Supporting Information

Formation and Reactivity of New Nicholas-Ferrier Pyranosidic Cations: Novel Access to Oxepanes via a 1,6-Hydride Shift/Cyclization Sequence

Ana M. Gómez,* Fernando Lobo, Daniel Pérez de las Vacas, Serafín Valverde, and J. Cristóbal López*

> Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; E-mail: <u>anagomez@iqog.csic.es</u> (AMG); <u>clopez@iqog.csic.es</u>

Table of Contents

1. General methods	2
2. Preparation and characterization data of compounds	3-16
3. Copies of 1 H and 13 C NMR spectra	
• ¹ H NMR and ¹³ C NMR spectra of 7b	17-18
• ¹ H NMR and ¹³ C NMR spectra of $8a$	19-20
• ¹ H NMR and ¹³ C NMR spectra of 8b	21-22
• ¹ H NMR and ¹³ C NMR spectra of 9a	23-24
• ¹ H NMR and ¹³ C NMR spectra of 9b	25-26
• ¹ H NMR, and ¹³ C NMR spectra of 10	27-28
• ¹ H NMR, ¹³ C NMR and NOE spectra of 11	29-31
• ¹ H NMR and ¹³ C NMR spectra of demetalated-11	
• ¹ H NMR and ¹³ C NMR spectra of 12	34-35
• ¹ H NMR and ¹³ C NMR spectra of desilylated-8b	36-37

•	¹ H NMR and ¹³ C NMR spectra of $19a$	
•	¹ H NMR and ¹³ C NMR spectra of 19b	40-41
•	¹ H NMR and ¹³ C NMR spectra of 19c	
•	¹ H NMR and ¹³ C NMR spectra of 19d	44-45
•	¹ H NMR and ¹³ C NMR spectra of 19e	46-47
•	¹ H NMR and ¹³ C NMR spectra of 19f	48-49
•	¹ H NMR and ¹³ C NMR spectra of 20b	
•	¹ H NMR and ¹³ C NMR spectra of 20c	
•	¹ H NMR and ¹³ C NMR spectra of 20d	54-55
•	¹ H NMR and ¹³ C NMR spectra of 20e	56-57
•	¹ H NMR and ¹³ C NMR spectra of 20f	
•	¹ H NMR and ¹³ C NMR spectra of 21a	60-61
•	¹ H NMR and ¹³ C NMR spectra of 21b	
•	¹ H NMR and ¹³ C NMR spectra of 21c	64-65
•	¹ H NMR and ¹³ C NMR spectra of 21d	66-67

1. General Methods.

All solvents and reagents were obtained commercially and used as received unless stated otherwise. Residual water was removed from starting compounds by repeated coevaporation. Reactions were executed at ambient temperatures unless stated otherwise. All moisture-sensitive reactions were performed in dry flasks fitted with glass stoppers or rubber septa under a positive pressure of argon. Airand moisture-sensitive liquids and solutions were transferred by syringe or stainless steel cannula. Anhydrous MgSO₄ or Na₂SO₄ were used to dry organic solutions during workup, and evaporation of the solvents was performed under reduced pressure using a rotary evaporator. Flash column chromatography was performed using 230–400 mesh silica gel. Thin-layer chromatography was

conducted on Kieselgel 60 F254 (Merck). Spots were observed first under UV irradiation (254 nm) then by charring with a solution of 20 % aqueous H_2SO_4 (200 mL) in AcOH (800 mL). ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 300 and 75 or 100 MHz, respectively. Chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: δ 7.25 ppm). Coupling constants (*J*) are given in Hz. Where indicated, NMR peak assignments were made by using COSY and HSQC experiments. All presented ¹³C spectra are proton-decoupled. The numbering pattern used for the ¹H NMR is illustrated below.

Mass spectra were recorded by direct injection with a mass spectrometer *Agilent 6250 Accurate Mass Q-TOF LC/MS* equipped with an electrospray ion source in positive mode. Optical rotations $[\alpha]_D$ were measured for solutions in chloroform with a *Perkin-Elmer 241 MC* polarimeter (sodium D-line, λ = 589 nm).

Starting glycals $6a^{11}$, $6b^{12}$ and lactone $7a^{13}$ were prepared according to described procedures.

2. Preparation and spectroscopic characterization data of compounds

3,4-Di-O-benzyl-6-O-Triisopropyl-2-deoxy-D-arabino-hexono-1,5-lactone 7b. А solution of D-glucal **6b** (3.8 g, 8 mmol) in 1,2 dichloroethane (100 mL) under argon and in the presence of 4A molecular sieves was treated with PCC (3.4 g, 16 mmol). The ensuing suspension was heated to 80°C and stirred for 6 h. The mixture was then allowed to cool, diluted with Et₂O and filtered though a small path of celite. The organic layer was concentrated and the residue purified by flash chromatography (Hexane/EtOAc 9:1) to give lactone 7b (1.51 g, 44%) as a colorless oil. For **7b**: [α]²⁵_D +30.7 (*c* 1.7, CHCl₃); ¹H NMR (CDCl₃) δ 7.32-7.16 (m, 10 H), 4.63 (d, J = 11.3 Hz, CH₂Ph), 4.56 (d, J = 11.7 Hz, CH₂Ph), 4.55 (d, J = 11.4Hz, CH₂Ph), 4.47 (d, J = 11.8 Hz, CH₂Ph), 4.16 (td, J = 6.6, 3.8 Hz, 1 H, H-5), 3.97-3.84 (m, 3 H, H-4, H-6), 2.81 (dd, J = 16.6, 4.4 Hz, 1 H, H-2), 2.64 (dd, J = 16.5, 5.7 Hz, 1 H, H-2), 1.01-0.96 (m, 21 H, TIPS); ¹³C NMR (CDCl₃ 75MHz) δ 169.7, 138.0, 137.8, 128.9, 128.4, 128.4, 128.3, 128.1, 81.3, 75.1, 74.8, 73.5, 71.6, 62.9, 34.3, 18.4, 18.3, 12.3. HRMS (ESI+): found 499.2876 (M + H)⁺; calcd. for $[C_{29}H_{42}O_5Si + H]^+ 499,2874.$

General Procedure A. Transformation of Lactones 7 into Enynes 8. A flamedried 25 mL round bottom flask equipped with a stir bar and argon inlet was charged with a solution of phenylacetylene (3 equiv) in dry THF (2 mL/mmol). The reaction was cooled to -78 °C, and then treated with n-butyllithium (3.05 equiv). After 30 minutes at -78 °C a solution of the corresponding 2-deoxy-Dgluconolactone in dry THF (4 mL/mmol) was added and the reaction mixture was kept at that temperature for 2 hours after which time phosphorous oxychloride (4 equiv) was added. After warming to room temperature, the mixture was stirred for 20 minutes, then treated with pyridine (40 equiv) and left overnight. Aqueous work up and chromatography afforded the corresponding alkynylglucal **8**.

1-(2-Phenyl-ethynyl)-3,4,6-Tris-O-benzyl-D-glucal 8a. This compound was prepared according to the general procedure from lactone 7a (2.10 g, 4.86 mmol). Silica gel chromatography (hexane/Ethyl acetate 95:5) provided pure 8a (1.32 g, 53%) as a white solid. For **8a**: m.p. 96-98 °C; $[\alpha]^{25}_{D}$ -3.6 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 7.43-7.14 (m, 20 H), 5.36 (d, J = 3.0 Hz, 1 H, H-2), 4.77 (d, J = 11.2 Hz, 1 H, CH_2Ph), 4.60 (d, J = 11.6 Hz, 1 H, CH_2Ph), 4.59 (d, J = 11.1 Hz, 1 H, CH_2Ph), 4.57 (d, J = 12.1 Hz, 1 H, CH₂Ph), 4.52 (s, 2 H, CH₂Ph), 4.46 (d, J = 14.8 Hz, 1 H, CH₂Ph) 4.22 (dd, J = 6.2, 3.1 Hz, 1 H, H-3), 4.09 (dt, J = 8.7, 3.2 Hz, 1 H, H-5), 3.88 (dd, J = 8.8, 6.3 Hz, 1 H, H-4), 3.80 (dd, J = 11.1, 4.4 Hz, 1 H, H-6), 3.75 (dd, J = 11.1, 3.0 Hz, 1 H, H-6); ¹³C NMR (CDCl₃, 75MHz) δ 138.3, 138.2, 138.1, 131.8 (x 2), 128.9, 128.5 (x 2), 128.4 (x 3), 128.4 (x 2), 128.4 (x 2), 128.2, 128.1 127.9 (x 2), 127.8 (x 2), 127.8 (x 2), 127.6, 122.0, 107.0, 88.8, 83.7, 77.8, 76.3, 73.8 (x 2), 73.5, 70.6, 68.2. HRMS (ESI+): found: 539.2193 (M+Na)⁺, calcd. for [C₃₅H₃₂O₄ + Na]⁺ 539.2198.

1-(2-Phenyl-ethynyl)-3,4-di-O-Benzyl-6-O-Triisopropyl-D-glucal **8b**. This compound was prepared according to the general procedure from lactone **7b** (1.00 g, 2.00 mmol). Silica gel chromatography (hexane/Ethyl acetate 95:5) provided pure **8b** (854 mg, 74%) as a colorless oil. For **8b**: $[α]^{28}$ _D -17.4 (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃) δ 7.58 - 7.32 (m, 15 H), 5.46 (d, *J* = 3.0 Hz, 1 H, H-2), 4.93 (d, *J* = 11.2 Hz, 1 H, CH₂Ph), 4.85 (d, *J* = 11.2 Hz, 1 H, CH₂Ph), 4.74 (d, *J* = 11.7 Hz, 1 H, CH₂Ph), 4.67 (d, *J* = 11.7 Hz, 1 H, CH₂Ph), 4.38-4.33 (m, 1 H, H-5), 4.21-4.05 (m, 3 H,H-4, H.6), 1.31-1.07 (m, 21 H, TIPS); ¹³C NMR (CDCl₃, 75 MHz) δ 138.8, 138.6, 138.6, 132.1 (x 2), 129.2 (x 3), 128.8 (x 2), 128.7 (x 2), 128.4 (x 2), 128.2 (x 2), 128.1, 128.1, 122.6, 106.7, 88.7, 84.2, 79.1, 76.4, 74.3, 73.8, 71.2, 62.1, 18.4 (x 6), 12.5 (x 3). HRMS (ESI+): found: 605.3054 (M+Na)⁺, calcd. for [C₃₇H₄₆O₄Si + Na]⁺ 605.3063.

General Procedure B. Transformation of 8b into the enyne precursors of differently substituted glycals, 19a-f. 1-(2-Phenyl-ethynyl)-3,4-di-O-Benzyl-6-O-Triisopropyl-D-glucal 8b (1.20 g, 2 mmol) was dissolved in THF (30 mL) and then

treated with tetrabutylammonium fluoride trihydrate (TBAF) (1.07 g, 4 mmol) and acetic acid (0.1 mL, 2 mmol). The reaction mixture was stirred for 24 h and subsequently diluted with EtOAc, poured into satd. aq. NaHCO₃ and extracted with EtOAc. The combined organic layers were dried and concentrated. The residue was purified by silica column chromatography (hexane/Ethyl acetate 6:4) to afford **desilylated-8b** (550 mg, 64%) as a white solid. m. p. 98-100°C; $[\alpha]^{29}_{D}$ -16.4 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 7.65 – 6.97 (m, 15 H), 5.35 (d, *J* = 3.0 Hz, 1 H, H-2), 4.79 (d, *J* = 11.2 Hz, 1 H, CH₂Ph), 4.66 (d, *J* = 11.6 Hz, 1 H, CH₂Ph), 4.61 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.50 (d, *J* = 11.6 Hz, 1 H, CH₂Ph), 4.24 (dd, *J* = 6.5, 3.0 Hz, 1 H, H-3), 4.05 – 3.60 (m, 4 H, H-4, H-5, 2 x H-6); ¹³C NMR (CDCl₃, 75MHz) δ 138.2, 138.1 (x 2), 131.9 (x 2), 129.1, 128.6 (x 4), 128.5 (x 2), 128.2 (x 2), 128.0, 127.9 (x 3), 121.9, 107.3, 89.1, 83.4, 78.5, 76.5, 74.1 (x 2), 70.9, 61.6; HRMS (ESI+): found: 427.1894 (M+H)⁺; 465.1468 (M+K)⁺, calcd. for [C₂₈H₂₆O₄ + H]⁺ 427,1904.

Next, a solution of **desilylated-8b** (100 mg, 0.23 mmol) in dry THF (5 mL) was cooled to 0 °C and treated under argon atmosphere with NaH (60% dispersion in mineral oil, 14 mg, 0.34 mmol). After stirring at 0 °C for 30 min, the corresponding benzyl halide (1.2 eq) and tetrabutylammonium iodide (5% mol) were added. The reaction mixture was then allowed to reach room temperature and stirred overnight. The reaction was diluted with water (10 mL) and extracted with diethyl ether (3 x 15 mL). The organic layers were dried over Na_2SO_4 , filtered, concentrated *in vacuo*, and then purified by flash column chromatography (hexane/Ethyl acetate 95:5).

Enyne precursor of 19a. Following the general procedure, **desilylated-8b** was treated with *p*-methoxybenzyl chloride (42 mg, 0.28 mmol) to produce **enyne precursor of 19a** (65 mg, 54%) as a yellow oil. $[\alpha]^{25}_{D}$ +6.71° (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 7.73 – 6.74 (m, 19 H), 5.44 (d, *J* = 3.0 Hz, 1 H, H-2), 4.84 (d, *J* = 11.2 Hz, 1 H, CH₂Ar), 4.68 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.66 (d, *J* = 11.2 Hz, 1 H, CH₂Ar), 4.60 (d, *J* = 11.7 Hz, 1 H, CH₂Ar), 4.59 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.51

(d, J = 11.7 Hz, 1 H, CH₂Ar), 4.31 (dd, J = 6.4, 3.0 Hz, 1 H, H-3), 4.16 (ddd, J = 8.7, 4.3, 3.0 Hz, 1 H, H-5), 3.95 (dd, J = 8.7, 6.4 Hz, 1 H, H-4), 3.91 – 3.66 (m, 2 H, 2 x H-6), 3.79 (s, 3 H, CH₃O); ¹³C NMR (CDCl₃, 75MHz) δ 159.6, 138.7, 138.6 (x 2), 132.2 (x 2), 130.5, 129.9 (x 2), 129.3, 128.9 (x 2), 128.8 (x 2), 128.7 (x 2), 128.3 (x 2), 128.2 (x 2), 128.2, 128.1, 122.4, 114.2 (x 2), 107.4, 89.1, 84.1, 78.2, 76.7, 74.2 (x 2), 73.6, 71.0, 68.3, 55.7; HRMS (ESI+): found: 547.2468 (M+H)⁺; 569.2394 (M+Na)⁺, calcd. for [C₃₆H₃₄O₅ + H]⁺ 547.2489.

Enyne precursor of 19b. Following the general procedure, **desilylated-8b** was treated with *p*-methylbenzyl bromide (54 mg, 0.28 mmol) to produce **enyne precursor of 19b** (92 mg, 72%) as a colorless oil. $[\alpha]^{25}_{D}$ +7.8 (*c* 0.9, CHCl₃); ¹H NMR (CDCl₃) δ 8.01 – 6.94 (m, 19 H), 5.49 (d, *J* = 3.1 Hz, 1 H, H-2), 4.88 (d, *J* = 11.1 Hz, 1 H, CH₂Ar), 4.77 – 4.62 (m, 4 H, CH₂Ar), 4.59 (d, *J* = 12.5 Hz, 1 H, CH₂Ar), 4.35 (dd, *J* = 6.5, 3.1 Hz, 1 H, H-3), 4.20 (dt, *J* = 8.9, 4.8 Hz, 1 H, H-5), 4.00 (dd, *J* = 8.9, 6.5 Hz, 1 H, H-4), 3.93 – 3.84 (m, 2 H, H-6), 2.39 (s, 3 H, Me); ¹³C NMR (CDCl₃, 75MHz) δ 138.5, 138.3 (x 2), 137.5, 135.1, 131.9 (x 2), 129.2 (x 2), 129.0, 128.6 (x 2), 128.5 (x 2), 128.4 (x 2), 128.2 (x 2), 128.0 (x 2), 127.9 (x 2), 127.8 (x 2), 122.2, 107.1, 88.8, 83.8, 77.9, 76.4, 73.9 (x 2), 73.6, 70.7, 68.1, 21.3; HRMS (ESI+): found: 531.2541 (M+H)⁺; 553.2368 (M+Na)⁺, calcd. for [C₃₆H₃₄O₅ + H]⁺ 531.2535.

Enyne precursor of 19c. Following the general procedure, **desilylated-8b** was treated with 2-naphthylmethyl bromide (58 mg, 0.28 mmol) to produce **enyne precursor of 19c** (60 mg, 48%) as a white solid. m. p. 97-100°C; $[\alpha]^{25}_{D}$ -6.9 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 7.99 – 7.07 (m, 22 H), 5.45 (d, *J* = 3.0 Hz, 1 H, H-2), 4.84 (d, *J* = 11.2 Hz, 1 H, CH₂Ar), 4.82 (d, *J* = 12.3 Hz, 1 H, CH₂Ar), 4.74 (d, *J* = 12.3 Hz, 1 H, CH₂Ar), 4.68 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.66 (d, *J* = 11.2 Hz, 1 H, CH₂Ar), 4.58 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.31 (dd, *J* = 6.3, 3.0 Hz, 1 H, H-3), 4.19 (ddd, *J* = 8.6, 4.3, 2.9 Hz, 1 H, H-5), 3.97 (dd, *J* = 8.6, 6.3 Hz, 1 H, H-4), 3.92 (dd, *J* = 10.9, 4.3 Hz, 1 H, H-6), 3.87 (dd, *J* = 10.9, 2.9 Hz, 1 H, H-6); ¹³C NMR (CDCl₃, 75MHz) δ 138.4, 138.2, 138.1, 135.6, 133.3, 133.1, 131.8 (x 2), 128.9, 128.5 (x 2), 128.4 (x 3), 128.2, 128.0, 127.9, 127.9 (x 2), 127.8, 127.8 (x 2), 127.8 (x 2), 126.6,

126.1, 125.9 (x 2), 122.0, 107.0, 88.8, 83.8, 77.8, 76.3, 73.9, 73.8, 73.6, 70.6, 68.3; HRMS (ESI+): found: 567.2539 $(M+H)^+$; 1150.5274 $(2M+NH_4)^+$, calcd. for $[C_{39}H_{34}O_4 + H]^+$ 567.2535.

Enyne precursor of 19d. Following the general procedure, **desilylated-8b** was treated with *p*-iodobenzyl bromide (83 mg, 0.28 mmol) to produce **enyne precursor of 19d** (96 mg, 78%) as a yellow solid. m. p. 63-65 °C, $[\alpha]^{25}_{D}$ +1.7 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 7.56 (d, *J* = 8.1 Hz, 2 H, *o* I-C₆H₄), 7.45 – 7.11 (m, 15 H), 7.00 (d, *J* = 8.1 Hz, 2 H, *m* I-C₆H₄), 5.36 (d, *J* = 3.1 Hz, 1 H, H-2), 4.76 (d, *J* = 11.3 Hz, 1 H, CH₂Ar), 4.59 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.57 (d, *J* = 11.4 Hz, 1 H, CH₂Ar), 4.49 (d, *J* = 11.7 Hz, 1 H, CH₂Ar), 4.48 (d, *J* = 12.0 Hz, 1 H, CH₂Ar), 4.41 (d, *J* = 12.0 Hz, 1 H, CH₂Ar), 4.21 (dd, *J* = 6.2, 3.1 Hz, 1 H, H-3), 4.07 (ddd, *J* = 8.8, 4.6, 2.9 Hz, 1 H, H-5), 3.84 (dd, *J* = 8.8, 6.2 Hz, 1 H, H-4), 3.77 (dd, *J* = 10.8, 4.6 Hz, 1 H, H-6), 3.71 (dd, *J* = 10.8, 2.9 Hz, 1 H, H-6); ¹³C NMR (CDCl₃, 75 MHz) δ 138.4, 138.2 (x 2), 138.0, 137.6 (x 3), 131.9 (x 2), 129.7 (x 2), 129.0, 128.6 (x 2), 128.6 (x 2), 128.0 (x 2), 127.9, 127.9 (x 2), 122.1, 107.1, 93.2, 88.9, 83.7, 77.8, 76.4, 73.9 (x 2), 72.9, 70.8, 68.5; HRMS (ESI+): found: 643.1347 (M+H)⁺; 1302.2869 (2M+NH₄)⁺, calcd. for [C₃₅H₃₁IO₄ + H]⁺ 643.1345.

Enyne precursor of 19e. Following the general procedure, **desilylated-8b** was treated with *p*-bromobenzyl bromide (70 mg, 0.28 mmol) to produce **enyne precursor of 19e** (138 mg, 85%) as a yellow solid. m. p. 51-54 °C; $[\alpha]^{25}_{D}$ -0.3 (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃) δ 7.57 – 7.06 (m, 19 H), 5.46 (d, *J* = 3.1 Hz, 1 H, H-2), 4.86 (d, *J* = 11.2 Hz, 1 H, CH₂Ar), 4.69 (d, *J* = 11.5 Hz, 1 H, CH₂Ar), 4.67 (d, *J* = 11.3 Hz, 1 H, CH₂Ar), 4.64 – 4.47 (m, 3 H, CH₂Ar), 4.31 (dd, *J* = 6.3, 3.1 Hz, 1 H, H-3), 4.17 (ddd, *J* = 8.9, 5.2, 3.1 Hz, 1 H, H-5), 3.94 (dd, *J* = 8.9, 6.3 Hz, 1 H, H-4), 3.87 (dd, *J* = 10.9, 5.2 Hz, 1 H, H-6), 3.80 (dd, *J* = 10.9, 3.1 Hz, 1 H, H-6); ¹³C NMR (CDCl₃, 75MHz) δ 138.3, 138.1 (x 2), 137.2, 131.9 (x 2), 131.5 (x 2), 129.8, 129.5 (x 2), 129.1, 129.0, 128.5 (x 2), 128.5 (x 2), 128.4 (x 2), 127.9 (x 2), 127.9 (x 2), 122.0, 121.6, 107.0, 88.9, 83.6, 77.7, 76.2, 73.8 (x 2), 72.8, 70.7, 68.4; HRMS (ESI+): found: 595.1478 (M+H)⁺, calcd. for [C₃₅H₃₁BrO₄ + H]⁺ 595.1484.

Enyne precursor of 19f. Following the general procedure, **desilylated-8b** was treated with *p*-fluorobenzyl bromide (60 mg, 0.28 mmol) to produce **enyne precursor of 19f** (108 mg, 78%) as a yellow solid. m. p. 82-86°C; $[\alpha]^{25}_{D}$ -3.60 (*c* 1.00, CHCl₃); ¹H NMR (CDCl₃) δ 7.48 – 6.79 (m, 19 H), 5.34 (d, *J* = 3.0 Hz, 1 H, H-2), 4.75 (d, *J* = 11.3 Hz, 1 H, CH₂Ar), 4.57 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.56 (d, *J* = 11.6 Hz, 1 H, CH₂Ar), 4.49 (d, *J* = 5.6 Hz, 1 H, CH₂Ar), 4.45 (d, *J* = 5.3 Hz, 1 H, CH₂Ar), 4.41 (d, *J* = 12.2 Hz, 1 H, CH₂Ar), 4.20 (dd, *J* = 6.2, 3.0 Hz, 1 H, H-3), 4.06 (ddd, *J* = 8.5, 4.6, 3.0 Hz, 1 H, H-5), 3.83 (dd, *J* = 8.5, 6.2 Hz, 1H, H-4), 3.75 (dd, *J* = 10.9, 4.6 Hz, 1H, H-6), 3.69 (dd, *J* = 10.9, 3.0 Hz, 1H, H-6; ¹³C NMR (CDCl₃, 75 MHz) δ 162.4 (¹*J*_{C,F} = 245.5 Hz), 138.3 (x 2), 138.2 (x 2), 133.9 (⁴*J*_{C,F} = 3.1 Hz), 131.9 (x 2), 129.6 (³*J*_{C,F} = 8.1 Hz) (x 2), 129.0, 128.5 (x 2), 128.5 (x 2), 128.4 (x 2), 127.9 (x 2), 127.9 (x 3), 122.0, 115.3 (²*J*_{C,F} = 21.4 Hz) (x 2), 107.0, 88.8, 83.7, 77.8, 76.3, 73.9, 73.8, 72.8, 70.7, 68.3; HRMS (ESI+): found: 535.2285 (M+H)⁺, calcd. for [C₃₅H₃₁FO₄ + H]⁺ 535.2285.

General Procedure C. Preparation of cobalt-complexed enynes 9 and 19. A solution of $Co_2(CO)_8$ (1.2 eq) in anhydrous CH_2Cl_2 (1 ml/mmol) was added to a solution of the corresponding enyne in CH_2Cl_2 (10 ml/mmol). The dark solution was stirred at room temperature until TLC showed complete formation of the comple (ca. 2 h). The solvent of the resulting reaction mixture was then removed under vacuum, and the residue was purified by flash chromatography. Dicobalt hexacarbonyl complexed enynes **19a-f** were used after chromatography without further characterization (For **19a**: 80%; **19b**: 98%; **19c**: 83%; **19d**: 90%; **19e**: 70%; **19f**: 76%).

Dicobalt hexacarbonyl complex **9a.** Following the general procedure, complex **9a** was prepared from 1-(2-Phenyl-ethynyl)-3,4,6-tris-O-Benzyl-D-glucal **8a** (2.6 g, 5.0 mmol) and Co₂(CO)₈ (2 g, 6 mmol) in dry CH₂Cl₂. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 95:5) to give a brownish oil (3.45 g, 86 %); ¹H NMR (CDCl₃) δ 7.75 – 7.19 (m, 20 H), 5.45 (d, *J* = 3.0 Hz, 1 H, H-2), 4.91 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.78 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.66 (s, 2 H, CH₂Ph), 4.63 (d, *J* = 12.0 Hz, 1 H, CH₂Ph), 4.56 (d, *J* = 12.0 Hz, 1 H, CH₂Ph),

4.37 (dd, J = 6.3, 3.0 Hz, 1 H, H-3), 4.26 (ddd, J = 9.0, 4.1, 2.5 Hz, 1 H, H-5), 4.10 (dd, J = 9.0, 6.3 Hz, 1 H, H-4), 3.97 (dd, J = 10.9, 4.1 Hz, 1 H, H-6), 3.84 (dd, J = 10.9, 2.5 Hz, 1 H, H-6); ¹³C NMR (75 MHz, CDCl₃) δ 199.1 (x 6), 152.3, 138.5, 138.5, 138.4, 137.9, 129.8 (x 2), 128.9 (x 2), 128.6 (x 2), 128.5 (x 2), 128.4 (x 2), 128.0, 128.0 (x 2), 127.9 (x 2), 127.8 (x 2), 127.6, 127.6 (x 2), 101.2, 91.5, 84.4, 78.2, 77.6, 74.6, 74.0, 73.7, 70.9, 68.8.

Dicobalt hexacarbonyl complex **9b.** Following the general procedure, complex **9b** was prepared from *1-(2-Phenyl-ethynyl)-3,4-di-O-Benzyl-6-O-Triisopropyl-D-glucal* **8b** (854 mg, 1.46 mmol) and Co₂(CO)₈ (600 mg, 1.76 mmol) in dry CH₂Cl₂. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 98:2) to give a brownish oil (1.10 g, 87 %); ¹H NMR (CDCl₃) δ 7.61 – 7.14 (m, 15 H), 5.35 (d, *J* = 3.1 Hz, 1 H, H-2), 4.87 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.73 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.55 (s, 2 H, CH₂Ph), 4.31 – 4.25 (m, 1 H, H-5), 4.07 – 3.99 (m, 4 H, H-3, H-4, 2 x H-6), 1.09 – 0.82 (m, 21 H, TIPS); ¹³C-NMR (75 MHz, CDCl₃) δ 199.1 (x 6), 153.1, 138.8, 138.5, 138.0, 129.8 (x 2), 128.9 (x 2), 128.6 (x 2), 128.5 (x 2), 128.1 (x 2), 128.0, 127.9, 127.8 (x 2), 127.7, 101.7, 91.9, 84.9, 80.1, 77.9, 74.2, 73.6, 70.9, 62.2, 18.2 (x 6), 12.1 (x 3).

General Procedure D. Preparation of oxepanes 11 and 20 from cobaltcomplexed enynes. A solution of the corresponding cobalt complex (1 equiv) in dry CH_2Cl_2 (100 mL/mmol) under an argon atmosphere and in the presence of 4Å molecular sieves was cooled to -20°C, and treated with $BF_3 \cdot OEt_2$ (1.2 equiv). The mixture was kept at that temperature until no further progress was revealed by TLC analysis, and then quenched with saturated aqueous NaHCO₃. The cooling bath was removed and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel chromatography. Oxepane **11**. Dicobalt hexacarbonyl complex **9a** (80 mg, 0.10 mmol) was subjected to general procedure D to produce after silica gel column purification (hexane/Ethyl acetate in gradient from 95:5 to 8:2) compound **12** (14 mg, 23%) followed by oxepane **11** (43 mg, 61%). For **11**: ¹H NMR (CDCl₃) δ 7.37-7.23 (m, 15 H,), 5.02 (d, *J* = 10.2 Hz, 1 H, H-2), 4.53 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.42 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.37-4.28 (m, 2 H, H-6, H-7), 3.90 (d, *J* = 10.7 Hz, 1 H, H-5), 3.68 (dd, *J* = 15.3, 8.8 Hz, 1 H, H-7), 3.47 (dt, *J* = 10.5, 3.3 Hz, 1 H, H-3), 2.65 (td, *J* = 13.9, 10.8 Hz, 1 H, H-4_{ax}), 2.49 (d, J = 2.2 Hz, 1 H, OH), 2.14 (d, *J* = 14.6 Hz, 1 H, H-4_{eq}); ¹³C NMR (75 MHz, CDCl₃) δ 204.0, 198.0 (x 6), 141.3, 137.7, 136.4, 129.4 (x 2), 129.0 (x 2), 128.6 (x 3), 128.5, 128.0 (x 2), 127.8 (x 2), 127.5, 127.0 (x 2), 93.5, 86.1, 85.8, 79.4, 72.5, 71.3, 70.7, 59.1, 31.3. The stereochemistries at C-2 and C-3 were assigned on the basis of a *J*_{2,3} = 10.2 Hz coupling constant, and observed NOEs between H-2, H-7_{ax}, H-4_{ax} and OH.

For **12**: ¹H NMR (CDCl₃) δ 7.70 (dd, *J* = 7.6, 1.7 Hz, 2 H,), 7.47-7.22 (m, 8 H), 4.84 (d, *J* = 3.0 Hz, 1 H, H-5), 4.72 (d, *J* = 12.4 Hz, 1 H, Bn), 4.67 (d, *J* = 12.3 Hz, 1 H, Bn), 4.03-3.94 (m, 2 H, H-6), 3.47 (td, *J* = 3.9, 1.9 Hz, 1 H, H-4), 2.34 (dt, *J* = 12.4, 5.6 Hz, 1 H, H-2), 2.20-2.05 (m, 1 H, H-3), 2.00-1.86 (m, 2 H, H-2, H-3); ¹³C NMR (75 MHz, CDCl₃) δ 199.4, 138.8, 137.8, 130.3 (x 2), 128.9 (x 2), 128.6 (x 2), 128.0, 127.8, 127.6 (x 2), 109.6, 94.2, 89.9, 76.6, 72.8, 70.3, 67.7, 34.0, 23.2.

Confirmation of the proposed structure of **11.** A solution of **11** (100 mg, 0.14 mmol) in THF (5 mL) at 0° C was treated with an excess of I₂ (70 mg, 0.28 mmol). The mixture was stirred at this temperature until no starting material was left (TLC analysis), quenched with saturated aqueous NaHCO₃ solution, and extracted with AcOEt. The combined organic layers were washed with 10% aqueous Na₂S₂O₃ solution, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 8:2) to give **demetalated-11** (44 mg, 74%). $[\alpha]^{25}_{D}$ +10.2 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃) δ 7.67 – 7.00 (m, 15 H), 5.10 (d, *J* = 9.3 Hz, 1 H, H-2), 4.77 (d, *J* = 11.7 Hz, 1 H, CH₂Ph), 4.56 (d, *J* = 11.7 Hz, 1 H, CH₂Ph), 4.26 – 4.00 (m, 2 H, H-6, H-7), 3.90 (ddd, *J* = 9.3, 3.2, 1.6 Hz, 1 H, H-5), 3.69 (dd, *J* = 12.7, 6.6 Hz, 1 H, H-7), 3.22 (td, *J* = 9.3,

4.0 Hz, 1 H, H-3), 2.82 (dt, J = 14.3, 9.3 Hz, 1 H, H-4), 2.41 (d, J = 4.9 Hz, 1 H, OH), 2.20 (ddd, J = 14.3, 4.0, 1.6 Hz, 1 H, H-4); ¹³C NMR (75 MHz, CDCI₃) δ 187.3, 141.4, 137.9, 133.2 (x 2), 131.0, 128.8 (x 2), 128.7 (x 2), 128.7 (x 2), 128.2, 128.2, 128.0 (x 2), 126.9 (x 2), 119.8, 92.9, 87.3, 83.2, 79.3, 72.0, 71.2, 71.0, 59.0, 28.7. HRMS (ESI+): found: 427.1907 (M+H)⁺, calcd. for [C₂₈H₂₆O₄ + H]⁺ 427.1904.

Oxepane **20b**. Dicobalt hexacarbonyl complex **19b** (130 mg, 0.16 mmol) was subjected to general procedure D to produce after silica gel column purification (hexane/Ethyl acetate in gradient from 95:5 to 8:2) compound **12** (25 mg, 27%) followed by oxepane **20b** (43 mg, 38%). For **20b**: ¹H NMR (CDCl₃) δ 7.59 – 6.85 (m, 14 H), 4.90 (d, *J* = 10.6 Hz, 1 H,H-2), 4.46 (d, *J* = 11.5 Hz, 1 H, CH₂Ph), 4.34 (d, *J* = 11.5 Hz, 1 H, CH₂Ph), 4.29 – 4.17 (m, 2 H, H-5, H-7), 3.81 (ddd, *J* = 9.2, 2.9, 1.8 Hz, 1 H, H-6), 3.59 (dd, *J* = 15.9, 9.2 Hz, 1 H, H-7), 3.38 (td, *J* = 10.6, 3.5 Hz, 1 H, H-3), 2.57 (dt, *J* = 14.3, 10.6 Hz, 1 H, H-4), 2.40 (d, *J* = 2.9 Hz, 1 H, OH), 2.20 (s, 3 H, CH₃), 2.05 (d, *J* = 14.3 Hz, 1 H, H-4); ¹³C NMR (75 MHz, CDCl₃) δ 204.1, 198.1 (x 6), 138.4, 137.8, 137.8, 136.5, 129.5 (x 2), 129.3 (x 2), 129.1 (x 2), 128.6 (x 2), 128.6, 128.1, 127.9 (x 2), 126.9 (x 2), 93.7, 86.3 (x 2), 79.6, 72.4, 71.4, 70.7, 59.2, 31.5, 21.2.

Oxepane **20c**. Dicobalt hexacarbonyl complex **19c** (75 mg, 0.09 mmol) was subjected to general procedure D to produce after silica gel column purification (hexane/Ethyl acetate in gradient from 95:5 to 8:2) compound **12** (17 mg, 30%) followed by oxepane **20c** (44 mg, 62%). For **20c**: ¹H NMR (CDCl₃) δ 7.91 – 6.87 (m, 17 H), 5.19 (d, *J* = 10.4 Hz, 1 H, H-2), 4.59 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.46 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.42 – 4.32 (m, 2 H, H-5, H-7), 3.98 (dt, *J* = 8.7, 1.9 Hz, 1 H, H-6), 3.73 (dd, *J* = 15.3, 8.7 Hz, 1 H, H-7), 3.57 (td, *J* = 10.4, 3.5 Hz, 1 H, H-3), 2.73 (dt, *J* = 14.1, 10.4 Hz, 1 H, H-4), 2.20 (d, *J* = 14.1 Hz, 1 H, H-4); ¹³C NMR (101 MHz, CDCl₃) δ 204.3, 198.0 (x 6), 138.8, 137.8, 136.2, 133.3 (x 2), 129.3 (x 2), 128.9 (x 2), 128.7 (x 2), 128.6, 128.6, 128.3, 128.2, 127.9 (x 2), 127.1, 126.2, 126.2, 126.1, 124.9, 93.8, 86.5, 86.0, 79.6, 72.8, 71.5, 70.8, 59.5, 31.7.

Oxepane **20d**. Dicobalt hexacarbonyl complex **19d** (100 mg, 0.11 mmol) was subjected to general procedure D to produce after silica gel column purification (hexane/Ethyl acetate in gradient from 95:5 to 8:2) compound **12** (35 g, 43%) followed by oxepane **20d** (25 mg, 49%). For **20c**: ¹H NMR (CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2 H, *o* I-C₆H₄), 7.51 – 7.20 (m, 10 H), 7.09 (d, *J* = 8.2 Hz, 2 H, *m* I-C₆H₄), 4.99 (d, *J* = 10.7 Hz, 1 H, H-2), 4.57 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.45 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.39 – 4.27 (m, 2 H, H-5, H-7), 3.92 (d, *J* = 9.7 Hz, 1 H, H-6), 3.69 (dd, *J* = 16.3, 9.7 Hz, 1 H, H-7), 3.40 (td, *J* = 10.7, 4.2 Hz, 1 H, H-3), 2.67 (dt, *J* = 14.6, 10.7 Hz, 1 H, H-4), 2.48 (d, *J* = 2.4 Hz, 1 H, OH), 2.17 (d, *J* = 14.6 Hz, 1 H, H-4).; ¹³C NMR (75 MHz, CDCl₃) δ 204.1, 197.9 (x 6), 141.2, 137.7 (x 2), 136.4, 132.1, 129.4 (x 2), 129.2 (x 2), 129.0 (x 2), 128.8, 128.7 (x 2), 128.4, 128.2, 127.9 (x 2), 93.8, 86.0, 85.6, 79.4, 72.8, 71.5, 70.9, 66.0, 31.5.

Oxepane **20e**. Dicobalt hexacarbonyl complex **19e** (100 mg, 0.11 mmol) was subjected to general procedure D to produce after silica gel column purification (hexane/Ethyl acetate in gradient from 95:5 to 8:2) compound **12** (14 mg, 21%) followed by oxepane **20e** (48 mg, 54%). For **20e**: ¹H NMR (CDCl₃) δ 7.55 – 7.09 (m, 14 H), 4.97 (d, *J* = 10.6 Hz, 1 H, H-2), 4.54 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.41 (d, *J* = 11.5 Hz, 1 H, CH₂Ph), 4.36 – 4.24 (m, 2 H, H-5, H-7), 3.89 (d, *J* = 10.6 Hz, 1 H, H-6), 3.66 (dd, *J* = 16.1, 9.3 Hz, 1 H, H-7), 3.37 (td, *J* = 10.6, 3.5 Hz, 1 H, H-3), 2.64 (dt, *J* = 13.2, 10.6 Hz, 1 H, H-4), 2.48 (d, *J* = 2.7 Hz, 1 H, OH), 2.14 (d, *J* = 13.2 Hz, 1 H, H-4); ¹³C NMR (75 MHz, CDCl₃) δ 204.1, 198.0 (x 6), 140.6, 137.8, 136.4, 131.7 (x 2), 129.4 (x 2), 129.2 (x 2), 128.8 (x 3), 128.7 (x 2), 128.2, 127.9 (x 2), 122.1, 93.9, 86.0, 85.6, 79.4, 72.8, 71.5, 70.9, 59.5, 31.4.

Oxepane **20f**. Dicobalt hexacarbonyl complex **19f** (125 mg, 0.15 mmol) was subjected to general procedure D to produce after silica gel column purification (hexane/Ethyl acetate in gradient from 95:5 to 8:2) compound **12** (14 mg, 15%) followed by oxepane **20f** (76 mg, 69%). For **20f**: ¹H NMR (CDCl₃) δ 7.85 – 6.85 (m, 14 H), 5.02 (d, *J* = 10.6 Hz, 1 H, H-2), 4.57 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.45 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.40 – 4.30 (m, 2 H, H-5, H-7), 3.93 (dt, *J* = 9.6, 2.4 Hz, 1

H, H-6), 3.70 (dd, J = 15.6, 9.6 Hz, 1 H, H-7), 3.43 (td, J = 10.6, 3.7 Hz, 1 H, H-3), 2.67 (dt, J = 14.3, 10.6 Hz, 1 H, H-4), 2.50 (d, J = 2.4 Hz, 1 H, OH), 2.17 (d, J = 14.3 Hz, 1 H, H-4).; ¹³C NMR (75 MHz, CDCl₃) δ 204.1, 198.0 (x 6), 162.5 (${}^{1}J_{C,F} = 246.7$ Hz), 137.8, 137.4, 136.4, 129.4 (x 2), 129.1 (x 2), 128.8 (x 2), 128.7 (x 3), 128.1, 127.9 (x 2), 115.4 (${}^{2}J_{C,F} = 21.5$ Hz) (x 2), 93.8, 86.1, 85.6, 79.4, 72.8, 71.5, 70.8, 59.6, 31.3.

General Procedure E. General procedure for the coupling reaction of cobaltcomplexed enyne 9b with nucleophiles. To a solution of the cobalt complex in dry CH_2CI_2 and cooled to -20 °C, $BF_3 \cdot OEt_2$ (1 equiv) and the corresponding nucleophile (3 equiv) were added. The mixture was kept at that temperature until no further progress was revealed by TLC analysis, and then quenched with saturated aqueous NaHCO₃. The cooling bath was removed and the layers were separated. The aqueous layer was extracted with CH_2CI_2 . The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*.

Glycal **21a**. This compound was prepared from dicobalt hexacarbonyl complex **9b** (70 mg, 0.08 mmol) and allyltrimethylsilane (27 mg, 0.24 mmol) according to the general procedure E. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 99:1) to give compound **21a** (45.3 mg, 70%) as a brownish oil: ¹H NMR (CDCl₃) δ 7.66-7.23 (m, 10 H), 5.80 (tdd, *J* = 14.3, 10.1, 7.2 Hz, 1 H, H-2'), 5.30 (d, *J* = 4.0 Hz, 1 H, H-2), 5.09-5.01 (m, 2 H, H-3'), 4.67 (d, *J* = 11.8 Hz, 1 H, CH₂Ph), 4.63 (d, *J* = 11.8 Hz, 1 H, CH₂Ph), 4.26 (dd, *J* = 11.0, 4.6 Hz, 1 H, H-5), 4.07-3.83 (m, 3 H, H-4, 2 x H-6), 2.63-2.47 (m, 2 H, H-1'), 2.09 (td, *J* = 14.0, 8.2 Hz, 1 H, H-3), 1.11-1.00 (m, 21 H, TIPS); ¹³C NMR (75 MHz, CDCl₃) δ 199.4 (x 6), 149.0, 138.8, 138.3, 136.6, 129.8 (x 2), 128.8 (x 2), 128.4 (x 2), 127.8, 127.7 (x 2), 127.6, 116.8, 104.5, 91.3, 86.6, 75.7, 72.5, 71.4, 62.7, 35.5, 34.5, 18.2 (x 6), 12.1 (x 3).

Glycal **21b**. This compound was prepared from dicobalt hexacarbonyl complex **9b** (92 mg, 0.10 mmol) and N-methylindol (39 mg, 0.30 mmol) according to the general procedure E. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 99:1) to give compound **21b** (52 mg, 59%) as a brownish oil: ¹H NMR (CDCl₃) δ 7.63-6.73 (m, 15 H), 5.48 (d, *J* = 3.6 Hz, 1 H, H-2), 4.54 (d, *J* = 11.4 Hz, 1 H, CH₂Ph), 4.45 (d, *J* = 11.3 Hz, 1 H, CH₂Ph), 4.28 (dd, *J* = 9.6, 4.4 Hz, 1 H, H-5), 4.22-4.11 (m, 3 H, H-4, H-6), 3.98 (d, *J* = 4.3 Hz, 1 H, H-3), 3.63 (s, 3 H, Me), 1.01-0.95 (m, 21 H, TIPS); ¹³C NMR (75 MHz, CDCl₃) δ 199.7 (x 6), 149.5, 138.9, 138.5, 137.3, 130.1 (x 2), 129.1, 128.9 (x 2), 128.5, 128.4 (x 2), 128.2 (x 3), 127.7, 121.8, 119.9, 119.2, 114.3, 109.6, 104.9, 92.3, 86.9, 77.6, 73.7, 72.6, 63.0, 33.1 (x 2), 18.5 (x 6), 12.4 (x 3).

Glycal **21c**. This compound was prepared from dicobalt hexacarbonyl complex **9b** (84 mg, 0.10 mmol) and N-methylpyrrole (24 mg, 0.29 mmol) according to the general procedure E. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 99:1) to give compound **21c** (47 mg, 57%) as a brownish oil: ¹H NMR (CDCl₃) δ 7.61-6.96 (m, 10 H), 6.48 (s, 1 H, H-5'), 6.04-6.01 (m, 1 H, H-3'), 5.90 (dd, *J* = 3.2, 1.6 Hz, 1 H, H-4'), 5.39 (d, *J* = 4.0 Hz, 1 H, H-2), 4.57 (d, *J* = 12.0 Hz, 1 H, CH₂Ph), 4.47 (d, *J* = 12.9 Hz, 1 H, CH₂Ph), 4.33-3.70 (m, 4 H, H-4, H-5, H-6), 3.48-3.42 (m, 1 H, H-3), 3.35 (s, 3 H, Me); ¹³C NMR (75 MHz, CDCl₃) δ 199.6 (x 6), 150.2, 138.9, 131.9, 130.0 (x 2), 129.1 (x 2), 128.7, 128.6 (x 2), 128.2, 128.1, 122.8 (x 2), 109.8, 107.1, 103.2, 91.6, 86.5, 76.5, 74.6, 73.0, 72.7, 62.7, 34.3, 31.8, 18.4 (x 6), 12.3 (x 3).

Glycal **21d**. This compound was prepared from dicobalt hexacarbonyl complex **9b** (73 mg, 0.08 mmol) and furan (17 mg, 0.24 mmol) according to the general procedure E. The crude product was purified by silica gel chromatography (hexane/Ethyl acetate 99:1) to give compound **21d** (62 mg, 57%) as a brownish oil: ¹H NMR (CDCl₃) 7.67-7.61 (m, 1 H, H-5'), 7.41-7.24 (m, 10 H, arom.), 6.34 (dd, J = 3.1, 1.9 Hz, 1H, H-4'), 6.11 (d, J = 3.2 Hz, 1 H, H-3'), 5.42 (d, J = 5.0 Hz, 1 H, H-2), 4.93 (, d, J = 11.0 Hz, 1 H, CH₂Ph), 4.55 (d, J = 11.1 Hz, 1 H, CH₂Ph), 4.23 (dd, J

= 8.4, 5.8 Hz, 1 H, H-5), 4.16-4.00 (m, 4 H, H-3, H-4, H-6), 1.07-1.00 (m, 21 H, TIPS); ¹³C NMR (75 MHz, CDCl₃) δ 199.5 (x 6), 155.0, 151.7, 142.2, 138.7, 130.0 (x 2), 129.10 (x 2), 128.5 (x 2), 128.3 (x 2), 128.2, 128.0, 127.9, 110.7, 108.8, 100.5, 92.0, 85.8, 76.6, 72.7, 72.0, 62.7, 35.9, 18,4 (x 6), 12.4 (x 3).

demetalated 11

