Supplementary Information 
Fig. S1 for a chemical structure). According to our current understanding, biomembranes are a primary target 
of AmB in both the pharmacologically desirable and the toxic side effects of the antibiotic. Formation of trans-
membrane pores able to act as ion channels interfering with the cell electrostasis is considered as one of the main 
mechanisms underlying the biological activity of AmB5–8. The fact that such intramembranous structures are 
more readily formed in the membranes containing ergosterol, a sterol of fungi, than in the case of cholesterol 
that is present in mammalian cells, is a central paradigm of AmB selectivity. A substantially different kind of 
the biological activity of AmB also was demonstrated, relying in destabilization of biomembranes realized via 
extraction of sterols which were immobilized within extramembranous, two-component sterol-AmB sponge-like 
structures9. Interestingly, formation of such cholesterol-AmB structures, in the case of mammalian cells exposed 
to AmB, was demonstrated to have a potent protective effect against toxicity of the drug10. Very recently, another 
self-protective strategy of human cells against AmB toxicity has been reported, associated with the formation of 
AmB-rich exosomes eliminating molecules of the drug from the plasma membranes11. In the light of all the recent 
findings, listed above, a picture regarding the biological effects of AmB on biomembranes looks more complex 
than generally expected. In the present work, we apply a technique of fluorescence lifetime imaging microscopy 
(FLIM), which gives insight into the molecular organization and localization of AmB, to track and analyse dif-
ferent modes of the activity of the drug with respect to the popular, clinical strain of fungi: Candida albicans 
(referred to as Candida).
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Results
Figure 1 presents the FLIM images of Candida cells before and after the exposition to AmB. Images recorded after 
different periods of time following the antibiotic injection into the assay, allow an analysis of binding of molecules 
of AmB to cells and evolution of the system. Natural autofluorescence of Candida cells is represented by the two 
lifetime components represented in the images presented in Fig. 1 by green colour code (1.0 ns) and by red colour 
code (3.7 ns). The relative amplitudes of those lifetime components are presented in the lowest panel of Fig. 1. 
Similarly to the experiments carried out with model lipid membranes12,13 and cells from the human cell cultures11 
AmB binds to the cells in the form of small aggregated structures characterized by the relatively short fluores-
cence lifetime component of 0.2 ns, represented by a blue colour code. Binding of AmB to cells can be followed in 
Fig. 1 in the middle panel images created based exclusively on the 0.2 ns fluorescence lifetime component. As can 
be seen, AmB binds preferably to the cell walls, without effectively crossing this barrier covering the cell mem-
brane. Immobilization of AmB at the cell wall can be naturally rationalized taking into account numerous polar 
groups of the macrolide ring of the antibiotic, which can form hydrogen bonds with polar groups of chitin, 
β-glucan or mannoproteins being the major constituent of the fungal cell wall14,15. As can be seen from Fig. 1, 
most of the cell structures imaged by AmB anchored in the cell wall do not undergo significant structural modi-
fication within the time period of the experiment. Interestingly, the exception can be observed in the case of the 
relatively small cell at the top, identified as a growing bud daughter cell. As can be seen, the concentration of AmB 
in this particular cell increases. Moreover, one can observe the formation of the bulk AmB-rich structures at the 
cell surface and eventually, morphological changes of the entire cell. Such an observation suggests that AmB can 
more readily pass the cell wall barrier of young cells at the budding stage. Such a mechanism can be understood 
on the basis of affected integrity of the cell wall in a course of cell budding and on the basis of decreased rigidity 
of the lipid bilayer throughout this process16. Formation of extracellular bulk structures in the Candida cultures 
exposed to AmB, combined with pronounced morphological alterations of cells can also clearly be visible by 
means of scanning electron microscopy (SEM, compare Figs 2 and 3). Candida albicans is a polymorphic fungus 
that morphologically has several different forms. In our investigation, SEM technique was applied to analyze 
morphology of C. albicans cells under the influence of AmB. Control cells had mostly spherical, ovoid-shaped 
budding cells with smooth walls (Fig. 2a,d–f). Among them, occasionally, extended tube-like blastoconidia were 
also noted (Fig. 2b,c). Most of spherical blastoconidia had polarly located buddings. The rings of scars (remaining 

Figure 1.  Fluorescence lifetime images of cells. Cells of Candida albicans were imaged with FLIM technique 
before (time 0) and after the injection of amphotericin B. Images were recorded after the time periods indicated 
at the top of each image. The colour codes of the images: blue - the fluorescence lifetime component 0.2 ns, 
green - the fluorescence lifetime component 1.0 ns, red – the fluorescence lifetime component 3.7 ns. The middle 
panel presents the same images as the top panel but with displayed exclusively the short-lifetime component 
representing the presence of AmB in the objects imaged. The lowest panel presents relative amplitudes of the 
fluorescence lifetime components determined for individual images. A final concentration of AmB in the 
sample 100 µM, concentration of DMSO 0.3%. An effective AmB concentration for the experiments has been 
selected on the basis of the results of cell viability tests (shown in the Supplementary Fig. S2). The exemplary 
original fluorescence lifetime kinetic traces are presented in the Supplementary Fig. S3. Selected bulk structures 
that appeared after exposure of the cells to AmB are marked with red arrows.
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after offspring cells had dropped out from the mother cell) were located at the tips (poles) of the cells. SEM obser-
vations revealed also the presence of the cells with multiple scars located at the cell pole (Fig. 2e,f). Some cells had 
singular bud scars (Fig. 2b,e). AmB treated cells exhibited several morphological changes (see Fig. 3). Incubation 
of the cells with AmB for 30 min caused less spherical cells appearance. The cells were elongated to some extent 
and tube-like cells formation was noted. SEM analysis also revealed that oval blastoconidial mother cells that 
remained, had indentations (Fig. 3a–e). Collapsed cells were also found. Sometimes buddings were deformed 
(Fig. 3e,f). The SEM observations made in the current study, clearly confirm fungicidal action exerted by AmB. 
As a polyene antibiotic it can cause permeability changes that in turn result in osmotic imbalance. Hence the 
observed collapsed cells and indentations of the walls could be explained by this phenomenon. Cells of C. albicans 
exposed to AmB were additionally analyzed with application of Transmission Electron Microscopy (TEM, see 
Fig. 4). The cells from control cultures have well discernible cell wall. The characteristic feature of the cell wall is 
an outer brush-like layer and amorphous one consisting of short oligomannan fibrils that modify cell wall surface 
proteins17,18. The cell membrane is attached to the innermost layer of the cell wall. In close proximity of the cell 

Figure 2.  Scanning Electron Microscopy images of control Candida albicans cells. (a) The C. albicans from the 
culture. Note the prevalent presence of spherical, ovoid-shaped and rare of long, extended hyphal filaments. 
(b) The cells show singular buds (arrowheads) and scars located at the tips. Some cells develop multiple scars 
located at the pole or randomly positioned (arrows). (c) Budding forms of the elongated cells. (d) Ovoid cells 
with buds (arrowhead) and bud scars located at the tips. (e,f) Enlargement view of the cells with spherical shape 
and bud scars in multiple or singular forms (arrows) located mainly at the poles.
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membrane lomasome-like structures and small vacuoles are visible. In the cytoplasm of the control cells typical 
organelles for the fungal cells like round-lobate nuclei, mitochondria, and big vacuoles are seen (Fig. 4a–c). When 
C. albicans cells were exposed to AmB for 30 min some changes in the cell ultrastructure were observed. The 
presence of groups consisting of many small vacuoles located in peripheral part of the cell or inside the mature 
cells was noted (Fig. 4d,e). Additionally, in newly formed cell separated lomasomes in the form of vesicular bodies 
were also found near the cell membrane or deeper in cytoplasm (Fig. 4e–h). In some cells amorphous layer of the 
cell wall was not clearly discernible (Fig. 4g). Importantly, in the cell emerging from adult cells also multivesicular 

Figure 3.  Characteristics of the surface phenotype of C. albicans after treatment with AmB. (a,b) Micrographs 
showing altered cells after incubation with AmB. Cells with indentations (arrows) can be seen. Among ovoid 
cells elongated yeast cells are discernible. Arrowhead indicates small bud. (c,d) Collapsed mother cells with 
indentations are shown (arrows). Note the presence of emerging buds at some cells (arrowheads). (e) Affected 
spherical mother cells, as well as newly formed budding, are seen (arrows). Note the presence of the cell with 
no changes to new bud (arrowhead). (f) The cells showing some deformed phenotype (arrows). Arrowhead 
indicates emerging bud with irregular shape.
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bodies-like structures were noted (Fig. 4g–j). The fact that morphological changes are observed in the cells at the 
budding stage, exposed to AmB, implies that the antibiotic interferes with formation of fully functional cell walls. 
The extracellular AmB-rich bulk structures can represent the so-called AmB-sterol “sponges” demonstrated to be 
responsible for ergosterol sequestration from fungal cells9. Alternatively, the structures observed in the present 

Figure 4.  The influence of amphotericin B on C. albicans cell ultrastructure. Control cells (a–c) and 
amphotericin B treated cells (d–j). (a) Fragment of control cell showing well preserved structure with distinct 
nucleus (N), mitochondrion (Mt), lomasomes (arrowheads- Lo), big vacuoles (V) and cell wall (CW); (b) 
Prominent brush-like material adherent to cell wall (arrows); (c) Dividing cell with visible big vacuoles (V), 
lomasomes (Lo) and nucleus (N); (d,e) AmB treated cell in which aggregations of tiny vacuoles are seen 
(arrows). Note the presence of separated lomasome inside small emerging cell (arrowhead); (f) separated 
lomasomes in the cell with thick cell wall (arrowheads); (g) the left-hand side cell with disconnected 
lomasomes (arrowhead) and in right-hand side cell distinct multivesicular bodies - like structures (Mvb) are 
seen (arrowhead); (h) the cell with visible Mvb in cytoplasm; (i) in, emerging from mother cell, daughter cell 
vesicular structures are visible (arrows) in dense cytoplasm; (j) enlarged portion of cytoplasm from young cell 
with small vacuoles (arrows) close to cell wall, big vacuole (V) and vesicular - like bodies (arrowheads).
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study can represent exosomes, AmB-rich lipid vesicles extruded out of the membranes as an element of 
self-defence detoxification strategy, reported in the case of the human cells11. In order to sort out what kind of 
structures are formed in the case of Candida, we analysed FLIM images of the cells exposed to AmB (see 
Supplementary Fig. S4), along with the analysis of fluorescence anisotropy (see Supplementary Fig. S5). As can be 
seen, the fluorescence anisotropy image of a single extracellular bulk structure, rich in AmB (Fig. S5) represents 
the homogenous distribution of the antibiotic molecules (uniform green colour-coded structures), unlike the red 
colour-coded structures typical for AmB bound to the lipid membranes and characterized by relatively high flu-
orescence anisotropy11,13. This indicates that the bulk forms observed in the case of Candida cells exposed to AmB 
are most probably the AmB-sterol, sponge-like structures but not exosomes observed in the case of human cells. 
In contrast, a detailed fluorescence anisotropy analysis of the young cell at the budding stage (see Fig. 5) reveals 
vertical orientation of AmB molecules with respect to the cell membrane, similar to that one observed in model 
lipid vesicles13 and exosomes that emerged from the human cells11. This is manifested by the relatively high fluo-
rescence intensity and anisotropy in the cell membrane regions located in the left hand and right-hand sides of the 
cell imaged with the laser beam polarized as indicated in the graph (Fig. 5c). Such a result indicates binding of 
AmB molecules to cell membranes of Candida. Comparison of the fluorescence emission spectra recorded from 
selected compartments of a single cell (Fig. 5b,f,g) reveals different molecular organization of AmB in the cell 
membranes and present in the cytoplasm. The fluorescence emission spectrum of molecules present in the cell 
membrane is similar to the spectrum of the drug in the aggregated state, present in the water medium (Fig. 5f, 
lower panel) but different from the spectrum recorded inside the cell (Fig. 5g, lower panel). Comparison of those 
spectra with the spectra of different molecular organization forms of AmB19 leads to the conclusion on a hetero-
geneous organization of molecules of the drug in the Candida cells. The kinetics of the penetration of AmB into 
the cell can be followed in the Supplementary Material animation presenting time development of the short fluo-
rescence lifetime component. The AmB fraction inside a cell was found to be always higher in the case when the 
antibiotic was present at relatively high concentrations (see Fig. 6 and Supplementary Fig. S6). In such cases, we 
have observed the gradual appearance of structures rich in AmB inside the cells. The time evolution of the system 
can be described in terms of a two-phase mechanism: formation of relatively small spherical structures within the 
cell regions adjacent to the plasma membrane followed by a fusion of such structures with themselves, as well as 
with the internal membranes of the cells, including numerous vacuole membranes. A transfer of AmB from the 
extracellular environment to vacuoles of fungi is a mechanism reported to take place in Candida albicans20 and 
Saccharomyces cerevisiae21.

Figure 5.  Fluorescence lifetime images of cells. Cells of Candida albicans were imaged with FLIM technique 
before (time 0) and 28 min after the injection of amphotericin B (indicated). A final concentration of AmB in 
the sample 100 µM. The concentration of DMSO 0.3%. Panels b, c and d present magnification of the young 
cell, at the budding state, marked in panel a with a white square. (b) FLIM image with indicated points in which 
the fluorescence emission spectra (white cross, spectrum 1 and spectrum 2) presented in panels f and g were 
recorded. (c) Fluorescence anisotropy image. (d) Image created based exclusively by the short fluorescence 
lifetime component representing amphotericin B. (e) Distribution of fluorescence lifetime anisotropy from 
image presented in panel c. (f) Fluorescence emission spectra recorded from the cell exposed to AmB (red) 
and autofluorescence spectrum recorded in time 0 (black). The lower panel presents the difference spectrum 
calculated by subtraction of the spectra presented in the upper panel (solid blue line) superimposed on the 
spectrum recorded from the water phase outside the cell after injection of AmB. (g) legend the same as in the 
case of panel f except that the spectra were recorded in the position 2.

https://doi.org/10.1038/s41598-019-53517-3


7Scientific Reports |         (2019) 9:17029  | https://doi.org/10.1038/s41598-019-53517-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
In the present work, we analysed the activity of molecules of antifungal antibiotic AmB towards Candida albicans 
with the application of the experimental approach that enables simultaneous monitoring of molecular organization 
and localization of the drug in the cells, based on specific spectroscopic signatures11,13. The results based on FLIM 
imaging reveal a relatively quick binding of AmB to fungal cells: on a time scale of minutes. Spectroscopic analysis of 
fluorescence emitted selectively by the drug molecules bound to the imaged cells shows that the biologically active 
AmB appears in the form of small supramolecular assemblies characterized by the lifetime component of 0.2 ns19 A 
similar molecular organization of AmB has been deduced in the case of model lipid membranes12,13 and the plasma 
membranes of the human cells11. Most probably, such an organization is determined by the water phase from which 
molecules of AmB approach examined cells. On the other hand, comparison of the fluorescence emission spectra 
of AmB in the water medium outside the cell, present within the cell membrane and present inside the Candida 
cell (Fig. 5) shows differences in the molecular organization of AmB, depending on the environment. As can be 
concluded from the image analyses, the cell wall of fungi acts as a barrier protecting the plasma membrane against 
interaction with AmB. On the other hand, molecules of the antibiotic can readily access the plasma membranes of 
cells at the budding stage, most probably owing to a cell wall loosening associated with its remodelling. The results 
of the experiments reported in the present work show unequivocally operation of two essentially different molec-
ular mechanisms. Both the mechanisms potentially involved in biological activity of AmB. The first mechanism is 
based upon the formation of extracellular sponge-like structures and the second on the formation of intracellular 
AmB-rich vesicular bodies targeting vacuoles and possibly other organelles. Based on the results of TEM imaging 
of Candida cells exposed to AmB, such structures can be identified as intracellular lomasomes. Interestingly, based 
on our observations, we can conclude that the two modes of biological activity of AmB with respect to Candida 
cells operate on the principle of “either one or the other”. The formation of the sponge-like structures has not been 
observed in the cells that display intracellular accumulation of AmB (see Figs 5 and 6) and vice versa, formation of 
extracellular AmB-rich bulk forms has been observed in the case of the cells which do not accumulate the antibiotic 
in vacuoles (Fig. 1, Fig. S4). Therefore, it can be concluded that formation of extramembranous AmB-sterol struc-
tures prevents the antibiotic molecules from penetration into the cells. A very similar mechanism has been demon-
strated in cells with expressed ABCA1 transporter playing a crucial role in redistribution and efflux of cholesterol 
in mammalian cells10. This indicates that trapping AmB within the extracellular bulk structures provides a mean of 
self-defence against toxic activity towards cells. The question is open as to how effective is such a mechanism and 
why in some cases AmB can penetrate the cellular membrane and realize its toxic activity? According to the liter-
ature, particularly active can be AmB transfer to vacuoles in fungi cells under a nutrient-starved condition22 and 
upon the presence of certain small molecules able to bind to biomembranes, such as allicin20. This indicates that a 

Figure 6.  Fluorescence lifetime images of cells. Cells of Candida albicans were imaged with FLIM technique 
before (time 0) and after the injection of amphotericin B. Images were recorded after the time periods indicated 
at the top of each image. The colour codes of the images: blue - the fluorescence lifetime component 0.2 ns, 
green - the fluorescence lifetime component 1.0 ns, red – the fluorescence lifetime component 3.7 ns. The middle 
panel presents the same images as the top panel but with displayed exclusively the short-lifetime component 
representing the presence of AmB in the objects imaged. The lowest panel presents relative amplitudes of the 
fluorescence lifetime components determined for individual images. A final concentration of AmB in the 
sample 300 µM, concentration of DMSO 1.3%.
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modification of structural and dynamic properties of biomembranes of fungi may affect the membrane functionality 
associated with the ergosterol mobility and possibly decrease the potential of molecular mechanisms associated with 
overall self-defence strategy against the antibiotic activity. In order to eliminate possible fluorescence originating 
from the Candida nutrient-rich growing medium, cells were transferred to a buffer directly before the experiments. 
Apparently, such experimental conditions were suitable for the expression and observation of different modes of 
the biological activity of AmB towards Candida. Importantly, the penetration of AmB into the cells was observed 
at a relatively high concentration of AmB (300 µM, Fig. 6, Fig. S6). Such a result goes along with the observation 
that molecules which potentially affect functionality of biomembranes, such as allicin20, facilitate penetration of 
AmB into cells. The fact that the self-protective activity of fungi against toxicity of AmB can be modulated and even 
inhibited opens an avenue for engineering a pharmacological formula or a treatment strategy in which AmB efficacy 
towards fungi would be enhanced. The modes of the biological activity of AmB with respect to Candida albicans 
cells are schematically summarized in Fig. 7. The graph presents two lines of defence of fungi cells against toxicity of 
AmB: (1) immobilization of AmB molecules by the cell wall and (2) binding of AmB molecules within the extracel-
lular bulk structures. The results of the present study also allow to identify the modes of biological activity of AmB 
towards Candida albicans cells: (1) binding into the cell membrane of young cells at the budding stage, potentially 
affecting the membrane structural properties and physiological ion transport and (2) penetration into the cyto-
plasm, potentially affecting numerous intracellular organelles and physiological processes.

Methods
Chemicals and preparation.  Antibiotic amphotericin B from Streptomyces sp. and dimethyl sulfoxide 
(DMSO) were purchased from Sigma Aldrich (USA). All other chemicals used in the preparations were of ana-
lytical grade. Water was purified by a Milli-Q system from Merck Millipore (France).

In order to additionally purify AmB, a powder of the antibiotic was suspended in a mixture of water and chlo-
roform (1:1, v/v) and vortexed for 30 min, then collected from the interphase (this procedure has been repeated 
three times)19,23. Finally, AmB was evaporated under gaseous nitrogen.

A concentration of the antibiotic was determined based on a molar extinction coefficient of AmB in DMSO 
solution (121 400 M−1 cm−1) at 416 nm absorption maximum24. For this purpose, electronic absorption spectra 
were recorded with the application of a Cary 60 UV-Vis spectrophotometer from Agilent Technologies (Australia).

Yeast strains.  The yeast Candida albicans (wild-type; kindly gifted by Prof. A. Kędzia, Department of Oral 
Microbiology, Medical University of Gdansk, Poland) was cultivated in a liquid YPD medium (1% yeast extract, 
2% peptone, 2% dextrose) at 37 ◦C. In the experiments, yeast in the logarithmic phase of growth were used25,26.

Viability assays.  The C. albicans survival rate after the treatment with AmB was determined using a 
colony-counting assay, essentially as described previously25,26. In brief, the log-phase intact C. albicans cells 
(200 µl; OD600 = 0.2; approx. 5.4 × 105CFU) suspended in YPD medium, were incubated without (control 1) 
and with 0.3% DMSO (control 2) or in the presence of different concentrations of AmB (final concentration 
1.8–300 μM) for 0.5 h at 37 °C. Then serial dilutions were prepared, the cells were plated onto solid YPD medium, 
and after 24 h incubation at 37 °C the grown colonies were counted. The number of colony-forming units (CFU) 
was determined. The controls defined the total (100%) survival of C. albicans cells in the experimental conditions. 
Amphotericin B dilutions were prepared in 0.3% DMSO. The results represent the mean of three independent 
experiments, each performed in triplicate25,26.

Scanning electron microscopy (SEM) of Candida albicans cells.  The C. albicans cells were incubated 
at 37 °C for 30 min without (control) or with AmB at the concentration of 20 µM. Next, the cells were fixed with 

Figure 7.  A model of activity of amphotericin B towards Candida albicans. Cells of Candida albicans (on the 
left) exposed to AmB (cells on the right). The modes of the biological activity of AmB towards C. albicans cells, 
presented in this simplified model, are based on the images presented in this work. It is schematically depicted 
that: (i) AmB binds to the cell walls of mature cells, (ii) the antibiotic prevents the formation of a functional 
cell wall of daughter cells at the budding stage, (iii) the antibiotic is located either in ergosterol-AmB bulk 
extramembranous structures or binds into the cell membrane and penetrates into the cell.
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4% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) for 2 h at a low temperature (4 °C). Then, the samples were 
carefully washed with 0.1 M phosphate buffer (pH 7.2). Post-fixation was carried out for 2 h, with 1% osmium 
tetroxide at 4 °C. Then the cells were rinsed with 0.1 M phosphate buffer (pH 7.2). After washing, dehydration in 
the series of ethanol gradients: 30%, 50%, 70%, 90%, and 100% (each for 10 min), was performed. Subsequently, 
the specimens were chemically dried with application of 98% hexamethyldisilazane (HMDS). Finally, the spec-
imens were coated with gold in Emitech K550X Sputter Coater. The samples were imaged with TESCAN vega 3 
LMU scanning electron microscope (Czech Republic).

Transmission electron microscopy (TEM) imaging of Candida albicans cells.  The log-phase C. albi-
cans cells in ten-times diluted YPD medium (OD600 = 0.2) were incubated at 37 °C for 30 min (control) or with AmB 
(final concentration 20 µM). Then, the cells were fixed with 4.0% glutaraldehyde in 0.1 M cacodylate buffer pH 7.2 
with the addition of 0.8 M sorbitol and 5.5 mM CaCl2, for 2 h at 4 °C that was followed with rinsing in 0.1 M caco-
dylate buffer. The next step was further fixation with 1.5% potassium permanganate in water for 1.5 h at 4 °C. After 
rinsing several times with deionized water, the cells were contrasted in 1% uranyl acetate for 1 h and dehydrated with 
30%, 50%, 70%, 90%, and 100% ethanol. Eventually, the cells were embedded in LR White Resin and polymerized at 
55 °C overnight. Ultrathin section (65 nm) were obtained after cutting with diamond knife. Then the sections were 
collected on copper grids and stained with 1% uranyl acetate for 9 min followed by Reynolds reagent (lead nitrate 
and sodium citrate) for 5 min. All sections were examined with electron microscope. TEM measurements were 
carried out in the laboratory of Electron Microscopy of the Nencki Institute of Experimental Biology of the Polish 
Academy of Sciences in Warsaw with application of the transmission electron microscope JEM 1400 (JEOL Co. 
Japan), equipped with a Roentgen microanalyzer (EDS INCA Energy TEM, Oxford Instruments, Great Britain) and 
a microscopic tomography system along with the CCD MORADA G2 (EMSIS GmbH, Germany) purchased from 
structural funds of UE within the project CZT BIM – “Equipping the biological and medical imaging laboratory”.

Fluorescence lifetime imaging microscopy (FLIM).  For FLIM analysis, the log-phase C. albicans cells 
(200 μl of suspension; OD600 = 0.2) in diluted YPD medium was centrifuged (6000 × g, 10 min, 24 °C). The pel-
lets obtained after centrifugation were washed three times with 20 mM phosphate buffer, pH 7.4 (500 μl) and 
finally the yeast cells were suspended in 200 μl of 20 mM phosphate buffer, pH 7.426. Next, 20 μl of the resulting 
suspension of C. albicans cells (without AmB) were applied on a polylysine-coated coverslip and were imaged 
with FLIM technique, and then 10 μl AmB (final concentration 100 μM, 200 μM, 300 μM) was carefully added. 
The analyses were carried out for 30 min.

Fluorescence lifetime imaging was carried out on MicroTime 200 (Picoquant GmbH, Germany) linked with 
an Olympus IX71 inverted microscope. The technical details of imaging were reported previously11. Briefly, 
the cells were scanned with the 405 nm pulsed laser (10 MHz repetition frequency and 16 ps resolution time). 
A silicon oil-immersed objective (NA = 1.3, 60×) was used. Measurements were carried out with the applica-
tion of a confocal pinhole of 50 μm in diameter and ZT 405RDC dichroic, ZET405 StopLine Notch Filter, 430 
long wavelength-pass filters from Chroma-AHF Analysentechnik. The fluorescence signal was divided into 
perpendicular- and parallel-polarized channels and was simultaneously measured by two twin Single Photon 
Avalanche Diodes. Fluorescence lifetimes and fluorescence anisotropy values were analysed and determined with 
the application of SymPhoTime 64 v. 2.3 software (Picoquant GmbH, Germany). Fluorescence anisotropy was 
calculated according to the formula:

r
F GF
F GF2

=
−

+
⊥

⊥

where F⊥ denotes perpendicular and F|| parallel intensities. Polarization directions are referred to the polarization 
of excitation laser beam. G was an instrumental correction factor (typically 1.01). A value of factor G was deter-
mined before each experiment, in separate measurement carried out with a long-lifetime fluorescence probe.

Fluorescence emission spectra were recorded from imaged cells by spectrograph Shamrock 163 attached to 
the microscopy system. The detection was based on Newton EMCCD DU970P BUF camera (Andor Technolgy) 
cooled to −50 °C.

All type of the microscopic analyses were repeated at least for 20 different samples and typical results are pre-
sented in the manuscript and in the Supplementary Information.
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