Nature Chemical Biology Nature Chemical Biology is an interdisciplinary journal that publishes the most innovative and important research advances at the interface of chemistry and biology. The journal publishes research from chemists who are applying the principles, language and tools of chemistry to biological systems and from biologists who are interested in understanding biological processes at the molecular level. The scope of the journal covers all areas of contemporary research at the interface of chemistry and biology. http://feeds.nature.com/nchembio/rss/current Nature Publishing Group en © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Chemical Biology © 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Chemical Biology https://www.nature.com/uploads/product/nchembio/rss.png http://feeds.nature.com/nchembio/rss/current <![CDATA[Abiotic catalysis promoted by liquid–liquid phase separation]]> https://www.nature.com/articles/s41589-024-01829-5 Nature Chemical Biology, Published online: 09 January 2025; doi:10.1038/s41589-024-01829-5

By placing artificial metalloenzymes (ArMs) in phase-separated sanctuary regions formed by their protein scaffolds in Escherichia coli, we developed various whole-cell catalysts with high power and catalytic stability. Such whole cells with sheltered ArMs achieved substantially higher turnover numbers per cell and showed catalytic activity in mice for relevant therapeutic applications.]]>
doi:10.1038/s41589-024-01829-5 Nature Chemical Biology, Published online: 2025-01-09; | doi:10.1038/s41589-024-01829-5 2025-01-09 Nature Chemical Biology 10.1038/s41589-024-01829-5 https://www.nature.com/articles/s41589-024-01829-5
<![CDATA[Chemically engineered antibodies for autophagy-based receptor degradation]]> https://www.nature.com/articles/s41589-024-01803-1 Nature Chemical Biology, Published online: 09 January 2025; doi:10.1038/s41589-024-01803-1

Cheng et al. developed an autophagy-based _targeted protein degradation platform by conjugating polyethylenimine to antibodies, designated as autophagy-inducing antibodies, which can degrade proteins in vivo and enable the degradation of multiple proteins at the same time.]]>
Binghua ChengMeiqing LiJiwei ZhengJiaming LiangYanyan LiRuijing LiangHui TianZeyu ZhouLi DingJian RenWenli ShiWenjie ZhouHailiang HuLong MengKe LiuLintao CaiXiming ShaoLijing FangHongchang Li doi:10.1038/s41589-024-01803-1 Nature Chemical Biology, Published online: 2025-01-09; | doi:10.1038/s41589-024-01803-1 2025-01-09 Nature Chemical Biology 10.1038/s41589-024-01803-1 https://www.nature.com/articles/s41589-024-01803-1
<![CDATA[Structure and catalytic activity of the SAM-utilizing ribozyme SAMURI]]> https://www.nature.com/articles/s41589-024-01808-w Nature Chemical Biology, Published online: 08 January 2025; doi:10.1038/s41589-024-01808-w

Crystal structures of the ribozyme SAMURI reveal the alkyltransferase mechanism and show N3-modified adenosine and dealkylated cofactor in the active site, allowing for a comparison with riboswitches that bind S-adenosylmethionine but do not catalyze methyl transfer.]]>
Hsuan-Ai ChenTakumi OkudaAnn-Kathrin LenzCarolin P. M. ScheitlHermann SchindelinClaudia Höbartner doi:10.1038/s41589-024-01808-w Nature Chemical Biology, Published online: 2025-01-08; | doi:10.1038/s41589-024-01808-w 2025-01-08 Nature Chemical Biology 10.1038/s41589-024-01808-w https://www.nature.com/articles/s41589-024-01808-w
<![CDATA[Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis]]> https://www.nature.com/articles/s41589-024-01819-7 Nature Chemical Biology, Published online: 08 January 2025; doi:10.1038/s41589-024-01819-7

Artificial metalloenzymes (ArMs) often have sensitive metal centers. Here the authors enhance ArM performance by inducing liquid–liquid phase separation in Escherichia coli, creating protective compartments. This strategy boosts ArM loading, stabilizes activity and enables in vivo applications.]]>
Tong WuXianhui ChenYating FeiGuopu HuangYingjiao DengYingjie WangAnming YangZhiyong ChenN. Gabriel LemcoffXinxin FengYugang Bai doi:10.1038/s41589-024-01819-7 Nature Chemical Biology, Published online: 2025-01-08; | doi:10.1038/s41589-024-01819-7 2025-01-08 Nature Chemical Biology 10.1038/s41589-024-01819-7 https://www.nature.com/articles/s41589-024-01819-7
<![CDATA[Population-level amplification of gene regulation by programmable gene transfer]]> https://www.nature.com/articles/s41589-024-01817-9 Nature Chemical Biology, Published online: 08 January 2025; doi:10.1038/s41589-024-01817-9

Gene regulation in engineered microbial populations is often tuned at individual cell levels. Now, a population-wide amplification system has been devised that expands the dynamic range of plasmid transfer and gene regulation in bacteria.]]>
Hye-In SonGrayson S. HamrickAshwini R. ShendeKyeri KimKaichun YangTony Jun HuangLingchong You doi:10.1038/s41589-024-01817-9 Nature Chemical Biology, Published online: 2025-01-08; | doi:10.1038/s41589-024-01817-9 2025-01-08 Nature Chemical Biology 10.1038/s41589-024-01817-9 https://www.nature.com/articles/s41589-024-01817-9
<![CDATA[FUT10 and FUT11 are protein <i>O</i>-fucosyltransferases that modify protein EMI domains]]> https://www.nature.com/articles/s41589-024-01815-x Nature Chemical Biology, Published online: 07 January 2025; doi:10.1038/s41589-024-01815-x

FUT10 and FUT11, originally annotated as α1,3-fucosyltransferases, are actually protein O-fucosyltransferases participating in a non-canonical ER quality control pathway for EMI domain-containing protein secretion.]]>
O-fucosyltransferases that modify protein EMI domains]]> Huilin HaoYouxi YuanAtsuko ItoBenjamin M. EberandHarry TjondroMichelle CieleshNicholas NorrisCesar L. MorenoJoshua W. C. MaxwellG. Gregory NeelyRichard J. PayneMelkam A. KebedeRamona J. Bieber UrbauerFreda H. PassamMark LaranceRobert S. Haltiwanger doi:10.1038/s41589-024-01815-x Nature Chemical Biology, Published online: 2025-01-07; | doi:10.1038/s41589-024-01815-x 2025-01-07 Nature Chemical Biology 10.1038/s41589-024-01815-x https://www.nature.com/articles/s41589-024-01815-x
<![CDATA[Molecular mechanisms of inverse agonism via κ-opioid receptor–G protein complexes]]> https://www.nature.com/articles/s41589-024-01812-0 Nature Chemical Biology, Published online: 07 January 2025; doi:10.1038/s41589-024-01812-0

This study uncovers that certain κ-opioid receptor inverse agonists form receptor–G protein complexes, even in inactive states, challenging the classic GPCR activation model.]]>
Aaliyah S. TysonSaif KhanZenia MotiwalaGye Won HanZixin ZhangMohsen RanjbarDaniel StyrpejkoNokomis Ramos-GonzalezStone WooKelly VillersDelainey LandakerTerry KenakinRyan ShenviSusruta MajumdarCornelius Gati doi:10.1038/s41589-024-01812-0 Nature Chemical Biology, Published online: 2025-01-07; | doi:10.1038/s41589-024-01812-0 2025-01-07 Nature Chemical Biology 10.1038/s41589-024-01812-0 https://www.nature.com/articles/s41589-024-01812-0
<![CDATA[Mechanisms of metabolism-coupled protein modifications]]> https://www.nature.com/articles/s41589-024-01805-z Nature Chemical Biology, Published online: 07 January 2025; doi:10.1038/s41589-024-01805-z

This Perspective highlights how metabolic states regulate diverse protein modifications that affect physiology. In addition, the roles of subcellular localization of metabolic enzymes and the importance of un_targeted omics approaches are discussed.]]>
Bingsen ZhangFrank C. Schroeder doi:10.1038/s41589-024-01805-z Nature Chemical Biology, Published online: 2025-01-07; | doi:10.1038/s41589-024-01805-z 2025-01-07 Nature Chemical Biology 10.1038/s41589-024-01805-z https://www.nature.com/articles/s41589-024-01805-z
  NODES