Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

W3C
Rl |
Cascading Style Sheets Level 2 Revision 1
(CSS 2.1) Specification

W3C Candidate Recommendation 19 July 2007

This version:
http://Mmww.w3.0rg/TR/2007/CR-CSS21-20070719|[p. ?7?]
Latest version:
[http:/lwww.w3.0rg/TR/CSS21] [p. ?7?]
Previous version:
[Rttp://www.w3.0rg/TR/2006/WD-CSS21-2006 1106 [p. 27]
Editors:
[Bert Bos|[p. ??] <bert @w3.org>
[p. ??] <tantek @cs.stanford.edu>
[lan Hickson| [p. ??] <ian @hixie.ch>

[Hakon Wium Lie|[p. ??] <howcome @opera.com>

p. ??]

Please refer to the [errata] [p. ??] for this document.

This document is also available in these non-normative formats: [p. ?7],
[p. ??] ,[zip file] [p. ??] , [azip’ed PostScripf [p. 7], [p. 7] . See
also frransfations |[p. ??] .

[Copyright [p. 2?] © 2006 W3] [p. ??] ® (M [p. ??] ,[ERCIM|[p. ??] , [Keidl[p. ??]
), All Rights Reserved. W3C [p. 2?1, firademarK [p. ??] and
[p. ??] rules apply.

Abstract

This specification defines Cascading Style Sheets, level 2 revision 1 (CSS 2.1).
CSS 2.1 is a style sheet language that allows authors and users to attach style (e.qg.,
fonts and spacing) to structured documents (e.g., HTML documents and XML
applications). By separating the presentation style of documents from the content of
documents, CSS 2.1 simplifies Web authoring and site maintenance.

CSS 2.1 builds on CSS2[[CSS2] which builds on CSS1[CSS1] It supports
media-specific style sheets so that authors may tailor the presentation of their
documents to visual browsers, aural devices, printers, braille devices, handheld
devices, etc. It also supports content positioning, table layout, features for
internationalization and some properties related to user interface.

1 19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

CSS 2.1 corrects a few errors in CSS2 (the most important being a new definition
of the height/width of absolutely positioned elements, more influence for HTML's
"style" attribute and a new calculation of the ’clip’ property), and adds a few highly
requested features which have already been widely implemented. But most of all
CSS 2.1 represents a "snapshot" of CSS usage: it consists of all CSS features that
are implemented interoperably at the date of publication of the Recommendation.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

Status of this document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the |W3C technicall
[reports index at http://lwww.w3.0rg/TR/| [p. ??] .

This is a W3C Candidate Recommendation, which means the specification has
been widely reviewed and W3C recommends that it be implemented. It will remain
Candidate Recommendation [at least until 20 December 2007 [p. 3] A test suite and
a report on implementations will be provided before the document becomes a
Proposed Recommendation.

Publication as a Candidate Recommendation does not imply endorsement by the
W3C Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this document
as other than work in progress.

The [p. ??]) public mailing listvww-style@w3.org] [p. ??] (see
[p. ??]) is preferred for discussion of this specification. When sending
e-mail, please put the text “{[CSS21]” in the subject, preferably like this: “\{CSS21]
...summary of comment...”

A list of changes since the [last Working Draff] [p. ??] is available in the [Disposition]
[p. 27].

This document was produced by the [CSS Working Group| [p. ??] (part of the [Style]
[p. 271).

This document was produced by a group operating under the |5 February 2004
[W3C Patent Policy|[p. ??] . W3C maintains apublic list of any patent disclosures|
[p. ??] made in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains [Essential Claim(s)|[p. ??] must disclose
the information in accordance with[section 6 of the W3C Patent Policy|[p. ?7?] .

19 Jul 2007 15:54 2

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Candidate Recommendation Exit Criteria

For this specification to exit the CR stage, the following conditions must be met:

1. There must be at least two interoperable implementations for every feature. For
the purposes of this criterion, we define the following terms:

feature
A section or subsection of the specification.
interoperable

passing the respective test cases in the test suite, or, if the
implementation is not a web browser, equivalent tests. Every relevant test
in the test suite should have an equivalent test created if such a UA is to be
used to claim interoperability. In addition if such a UA is to be used to claim
interoperability, then there must one or more additional UAs which can also
pass those equivalent tests in the same way for the purpose of
interoperability. The equivalent tests must be made publicly available for
the purposes of peer review.

implementation
a user agent which:

1. implements the feature.

2. is available (i.e. publicly downloadable or available through some other
public point of sale mechanism). This is the "show me" requirement.

3. is shipping (i.e. development, private or unofficial versions are
insufficient).

4. is not experimental (i.e. is intended for a wide audience and could be
used on a daily basis).

2. A minimum of six months of the CR period must have elapsed. This is to ensure
that enough time is given for any remaining major errors to be caught.

3. The CR period will be extended if implementations are slow to appear.

4. Features that were not in CSS1 will be dropped (thus reducing the list of "all"
features mentioned above) if two or more interoperable implementations of
those features are not found by the end of the CR period.

5. Features will also be dropped if sufficient and adequate tests (by judgment of
the working group) have not been produced for those features by the end of the
CR period.

Features at risk

The working group has identified the following features as being currently poorly
implemented by UAs. They are therefore most at risk of being removed from

CSS 2.1 when exiting CR. (Any changes of this nature will still result in the
specification being returned to last call.) Implementors are urged to implement these

3 19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

features, or correct bugs in their implementations, if they wish to see these features
remain in this specification.

New list-style-type’ values
® ’'armenian’
® ’'georgian’
® ’lower-greek’

Implementors are advised to look at CSS3 Lists instead, where these and

many other new values not found in CSS1 are defined in detail. [CSS3LIST
Support for multiple ID attributes for the ID selector

Because implementations are not expected to support multiple IDs per
element soon, this feature may be made informative. The W3C Selectors

specification will continue to have this feature normatively. (Section 5.9.[[p. 78])
Automatic table layout algorithm

The input to the suggested (non-normative) automatic layout algorithm for
tables is restricted to (1) the containing block width and (2) the content and

properties of the table and its children. This restriction may be lifted.
Quotes

The 'quotes’ property and the 'open-quote’, 'close-quote’, 'no-open-quote’ and
'no-close-quote’ keywords may be dropped.
BODY element in XHTML

The effect of [overflow] [p. 185] and [p. 221] is different on BODY
elements in HTML than on other elements. It may be that the exceptional
handling of BODY in HTML is extended to BODY in XHTMLL1.

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Quick Table of Contents

[L About the CSS 2.1 Specificationl 21
[2 Introduction to CSS 2.1|29
I3 Conformance: Requirements and Recommendatlonsl R Y 4
|4 Syntax and basic datatypes| 43
. 869
|6 ASS|gn|ng property values Cascadlng and Inhentancel . i
8 Box model . e 0 K¢
[9 Visual formatting modell e
[10 Visual formatting model detailsf| 161
[11 Visual effects|185
|12 Generated content, automatic numberlng and Ilstsl193
[13 Paged medial e
[14 Colors and Backgrounds|221
X |
2)
o o)
[18 User mterfacel . 2 0
[Appendix A. Aural style sheetsl ... 289
[Appendix B. Bibliography] < (0
[Appendix C. Changes|313
[Appendix D. Default style sheet for HTML 4|31
[Appendix E. Elaborate description of Stacking Contexts] 373
[Appendix F. Full property table/ 377
[Appendix G. GrammarofCSs2.1 385
[Appendix I. Index| . o I

5 19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Full Table of Contents

[1 About the CSS 2.1 Specification|
[1.1 CSS 2.1 vs CSS 2|
|1.2 Reading the specification|
[1.3 How the specification is organized|
[1.4 Conventions| .
|1.4.1 Document language eIements and attnbutesl
[1.4.2 CSS property definitions]
1.4.2.2 Initial
[1.4.2.3 Applies to|
[1.4.2.4 Inherited|
[1.4.2.5 Percentage values|
[1.4.2.6 Media groups|
[1.4.2.7 Computed value]
|1.4.3 Shorthand properties|
[1.4.4 Notes and examples|
[1.4.5 Images and long descriptions| .
|1.5 Acknowledgments|
[2 Introduction to CSS 2.17|
[2.1 A brief CSS 2.1 tutorial for HTMLI
[2.2 A brief CSS 2.1 tutorial for XML|
[2.3 The CSS 2.1 processing model|
[2.3.1 The canvas|
[2.3.2 CSS 2.1 addressing modell
[2.4 CSS design principles] .
I3 Conformance Reqwrements and Recommendatlonsl
[3.2 UA Conformancel
[3.3 Error conditions)| .
[3.4 The text/css content typel
4 Syntax and ba5|c data types|
4.1.1 Tokemzatlonl
[4.1.2 Keywords| .
|4.1.2.1 Vendor-specific extenS|ons|
|4.1.2.2 Informative Historical Notes| .
[4.1.3 Characters and case|
4.1.4 Statementsl

|4 1 7 Rule sets declaratlon blocks and selectorsl

19 Jul 2007 15:54

21
21
22
22
23
23
23
23
25
25
25
25
25
26
26
26
27
27
29
29
32
33
34
34
35
37
37
41
42
42
43
43
44
47
47
48
48
49
50
50
51

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|4.1.8 Declarations and properties)

4.1.9 Comments]
[4.2 Rules for handling parsing errors|
4.3 Values| . ..

|4.3.1 Integers and real numbers|

4.3.2 Lengths

|4.3.3 Percentages]

|4.3.4 URLs and URIS|

|4.3.5 Counters| .

4.3.7 Strings . .
|4.3.8 Unsupported Values|

|4.4 CSS style sheet representationl

82
83
a3
55
55
55
89
89
60
61
62
63
63

|4.4.1 Referring to characters not represented in a character encodingp7

5 Selectors| . . .

[5.1 Pattern matching|

[5.2 Selector syntax| .
[5.2.1 Grouping| .

[5.3 Universal selector

[5.4 Type selectors|

[5.5 Descendant selectors|

[5.6 Child selectors| .

[5.7 Adjacent sibling selectors)

[5.8 Attribute selectors|]
[5.8.1 Matching attributes and attribute values)
|5.8.2 Default attribute values in DTDs|
[5.8.3 Class selectors|

[5.91D selectors|

[5.10 Pseudo-elements and pseudo-classes|

[5.11 Pseudo-classes] . . .

[5.11.1 :first-child pseudo-class| L
[5.11.2 The link pseudo-classes: :link and :visited|
[5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus|
[5.11.4 The language pseudo-class: :lang|
[5.12 Pseudo-elements]
[5.12.1 The :first-line pseudo-element]
[5.12.2 The :first-letter pseudo-element|
[5.12.3 The :before and :after pseudo-elements|

|6 Assigning property values, Cascading, and Inheritance| .

[6.1 Specified, computed, and actual values|
[6.1.1 Specified values|
[6.1.2 Computed values| .
[6.1.3 Used values]

69
69
71
71
72
72
72
73
73
74
74
76
76
78
79
80
80
81
81
83
84
84
86
89
91
91
91
92
92

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[6.1.4 Actual values| .
6.2 Inheritance]
[6.2.1 The 'inherit’ vaIueI
[6.3 The @import rule|
|6.4 The cascade|
[6.4.1 Cascading order]
[6.4.2 limportant rules| .
|6.4.3 Calculating a selector’s specificity] .
[6.4.4 Precedence of non-CSS presentational hints|
:
[7.1 Introductlon to medla typesl
[7.2 Specifying media-dependent style sheetsl
[7.2.1 The @media rule| .
[7.3 Recognized media types|
[7.3.1 Media groups] .
8 Box model
[8.1 Box dimensions| . .
[8.2 Example of margins, padding, and bordersl

[margin-left’, and ‘'margin]
[8.3.1 Collapsing margins|

[8.3 Margin properties: 'margin-top’, ‘'margin-right’, 'margin-bottom’}|

:’padding left’, and 'padding] .

[8.5 Border properties|

8.4 Padding properties: 'padding-top’, ‘padding-right’, ‘paddin

[8.5.1 Border width: 'border- top W|dth’ ’border rlght W|dth |

[border-bottom-width’, ’border-left-width’, and ’border-width’|

[8.5.2 Border color: 'border-top-color’, ’border-right-color’ |

[border-bottom-color’, ’border-left-color’, and ’border-color]|

[8.5.3 Border style: 'border-top-style’, ’border-right-style’}|
[border-bottom-style’, 'border-left-style’, and 'border-style]

[border-bottom’, 'border-left’, and 'border]

[8.5.4 Border shorthand properties: 'border-top’, 'border-right’,

[8.6 The box model for inline elements in bidirection contexﬂ

[9 Visual formatting model| .
[9.1 Introduction to the visual formatting modell
[9.1.1 The viewport|
[9.1.2 Containing blocks| .
[9.2 Controlling box generation| ..
[9.2.1 Block-level elements and block boxesl
[9.2.1.1 Anonymous block boxes|
[9.2.2 Inline-level elements and inline boxes| .
[9.2.2.1 Anonymous inline boxes|
[9.2.3 Run-in boxes| . .
[9.2.4 The 'display’ property| .

19 Jul 2007 15:54

92
92
a3
94
94
a5
a5
96
97
Q9
Q9
Q9

. 100
. 100
. 102
. 103
. 103
. 105

. 107
. 109

. 110
. 112

. 112
. 113
. 115

. 116
. 118
. 119
. 119
. 120
. 120
. 121
. 121
. 121
. 123
. 123
. 124
. 124

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[9.3 Positioning schemes| L .. 126
[9.3.1 Choosing a positioning scheme posmon propertyl .. 126
[9.3.2 Box offsets: 'top’, right’, ’bottom’, ’left| 128

[9.4 Normal flow]13
[9.4.1 Block formatting contextsl13
[9.4.2 Inline formattingcontexy 130
[9.4.3 Relative positioningf 133

. 134
[9.5. 1 Posmonlng the roat the roat propertyl138
[9.5.2 Controlling flow next to floats: the 'clear’ propertyy . . . 140

[9.6 Absolute positioningl14
[9.6.1 Fixed positioningf 142

[9.7 Relationships between ’display’, 'position’, and float] 143

[9.8 Comparison of nhormal flow, floats, and absolute positioning| . . 144
[9.8.1 Normal flowy 145
[9.8.2 Relative positioningf 145
[9.8.3 Floating a box|146
[9.8.4 Absolute positioningf 149

[9.9 Layered presentation| 153
[9.9.1 Specifying the stack level: the Z- |ndex propertyl . . . 153

[9.10 Text direction: the 'direction’ and 'unicode-bidi’ properties| . . 155

[10 Visual formatting model details| 161

|10.1 Definition of "containing block 161

[10.2 Content width: the 'width’ propertyy 164

|10.3 Calculating widths and margins|. 165
|10.3.1 Inline, non-replaced elements| 166
[10.3.2 Inline, replaced elements| . . . 166
[10.3.3 Block-level, non-replaced elements in normal rowI . . 166
|10.3.4 Block-level, replaced elements in normal flow] 167
[10.3.5 Floating, non-replaced elementsf 167
|10.3.6 Floating, replaced elements] 1le7
|10.3.7 Absolutely positioned, non-replaced eIementsI . . . 168
[10.3.8 Absolutely positioned, replaced elements|. 169
[10.3.9 'Inline-block’, non-replaced elements in normal flow] . . 169
[10.3.10 'Inline-block’, replaced elements in normal flonj . . . 170

|10.4 Minimum and maximum widths: 'min-width’ and 'max-width’] . . 170

|10.5 Content height: the 'height’ property] %4

|10.6 Calculating heights and margins| 27
[10.6.1 Inline, non-replaced elements| o 174

[10.6.2 Inline replaced elements, block-level replaced eIements |n|
[normal flow, 'inline-block’ replaced elements in normal flow and floating|
[replaced elements| 175
[10.6.3 Block-level non-replaced elements in normal flow when|

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[overflow’ computes to 'visible’] 175
|10.6.4 Absolutely positioned, non-replaced elementsl . . . 176
[10.6.5 Absolutely positioned, replaced elements| 177
[10.6.6 Complicated cases| . . A Y44
|10.6.7 'Auto’ heights for block formattlng context rootsl .. . 178
[10.7 Minimum and maximum heights: 'min-height’ and 'max-height| . 178
[10.8 Line height calculations: the ‘line-height’ and 'vertical-align’ properti@§0
|10.8.1 Leading and half-leadingf 180
[11 Visual effects|18
[11.1 Overflow and clrpplngl L185
[11.1.1 Overflow: the 'overflow’ propertyl185
[11.1.2 Clipping: the 'clip’ propertyy 188
[11.2 Visibility: the 'visibility’ propertyl 190
|12 Generated content, automatic numbering, and lists|193
[12.1 The :before and :after pseudo-elements|193
[12.2 The 'content’ property| 195
[12.3 Quotation marks] 197
[12.3.1 Specifying quotes with the quotes propertyl e K Y
|12.3.2 Inserting quotes with the 'content’ property] 199
|12.4 Automatic counters and numberingf 200
[12.4.1 Nested countersand scope] 202
[12.4.2 Counter styles|] 203
|12 4.3 Counters in elements with drsplay nonel 204
. ... 204
‘12 5 1 Lists: the Ilst st Iet e’, 'list-style-image’, 'list-style-position’,
[and Tist-style’ properties] 205
|13 Paged medial .. 2 |
[13.1 Introduction to paged med|a| 2 i
[13.2 Page boxes: the @pagerule| 212
[13.2.1 Page margins] . . . 212
[13.2.1.1 Rendering page boxes that do not f|t a tarqet sheetj
[13.2.1.2 Positioning the page box on the sheetf 214
|13.2.2 Page selectors: selecting left, right, and first pages|] . . 214
[13.2.3 Content outside the page box|215
[13.3 Page breaks] . . . 215
[13.3.1 Page break propertles ‘page- break before’ ’page break after |
[page-break-inside’]215
[13.3.2 Breaks inside elements: orphans’ ’wrdowsl ... 217
[13.3.3 Allowed page breaks| 218
|13.3.4 Forced page breaks| 218
[13.3.5 "Best" page breaks|] 218
[13.4 Cascading in the pagecontext 219
|14 Colors and Backgrounds|221

19 Jul 2007 15:54 10

11

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[14.1 Foreground color: the 'color’ property|
|14.2 The background|

. 221
. 221

[14.2.1 Background properties: "back round—color back round-image’,
[background-repeat’, ‘background-attachment’, ’background-position’,

land background] . 222
|14 3 Gamma correction| . . 228
. 231
[15. 1 Introductlonl . 231
|15.2 Font matching alqorlthml . 231
|15.3 Font family: the 'font-family’ propertyl . 232
[15.3.1 Generic font families| . . 234
. 234
[15.3.1.2 sans-serif| . . 235
[15.3.1.3 cursive] . 236
[15.3.1.4 fantasy] . 236
[15.3.1.5 monospace)| . 236
[15.4 Font styling: the 'font-style’ propertyl . 237
[15.5 Small-caps: the 'font-variant’ property| . 237
[15.6 Font boldness: the 'font-weight’ property| . 238
[15.7 Font size: the 'font-size’ property| . 241
|15.8 Shorthand font property: the 'font’ property| . 242
. . 245
[16.1 Indentatlon the text |ndent propertyl . 245
[16.2 Alignment: the 'text-align’ property| . 246
[16.3 Decoration| . . . 247
[16.3.1 Underlining, overllnlnq strlklnq and bllnklnq the|
[text-decoration’ property] . 247
16.4 Letter and word spacing: the ’letter-spacing’ and Word -spacing’ |
[properties| . 249
|116.5 Capitalization: the text transform propertyl . 251
[16.6 Whitespace: the 'white-space’ property| . . 252
[16.6.1 The 'white-space’ processing model| . . 253
[16.6.2 Example of bidirectionality with white-space coIIapsmgl . 254
|16 6.3 Control and combining characters’ detalils] . 254
. 255
[17.1 Introductlon to tablesl . 255
[17.2 The CSS table model| . 257
[17.2.1 Anonymous table objects| . 259
. 260
|17 4 Tables in the visual formattlnq modell . 261
[17.4.1 Caption position and alignment| . 262
|17.5 Visual layout of table contents| . 263
[17.5.1 Table layers and transparency| . . 264
[17.5.2 Table width algorithms: the 'table-layout’ propertyl . 267

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[17.5.2.1 Fixed tablelayouf 268
[17.5.2.2 Automatic tablelayoug 269
[17.5.3 Table height algorithms| 270
[17.5.4 Horizontal alignmentinacolumn| 272
[17.5.5 Dynamic row and column effectsl 272
. 213
|17 6.1 The separated borders modeII L . 273
[17.6.1.1 Borders and Backgrounds around empty ceIIs the|
[empty-cells’ property]21
[17.6.2 The collapsing border modell, 276
[17.6.2.1 Border conflict resolutionf 277
|17.6.3 Border styles| A
[18 User interface] . 2 < X !
|18.1 Cursors: the 'cursor’ propertyl ¢ o 1 |
|18.2 System Colors| 282
[18.3 User preferences forfontsf 284
[18.4 Dynamic outlines: the 'outline’ propertyl 284
[18.4.1 Outlines and thefocus] 286
[18.5 Magnification] 286
[Appendix A. Aural style sheets}] 289
|A.1 The media types 'aural’ and 'speech’| 289
|A.2 Introduction to aural style sheets|29
2 i]
2 i |
|A.2.3 Frequencies]291
|IA.3 Volume properties: 'volume’ 292
|A.4 Speaking properties: 'speak’| 293
|[A.5 Pause properties: 'pause-before’, 'pause-after’, and 'pause’] . . 294
|[A.6 Cue properties: 'cue-before’, 'cue-after’, and 'cue]|29
|A.7 Mixing properties: 'play-during’] 296
|A.8 Spatial properties: 'azimuth’ and 'elevation] 297
[A.9 Voice characteristic properties: 'speech-rate’, 'voice-family’, "pitch’,
[pitch-range’, 'stress’, and ‘richness] . . . 300
|A.10 Speech properties: 'speak-punctuation’ and speak numerall . 304
[A.11 Audio rendering of tables| 305
[A.11.1 Speaking headers: the speak header propertyl . . . 305
|[A.12 Sample style sheetforHTMY 308
[AJ13Emacspeak308
[Appendix B. Bibliography| e — {0 [e]
B.1 Normative references| 309
[B.2 Informative references| 311
[Appendix C. Changes|31
|C.1 Additional property valuesl32

19 Jul 2007 15:54 12

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.1.1 Section 4.3.6 Colors]32
|IC.1.2 Section 9.2.4 The 'display’ propertyl32
[C.1.3 Section 12.2 The 'content’ property] 320
[C.1.4 Section 16.6 Whitespace: the 'white-space’ propertyl . . 320
[C.1.5 Section 18.1 Cursors: the 'cursor’ property| 320
.32
[C.2.1 Sectlon 1. 1 CSS 2. 1 VS CSS 2|32
|C.2.2 Section 1.2 Reading the specificationl 320
|C.2.3 Section 1.3 How the specification is organized|. . . . 320
[C.2.4 Section1.4.21Valuel. 320
[C.2.5 Section 1.4.2.6 Mediagroups| 321
[C.2.6 Section 1.4.2.7 Computed valug, 321
|C.2.7 Section 1.4.4 Notes and examples|321
|C.2.8 Section 1.5 Acknowledgements, 321
|C.2.9 Section 3.2 Conformance]321
|C.2.10 Section 3.3 Error Conditions| 321
|C.2.11 4.1.1 Tokenization| 321
[C.2.12 4.1.3 Characters and case| 322
|C.2.13 Section 4.2 Rules for handling parsing errorsl .. . 322
|C.2.14 Section 4.3 Values| 322
|C.2.15 Section 4.3.2Lengths| 322
[C.2.16 Section 4.3.4 URLsandURIS| 322
[C.2.17 Section 4.3.6 Colors| 322
[C.2.18 Section 4.3.8 Unsupported Valuesl32
|IC.2.19 Section 4.4 CSS style sheet representation] 323
|C.2.20 Section 5.8.1 Matching attributes and attribute values| . 323
|C.2.21 Section 5.8.3 Class selectors|323
[C.2.22 Section 5.9 ID selectors| 323
[C.2.23 Section 5.10 Pseudo-elements and pseudo classesl . . 323
[C.2.24 5.11.2 The link pseudo-classes: :link and :visited] . . . 324
|C.2.25 Section 5.11.4 The language pseudo-class: :lang| .. 324
|IC.2.26 Section 5.12.1 The :first-line pseudo-element .. . 324
[C.2.27 Section 5.12.2 The :first-letter pseudo-elementf . . . 324
|C.2.28 Section 6.1 Specified, computed, and actual values| . . 324
[C.2.29 Section 6.4.1 Cascading order] 325
[C.2.30 Section 6.4.3 Calculating a selector’s speC|f|C|ty| . . . 325
|IC.2.31 Section 6.4.4 Precedence of non-CSS presentational hints] 325
|C.2.32 Section 7.3 Recognized Media Types| 325
|C.2.33 Section 7.3.1 Media Groups| 325
|C.2.34 Section 8.3 Margin properties] 325
[C.2.35 Section 8.3.1 Collapsing margins|325
|C.2.36 Section 8.4 Padding properties)] 326
|C.2.37 Section 8.5.2 Bordercolof 326

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|C.2.38 Section 8.5.3 Border style] 326
C.2.39 Section 8.6 The box model for inline elements in b|d|rect|on |
context| 3206
IC 2.40 Section 9 1.2 Contalnrng bIocksI32
[C.2.41 Section 9.2.1.1 Anonymous block boxes| 326
[C.2.42 Section 9.2.2.1 Anonymous inlineboxes|] 326
|C.2.43 Section 9.2.3 Run-inboxes|] 326
|C.2.44 Section 9.2.4 The 'display’ property] 327
|C.2.45 Section 9.3.1 Choosing a positioning scheme| .. . 327
|C.2.46 Section 9.3.2 Box offsets| 327
|C.2.47 Section 9.4.1 Block formatting contextsl 327
[C.2.48 Section 9.4.2 Inline formatting contextf 327
[C.2.49 Section 9.4.3 Relative positioning| 328
[C.2.50 Section 9.5 Floats|] 328
|C.2.51 Section 9.5.1 Positioning the floaﬂ 328
|C.2.52 Section 9.5.2 Controlling flow next to floats] . . . 328
[C.2. 53 Section 9.7 Relationships between 'display’, 'position’, and |
. 328
[C.2. 54 Section 9.9 Layered presentatronl329
[C.2.55 Section 9.10 Text direction]329
[C.2.56 Chapter Visual formatting model detallsl 329
|C.2.57 Section 10.1 Definition of "containing block'| 329
[C.2.58 Section 10.2 Content width| 33
[C.2.59 Section 10.3 Calculating widths and margrnsl . . .33
[C.2.60 Section 10.3.2 Inline, replaced elements] 330
[C.2.61 Section 10.3.3 Block-level, non-replaced elements in normall
. . . . 330
|IC.2.62 Sectlon 10.3. 4 Block IeveI replaced eIements in normal flowp30
|C.2.63 Section 10.3.5 Floating, non-replaced elements] . . . 330
[C.2.64 Section 10.3.6 Floating, replaced elements| . . . 330

[C.2.65 Section 10.3.7 Absolutely positioned, non-replaced eIementSB31
|C.2.66 Section 10.3.8 Absolutely positioned, replaced elements| . 331

|C.2.67 Section 10.4 Minimum and maximum widths| 331
|C.2.68 Section 10.5 Content heightf33
|C.2.69 Section 10.6 Calculating heights and marqrnsl .. .33
|C.2.70 Section 10.6.1 Inline, non-replaced elements| 332

|C.2.71 Section 10.6.2 Inline replaced elements, block-level replaced|
lelements in normal flow, ’inline-block’ replaced elements in normal flow

[and floating replaced elements| 332
|C.2.72 Section 10.6.3 Block-level non-replaced eIements in normal|
[flow when 'overflow’ computes to 'visible’| . . 332

|C.2.73 Section 10.6.4 Absolutely positioned, non- replaced eIementSBSZ
|C.2.74 Section 10.6.5 Absolutely positioned, replaced elements| . 333
|C.2.75 Section 10.7 Minimum and maximum heights| . . . 333

19 Jul 2007 15:54 14

15

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|C.2.76 Section 10.8 Line height calculations| 333
|C.2.77 Section 10.8.1 Leading and half-leading] 333
|C.2.78 Section 11.1 Overflow and clippingf 333
[C.2.79 Section 11.1.1 Overflon]1333
[C.2.80 Section 11.1.2 Clipping: the ’clip’ propertyl 334
[C.2.81 Section 11.2 Visibility| .. 334
[C.2.82 Chapter 12 Generated content, automatlc numberlnq and I|SB§4
|C.2.83 Section 12.1 The :before and :after pseudo-elements| . . 334
[C.2.84 Section 12.2 The 'content’ property] . . 334
[C.2.85 Section 12.3.2 Inserting quotes with the content propertyl 335
|C.2.86 Section 12.4 Automatic counters and numberingl . . . 335
[C.2.87 Section 12.4.1 Nested countersand scope] 335
[C.2.88 Section 12.5Listsf, 335
|C.2.89 Section 12.5.1 Lists| 335
[C.2.90 Chapter 13 Paged medial33
[C.2.91 Section 13.2.2 Page selectors|] 336
[C.2.92 Section 13.3.1 Page break properties| 336
[C.2.93 Section 13.3.3 Allowed page breaks|] 336
[C.2.94 Section 14.2.1 Background properties] 336
|C.2.95 Section 14.3 Gamma correction| 336
[C.2.96 Chapter 15 Fonts|336
[C.2.97 Section 15.2 Font matching algonthml 337
[C.2.98 Section 15.2.2 Fontfamilyy 337
[C.2.99 Section 15.5 Small-caps|. 337
[C.2.100 Section 15.6 Font boldness| 337
|C.2.101 Section 15.7 Fontsize, 337
[C.2.102 Chapter 16 Textf 337
[C.2.103 Section 16.2 Alignment] . . 337
|C.2.104 Section 16.3.1 Underlining, over I|n|ng stnklng and bI|nk|ng338
|C.2.105 Section 16.4 Letter and word spacingf 338
[C.2.106 Section 16.5 Capitalization| 338
|C.2.107 Section 16.6 Whitespace] 338
[C.2.108 Chapter 17 Tables| 339
[C.2.109 17.2 The CSS table modell339
[C.2.110 Section 17.2.1 Anonymous table objectsl 339
[C.2.111 Section 17.4 Tables in the visual formatting model] . . 339
[C.2.112 Section 17.4.1 Caption position and alignmentf . . . 339
|C.2.113 Section 17.5 Visual layout of table contents| 339
[C.2.114 Section 17.5.1 Table layers and transparency] . . . 340
[C.2.115 Section 17.5.2.1 Fixed table layoutf 340
|C.2.116 Section 17.5.2.2 Automatic table layouty 340
|C.2.117 Section 17.5.3 Table height algorithms| 340
[C.2.118 17.5.4 Horizontal alignment in a column| 340

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.2.119 Section 17.6 Borders] 340
|C.2.120 Section 17.6.1 The separated borders modeII .. .34
[C.2.121 Section 17.6.1.1 Borders and Backgrounds around empty ca4$|
|C.2.122 Section 17.6.2 The collapsing border modell 341
[C.2.123 Section 17.6.2.1 Border conflict resolution] 341
[C.2.124 Section 18.4 Dynamic outlines| . . . 341
[C.2.125 Chapter 12 Generated content, automatic numberlnq and 1344
|C.2.126 Appendix A. Aural style sheets|] 342
[C.2.127 Appendix A Section 5 Pause properties| 342
[C.2.128 Appendix A Section 6 Cue properties] 342
[C.2.129 Appendix A Section 7 Mixing properties| 342
[C.2.130 Appendix B Bibliographyf 342
N 7k
.343
[C.3. 1 Shorthand propertlesl34
[C.3.2 Applies to|33
|C.3.3 Section 4.1.1 (and GZ)I343
[C.3.4 Section 4.1.3 Characters and case|343
[C.3.5 Section 4.3 (Double sign problem)|343
|C.3.6 Section 4.3.2 Lengths| . 7
[C.3.7 Section 4.3.3 Percentages| e 7 ¥
[C.3.8 Section 4.3.4 URLsandURIs[. 344
[C.3.9 Section 4.3.5 Counters| 344
[C.3.10 Section 4.3.6| e v
|IC.3.11 Section 4.3.7 Strings| 344
|C.3.12 Section 5.10 Pseudo-elements and pseudo classesl .. 344
|C.3.13 Section 6.4 The cascade]34
[C.3.14 Section 8.1 Box Dimensions| 345
|C.3.15 8.2 Example of margins, padding, and bordersl . . . 345
[C.3.16 Section 8.5.4 Border shorthand properties] 345
|IC.3.17 Section 9.2.1 Block-level elements and block boxes| . . 345
|IC.3.18 Section 9.3.1 Choosing a positioning scheme| . . . 345
[C.3.19 Section 9.3.2 Box offsets|1345
[C.3.20 Section 9.4.1 Block formatting contextsl 346
[C.3.21 Section 9.4.2 Inline formatting contextf 346
|C.3.22 Section 9.4.3 Relative positioning| 346
|C.3.23 Section 9.5 Floats] 346
|IC.3.24 Section 9.5.1 Positioning the floaﬂ 346
[C.3.25 Section 9.5.2 Controlling flow nextto floats] 346
[C.3.26 Section 9.6 Absolute positioning| 346
[C.3. 27 Section 9.7 Relationships between 'display’, ’posmon and |
L 346
[C.3. 28 Section 9.10 Text dlrectlonl N 7 Y

19 Jul 2007 15:54 16

17

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.3.29 Section 10.1 Definition of "containing block"| 347
|C.3.30 Section 10.3.3] 347
|C.3.31 Section 10.4 Minimum and maximum Wldthsl ... 347
|C.3.32 Section 10.6.3 Block-level non-replaced elements in normal|
[flow when ’overflow’ computes to 'visible’] 347
[C.3.33 Section 10.7 Minimum and maximum heights| ... 347
[C.3.34 Section 11.1.1 Overflon] 348
|C.3.35 Section 11.1.2 Clipping: the ’clip’ propertyl 348
|IC.3.36 Section 11.2 Visibility| 348
[C337126.21Listsf 348
[C.3.38 14.2 The background|38
[C.3.39 14.2.1 Background properties], 348
|C.3.40 Section 15.2| e VK
|C.3.41 Section 15.7 Fontsize) 349
|C.3.42 Section 16.1 Indentation| 349
[C.3.43 Section 16.2 Alignment]349
[C.3.44 Section 17.2 The CSS table modeII34
[C.3.45 Section 17.2.1 Anonymous table objects|. 349
|C.3.46 Section 17.4 Tables in the visual formatting model] . . 350
|C.3.47 Section 17.5 Visual layout of table contents] 350
|C.3.48 Section 17.5.1 Table layers and transparency| . . . 380
[C.3.49 Section 17.6.1 The separated borders modell. . . . 350
[C.3.50 Section 18.2|35
|C.4 Clarifications|32
[C.4.1 Section 2.1 A brief CSS 2. 1 tutorlal for HTMLI351
|C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML| 351
|IC.4.3 Section 3.1 Definitions| < [y !
|C.4.4 Secton4.1Syntax},35
|C.4.5 Section 4.1.1 Tokenization|33
|C.4.6 Section 4.1.3 Characters and case| .. . 352
[C.4.7 Section 4.1.7 Rule sets, declaration blocks, and selectorsl . 352
|C.4.8 Section 4.2 Rules for handling parsing errors| 352
|IC.4.9 Section 4.3.1 Integers and real numbers| 352
|C.4.10 Section 4.3.2Lengths| 382
[C.4.11 Section 4.3.4URLsandURIS| 352
[C.4.12 Section 5.1 Pattern matching|38
[C.4.13 Section 5.7 Adjacent sibling selectors|3h2
|C.4.14 Section 5.8.2 Default attribute values in DTDs| . . . 353
|C.4.15 Section 5.9 ID selectors| . . . 353
C.4.16 Section 5.11.3 The dynamic pseudo classes hover actlve |
and :focus| 353
IC 4.17 Section 5.11. 4 The Ianguage pseudo class Iangl . . 353
|C.4.18 Section 5.12.2 The :first-letter pseudo-elementf . . . 353

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.4.19 Section 6.2 Inheritance] 353
|C.4.20 Section 6.2.1 The ’inherit valuel 353
[C.4.21 Section 6.3 The @import rule| 353
[C.4.22 6.4 The Cascade]73B3
|C.4.23 6.4.1 Cascading order] 3%
[C.4.24 Section 6.4.3 Calculating a selector S speC|f|C|ty| . . . 3%4
[C.4.25 Section 7.2.1 The @mediarule) 354
|C.4.26 Section 7.3 Recognized mediatypes|. 354
[C.4.27 Section 7.3.1 Mediagroups| 354
|C.4.28 Section 8.1 Box dimensions}] 354
[C.4.29 Section 8.3 Margin properties|35
[C.4.30 Section 8.3.1]355
|C.4.31 Section 8.5.3 Border sterI35
|C.4.32 Section 9.1.1 The viewporf 3585
[C.4.33 Section 9.3.1 Choosing a positioning schemel .. . 355
|C.4.34 Section 9.3.2 Box offsets|7385
[C.4.35 Section 9.4.2 Inline formatting contextl 356
[C.4.36 Section 9.4.3 Relative positioning|35
|C.4.37 Section 9.5 Floats] 356
|IC.4.38 Section 9.5.1 Positioning the floaﬂ35
[C.4.39 Section 9.5.2 Controlling flow nextto floats)] 356
[C.4. 40 Section 9.8 Comparison of normal flow, floats, and absolute |

.. 357
[C.4.41 Section 10.1 Definition of "containing bIock"I 357
[C.4.42 Section 10.2 Content width|] 357
[C.4.43 Section 10.3.3 Block-level, non-replaced elements in normal |

S .. . 357
|C.4.44 Section 10.4 Minimum and maximum Widthsl 357
[C.4.45 Section 10.6 Calculating heights and margins| . . . 357
[C.4.46 Section 10.7 Minimum and maximum heights| . . . 357
[C.4.47 Section 10.8 Line height calculations|f. 357
|C.4.48 Section 11.1 Overflow and clippingg 357
[C.4.49 Section 11.1.1 Overflony 358
|C.4.50 Section 11.1.2 Clipping/ 358
[C.4.51 Section 11.2 Visibility| e . 358
|C.4.52 Section 12.1 The :before and :after pseudo eIementsI . 358
[C.4.53 Section 12.2 The 'content’ property] . . 358
[C.4.54 Section 12.3.2 Inserting quotes with the content propertyl 358
|C.4.55 Section 12.4 Automatic counters and numberingl . . . 359
|C.4.56 Section 12.4.3 Counters in elements with 'display: none’l . 359
|C.4.57 Section 14.2 The background, 3589
|C.4.58 Section 15.1 Fonts Introductionf 359
[C.4.59 Section 15.2 Font matching algorithm| 360

19 Jul 2007 15:54 18

19

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.4.60 Section 15.2.2 Font family|

|C.4.61 Section 15.3.1 Generic font families]
[C.4.62 Section 15.4 Font styling|

|C.4.63 Section 15.5 Small-caps| .

[C.4.64 Section 15.6 Font boldness|

[C.4.65 Section 15.7 Font sizeg)

|C.4.66 Section 16.1 Indentation| .

|IC.4.67 16.2 Alignment|

. 360
. 360
. 360
. 360
. 360
. 360
. 361

361

|C.4.68 Section 16.3.1 Underllnlng over I|n|ng stnklng and bI|nk|ng|361

[C.4.69 Section 16.5 Capitalization|

[C.4.70 Section 16.6 Whitespace] .

[C.4.71 Section 17.1 Introduction to tables|

|C.4.72 Section 17.2 The CSS table model|
|C.4.73 Section 17.2.1 Anonymous table objects| .

|C.4.74 Section 17.4 Tables in the visual formatting model|

|C.4.75 Section 17.5 Visual layout of table contents|
[C.4.76 Section 17.5.1 Table layers and transparency|
|C.4.77 Section 17.5.2 Table width algorithms|
|IC.4.78 Section 17.5.2.1 Fixed table layout|
|IC.4.79 Section 17.5.2.2 Automatic table layout|
|C.4.80 Section 17.5.5 Dynamic row and column effects|
[C.4.81 17.6.1 The separated borders model| .
[C.4.82 Section 17.6.2 The collapsing borders model| .
[C.4.83 Section 18.2 System Colors| .
|C.4.84 Section 18.4 Dynamic outlines|
|C.4.85 Section 18.4.1 Outlines and the focus|
[C.4.86 Appendix D| . .
|C.5 Code Diffs for Appendices D and GI
[C.5.1 Appendix D Default style sheet for HTML4|
[C.5.2 Section G.1 Grammalr
[C.5.3 Section G.2 Lexical scanner]
[Appendix D. Default style sheet for HTML 4] .
[Appendix E. Elaborate description of Stacking Contexts|
|[E.1 Definitions]
|E 2 Painting order|
IAppendlx F. FuII property tabIeI
[Appendix G. Grammar of CSS 2.1|
G.1 Grammar
|G.2 Lexical scanner] .
|G.3 Comparison of tokenlzatlon in CSS 2. 1 and CSSll
[Appendix I. Index|

. 361
. 361
. 361
. 361
. 361
. 362
. 362
. 362
. 362
. 362
. 363
. 363
. 363
. 363
. 363
. 363
. 363
. 363
. 364
. 364
. 366
. 368
. 371
. 373
. 373
. 373
. 376
. 377
. 385
. 385
. 387
. 389
. 393

19 Jul 2007 15:54

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

19 Jul 2007 15:54

20

About the CSS 2.1 Specification

1 About the CSS 2.1 Specification

Contents

1.1 CSS2.1vsCSS?2

[1.2 Reading the specification|

[1.3 How the specification is organized|

1.4 Conventions|
[1.4.1 Document language elements and attributes|
|1.4.2 CSS property definitions|

1.4.2.2 Initial
[1.4.2.3 Applies to|

|1.4.2.4 Inherited|
[1.4.2.5 Percentage values|
|1.4.2.6 Media groups|
[1.4.2.7 Computed value|
|1.4.3 Shorthand properties|
|1.4.4 Notes and examples|
|1.4.5 Images and long descriptions|
[1.5 Acknowledgments|

1.1 CSS 2.1vs CSS 2

21
22
22
23
23
23
23
25
25
25
25
25
26
26
26
27
27

The CSS community has gained significant experience with the CSS2 specification
since it became a recommendation in 1998. Errors in the CSS2 specification have
subsequently been corrected via the publication of various errata, but there has not
yet been an opportunity for the specification to be changed based on experience

gained.

While many of these issues will be addressed by the upcoming CSS3
specifications, the current state of affairs hinders the implementation and
interoperability of CSS2. The CSS 2.1 specification attempts to address this situation

by:

® Maintaining compatibility with those portions of CSS2 that are widely accepted

and implemented.
® |Incorporating all published CSS2 errata.

® Where implementations overwhelmingly differ from the CSS2 specification,
modifying the specification to be in accordance with generally accepted practice.

® Removing CSS2 features which, by virtue of not having been implemented,
have been rejected by the CSS community. CSS 2.1 aims to reflect what CSS
features are reasonably widely implemented for HTML and XML languages in
general (rather than only for a particular XML language, or only for HTML).

21

19 Jul 2007 15:54

About the CSS 2.1 Specification

® Removing CSS2 features that will be obsoleted by CSS3, thus encouraging
adoption of the proposed CSS3 features in their place.

® Adding a (very) small number of [new property values,|[p. 320] when
implementation experience has shown that they are needed for implementing
CSs2.

Thus, while it is not the case that a CSS2 style sheet is necessarily
forwards-compatible with CSS 2.1, it is the case that a style sheet restricting itself to
CSS 2.1 features is more likely to find a compliant user agent today and to preserve
forwards compatibility in the future. While breaking forward compatibility is not
desirable, we believe the advantages to the revisions in CSS 2.1 are worthwhile.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

1.2 Reading the specification

This section is non-normative.

This specification has been written with two types of readers in mind: CSS authors
and CSS implementors. We hope the specification will provide authors with the tools
they need to write efficient, attractive, and accessible documents, without
overexposing them to CSS’s implementation details. Implementors, however, should
find all they need to build [conforming user agents|[p. 41] . The specification begins
with a general presentation of CSS and becomes more and more technical and
specific towards the end. For quick access to information, a general table of
contents, specific tables of contents at the beginning of each section, and an index
provide easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind:
electronic and printed. Although the two presentations will no doubt be similar,
readers will find some differences. For example, links will not work in the printed
version (obviously), and page numbers will not appear in the electronic version. In
case of a discrepancy, the electronic version is considered the authoritative version
of the document.

1.3 How the specification is organized

This section is non-normative.

The specification is organized into the following sections:

19 Jul 2007 15:54 22

About the CSS 2.1 Specification

Section 2: An introduction to CSS 2.1
The introduction includes a brief tutorial on CSS 2.1 and a discussion of design
principles behind CSS 2.1.

Sections 3 - 20: CSS 2.1 reference manual.

The bulk of the reference manual consists of the CSS 2.1 language reference.
This reference defines what may go into a CSS 2.1 style sheet (syntax,
properties, property values) and how user agents must interpret these style
sheets in order to claim [conformance] [p. 41] .

Appendixes:

Appendixes contain information about [aural properties|[p. 289] (non-normative),

[a_sample style sheet for HTML 4] [p. 371] , [changes from CSS2|[p. 313] , [the]

[grammar of CSS 2.1][p. 385] , a list of normative and informative [references]

[p. 309] , and two indexes: one for[properties| [p. 377] and one [general index]
[p. 393] .

1.4 Conventions

1.4.1|Document language| elements and attributes

® CSS property and pseudo-class names are delimited by single quotes.

® CSS values are delimited by single quotes.

® Document language attribute names are in lowercase letters and delimited by
double quotes.

1.4.2 CSS property definitions

Each CSS property definition begins with a summary of key information that
resembles the following:

'property-name’

Value: legal values & syntax

Initial: initial value

Applies to: elements this property applies to

Inherited: whether the property is inherited
Percentages: how percentage values are interpreted
Media: which media groups the property applies to

Computed value: how to compute the computed value

1.4.2.1 Value

This part specifies the set of valid values for the property whose name is
[property-name’} Value types may be designated in several ways:

23 19 Jul 2007 15:54

About the CSS 2.1 Specification

keyword values (e.g., auto, disc, etc.)

basic data types, which appear between "<" and ">" (e.g., <length>,
<percentage>, etc.). In the electronic version of the document, each instance of
a basic data type links to its definition.

types that have the same range of values as a property bearing the same name
(e.g., <’border-width’> <’background-attachment’>, etc.). In this case, the type
name is the property name (complete with quotes) between "<" and ">" (e.g.,
<’border-width’>). Such a type does not include the value 'inherit’. In the
electronic version of the document, each instance of this type of non-terminal
links to the corresponding property definition.

non-terminals that do not share the same name as a property. In this case, the
non-terminal name appears between "<" and ">", as in <border-width>. Notice
the distinction between <border-width> and <’border-width’>; the latter is
defined in terms of the former. The definition of a non-terminal is located near its
first appearance in the specification. In the electronic version of the document,
each instance of this type of value links to the corresponding value definition.

Other words in these definitions are keywords that must appear literally, without
quotes (e.g., red). The slash (/) and the comma (,) must also appear literally.

Values may be arranged as follows:

Several juxtaposed words mean that all of them must occur, in the given order.
A bar (|) separates two or more alternatives: exactly one of them must occur.
A double bar (||) separates two or more options: one or more of them must
occur, in any order.

Brackets ([]) are for grouping.

Juxtaposition is stronger than the double bar, and the double bar is stronger than

the bar. Thus, the following lines are equivalent:

ab | c||de
[ab][[c]l[de]l

Every type, keyword, or bracketed group may be followed by one of the following

modifiers:
® An asterisk (*) indicates that the preceding type, word, or group occurs zero or
more times.
® A plus (+) indicates that the preceding type, word, or group occurs one or more
times.
® A question mark (?) indicates that the preceding type, word, or group is optional.
e A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word,

or group occurs at least A and at most B times.

The following examples illustrate different value types:

19 Jul 2007 15:54 24

About the CSS 2.1 Specification

Value: N | NW | NE
Value: [<length> | thick | thin [{1,4}
Value: [<family-name> , |* <family-name>
Value: <uri>? <color> [/ <color>]?
Value: <uri> || <color>

Value types are specified in terms of tokens, as described in [p. ?7?]
. As the grammar allows spaces between tokens in the components of the expr
production, spaces may appear between tokens in values.

Note: In many cases, spaces will in fact be required between tokens in order to
distinguish them from each other. For example, the value 'lem2em’ would be parsed
as a single DIMENtoken with the number "1’ and the identifier 'em2em’, which is an
invalid unit. In this case, a space would be required before the "2’ to get this parsed
as the two lengths '1lem’ and '2em’.

1.4.2.2 Initial

This part specifies the property’s initial value. Please consult the section on
[p. 91] for information about the interaction between style sheet-specified,
inherited, and initial values.

1.4.2.3 Applies to

This part lists the elements to which the property applies. All elements are
considered to have all properties, but some properties have no rendering effect on
some types of elements. For example, the [clear] property only affects block-level
elements.

1.4.2.4 Inherited

This part indicates whether the value of the property is inherited from an ancestor
element. Please consult the section on [p. 91] for information about the
interaction between style sheet-specified, inherited, and initial values.

1.4.2.5 Percentage values

This part indicates how percentages should be interpreted, if they occur in the value
of the property. If "N/A" appears here, it means that the property does not accept
percentages as values.

1.4.2.6 Media groups

This part indicates the [media groups| [p. 102] to which the property applies.
Information about media groups is hon-normative.

25 19 Jul 2007 15:54

About the CSS 2.1 Specification

1.4.2.7 Computed value

This part describes the computed value for the property. See the section on
[computed values|[p. 92] for how this definition is used.

1.4.3 Shorthand properties

Some properties are shorthand properties, meaning that they allow authors to
specify the values of several properties with a single property.

For instance, the [font] property is a shorthand property for setting [font-style],
[font-variant] [font-weight], [font-size’, [line-height}, and [font-family]all at once.

When values are omitted from a shorthand form, each "missing" property is

assigned its initial value (see the section on[the cascade][p. 91]).

Example(s):

The multiple style rules of this example:

h1 {
font-weight: bold;
font-size: 12pt;
line-height: 14pt;
font-family: Helvetica;
font-variant: normal;
font-style: normal;

}
may be rewritten with a single shorthand property:

h1 { font: bold 12pt/14pt Helvetica }

In this example, [font-variant’], and [font-style’| take their initial values.

1.4.4 Notes and examples

All examples that illustrate illegal usage are clearly marked as "ILLEGAL
EXAMPLE".

HTML examples lacking DOCTYPE declarations are SGML Text Entities
conforming to the HTML 4.01 Strict DTD [HTML4]l Other HTML examples conform
to the DTDs given in the examples.

All notes are informative only.

Examples and notes are [marked within the source HTML] [p. 37] for the
specification and CSS user agents will render them specially.

19 Jul 2007 15:54

26

About the CSS 2.1 Specification

1.4.5 Images and long descriptions

Most images in the electronic version of this specification are accompanied by "long
descriptions" of what they represent. A link to the long description is denoted by a
"[D]" after the image.

Images and long descriptions are informative only.

1.5 Acknowledgments

This section is non-normative.

CSS 2.1 is based on CSS2. See the lacknowledgments section of CSS2|[p. ??] for
the people that contributed to CSS2.

We would like to thank the following people who, through their input and feedback
on the www-style mailing list, have helped us with the creation of this specification:
Andrew Clover, Bernd Mielke, C. Bottelier, Christian Roth, Christoph Paper, Claus
Farber, Coises, Craig Saila, Darren Ferguson, Dylan Schiemann, Etan Wexler,
George Lund, James Craig, Jan Eirik Olufsen, Jan Roland Eriksson, Joris Huizer,
Joshua Prowse, Kai Lahmann, Kevin Smith, Lachlan Cannon, Lars Knoll, Lauri
Raittila, Mark Gallagher, Michael Day, Peter Sheerin, Rijk van Geijtenbeek, Robin
Berjon, Scott Montgomery, Shelby Moore, Stuart Ballard, Tom Gilder, Vadim
Plessky, and the Open eBook Publication Structure Working Group Editors. We
would also like to thank Glenn Adams and Susan Lesch who helped proofread this
document.

In addition, we would like to extend special thanks to fantasai, Ada Chan and Boris
Zbarsky who have contributed significant time to CSS 2.1, and to Kimberly Blessing
for help with the editing.

27 19 Jul 2007 15:54

19 Jul 2007 15:54

About the CSS 2.1 Specification

28

Introduction to CSS 2.1

2 Introduction to CSS 2.1

Contents
[2.1 A brief CSS 2.1 tutorial for HTML]29
[2.2 A brief CSS 2.1 tutorial for Xmy 32
[2.3 The CSS 2.1 processingmodell 33
[2.3.1 Thecanvas] 34
[2.3.2 CSS 2.1 addressing model| . 7
2.4 CSS design principles] 35

2.1 A brief CSS 2.1 tutorial for HTML

This section is non-normative.

In this tutorial, we show how easy it can be to design simple style sheets. For this
tutorial, you will need to know a little HTML (see [HTML4]) and some basic desktop
publishing terminology.

We begin with a small HTML document:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

To set the text color of the H1 elements to red, you can write the following CSS
rules:

h1 { color: red }

A CSS rule consists of two main parts: [p. 69] ('h1’) and declaration
(‘color: red’). In HTML, element names are case-insensitive so 'h1’ works just as well
as 'H1'. The declaration has two parts: property ('color’) and value (red’). While the
example above tries to influence only one of the properties needed for rendering an
HTML document, it qualifies as a style sheet on its own. Combined with other style
sheets (one fundamental feature of CSS is that style sheets are combined) it will
determine the final presentation of the document.

The HTML 4 specification defines how style sheet rules may be specified for
HTML documents: either within the HTML document, or via an external style sheet.
To put the style sheet into the document, use the STYLE element:

29 19 Jul 2007 15:54

Introduction to CSS 2.1

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<STYLE type="text/css">
hl { color: red }
</STYLE>
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

For maximum flexibility, we recommend that authors specify external style sheets;
they may be changed without modifying the source HTML document, and they may
be shared among several documents. To link to an external style sheet, you can use
the LINK element:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<LINK rel="stylesheet" href="bach.css" type="text/css">
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

The LINK element specifies:

e the type of link: to a "stylesheet".
® the location of the style sheet via the "href" attribute.
e the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup,
we continue to use the STYLE element in this tutorial. Let’'s add more colors:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<STYLE type="text/css">
body { color: black; background: white }
h1 { color: red; background: white }
</STYLE>
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

19 Jul 2007 15:54 30

Introduction to CSS 2.1

The style sheet now contains four rules: the first two set the color and background
of the BODY element (it's a good idea to set the text color and background color
together), while the last two set the color and the background of the H1 element.
Since no color has been specified for the P element, it will inherit the color from its
parent element, namely BODY. The H1 element is also a child element of BODY but
the second rule overrides the inherited value. In CSS there are often such conflicts
between different values, and this specification describes how to resolve them.

CSS 2.1 has more than 90 properties, including Let’s look at some of the
others:

<IDOCTYPE HTML PUBLIC "-//W3C//[DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<STYLE type="text/css">
body {
font-family: "Gill Sans", sans-serif;
font-size: 12pt;
margin: 3em;

}
<ISTYLE>

</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

The first thing to notice is that several declarations are grouped within a block
enclosed by curly braces ({...}), and separated by semicolons, though the last
declaration may also be followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If
that font isn’t available, the user agent (often referred to as a "browser") will use the
'sans-serif’ font family which is one of five generic font families which all users
agents know. Child elements of BODY will inherit the value of the [font-family]]
property.

The second declaration sets the font size of the BODY element to 12 points. The
"point" unit is commonly used in print-based typography to indicate font sizes and
other length values. It's an example of an absolute unit which does not scale relative
to the environment.

The third declaration uses a relative unit which scales with regard to its
surroundings. The "em" unit refers to the font size of the element. In this case the
result is that the margins around the BODY element are three times wider than the
font size.

31 19 Jul 2007 15:54

Introduction to CSS 2.1

2.2 A brief CSS 2.1 tutorial for XML

This section is non-normative.

CSS can be used with any structured document format, for example with
applications of the eXtensible Markup Language [XML10] In fact, XML depends
more on style sheets than HTML, since authors can make up their own elements
that user agents don’t know how to display.

Here is a simple XML fragment:

<ARTICLE>
<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA>
One evening, just as he was getting his
<INSTRUMENT>flute</INSTRUMENT> ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.
</PARA>
</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which
elements are inline-level (i.e., do not cause line breaks) and which are block-level
(i.e., cause line breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA {display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its
comma-separated list of selectors, declares all the other elements to be block-level.
Element names in XML are case-sensitive, so a selector written in lowercase (e.g.
'instrument’) is different from uppercase (e.g. INSTRUMENT).

One way of linking a style sheet to an XML document is to use a processing
instruction:

<?xml-stylesheet type="text/css" href="bach.css"?>
<ARTICLE>
<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA>
One evening, just as he was getting his
<INSTRUMENT>flute</INSTRUMENT> ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.
</PARA>
</ARTICLE>

A visual user agent could format the above example as:

19 Jul 2007 15:54 32

Introduction to CSS 2.1

Fredrick the Great meets Bach

Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Notice that the word "flute" remains within the paragraph since it is the content of
the inline element INSTRUMENT.

Still, the text isn't formatted the way you would expect. For example, the headline
font size should be larger than then the rest of the text, and you may want to display
the author’s name in italic:

INSTRUMENT { display: inline }

ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }

AUTHOR { font-style: italic }

ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Fredrick the Great meets Bach

Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Adding more rules to the style sheet will allow you to further describe the
presentation of the document.

2.3 The CSS 2.1 processing model

This section presents one possible model of how user agents that support CSS
work. This is only a conceptual model; real implementations may vary.

In this model, a user agent processes a source by going through the following
steps:

1.
2.
3.

4.

33

Parse the source document and create aldocument tree|[p. 39] .

Identify the target[media type][p. 99] .

Retrieve all style sheets associated with the document that are specified for the

target[media typel [p. 99]

Annotate every element of the document tree by assigning a single value to

every [property] [p. 52] that is applicable to the target[media type] [p. 99] .

19 Jul 2007 15:54

Introduction to CSS 2.1

Properties are assigned values according to the mechanisms described in the
section on|cascading and inheritance|[p. 91] .

Part of the calculation of values depends on the formatting algorithm
appropriate for the target[media type] [p. 99] . For example, if the target medium
is the screen, user agents apply the [visual formatting model|[p. 119] .

5. From the annotated document tree, generate a formatting structure. Often, the
formatting structure closely resembles the document tree, but it may also differ
significantly, notably when authors make use of pseudo-elements and
generated content. First, the formatting structure need not be "tree-shaped" at
all -- the nature of the structure depends on the implementation. Second, the
formatting structure may contain more or less information than the document
tree. For instance, if an element in the document tree has a value of 'none’ for
the [display] property, that element will generate nothing in the formatting
structure. A list element, on the other hand, may generate more information in
the formatting structure: the list element’s content and list style information (e.g.,
a bullet image).

Note that the CSS user agent does not alter the document tree during this
phase. In particular, content generated due to style sheets is not fed back to the
document language processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results,
display them on the screen, render them as speech, etc.).

Step 1 lies outside the scope of this specification (see, for example, [DOM]).
Steps 2-5 are addressed by the bulk of this specification.
Step 6 lies outside the scope of this specification.

2.3.1 The canvas

For all media, the term canvas describes "the space where the formatting structure is
rendered.” The canvas is infinite for each dimension of the space, but rendering
generally occurs within a finite region of the canvas, established by the user agent
according to the target medium. For instance, user agents rendering to a screen
generally impose a minimum width and choose an initial width based on the
dimensions of the [viewport [p. 120] . User agents rendering to a page generally
impose width and height constraints. Aural user agents may impose limits in audio
space, but not in time.

2.3.2 CSS 2.1 addressing model

CSS 2.1[selectors] [p. 69] and properties allow style sheets to refer to the following
parts of a document or user agent:

® Elements in the document tree and certain relationships between them (see the

section on [p. 69]).

e Attributes of elements in the document tree, and values of those attributes (see

19 Jul 2007 15:54 34

Introduction to CSS 2.1

the section on [attribute selectors|[p. 74]).

Some parts of element content (see the [first-ling] [p. 85] and [first-letter] [p. 86]
pseudo-elements).

Elements of the document tree when they are in a certain state (see the section
on|pseudo-classes|[p. 79]).

Some aspects of the[canvas|[p. 34] where the document will be rendered.

Some system information (see the section on [p. 281]).

2.4 CSS design principles

This section is non-normative.

CSS 2.1, as CSS2 and CSS1 before it, is based on a set of design principles:

35

Forward and backward compatibility . CSS 2.1 user agents will be able to
understand CSS1 style sheets. CSS1 user agents will be able to read CSS 2.1
style sheets and discard parts they don’t understand. Also, user agents with no
CSS support will be able to display style-enhanced documents. Of course, the
stylistic enhancements made possible by CSS will not be rendered, but all
content will be presented.

Complementary to structured documents . Style sheets complement
structured documents (e.g., HTML and XML applications), providing stylistic
information for the marked-up text. It should be easy to change the style sheet
with little or no impact on the markup.

Vendor, platform, and device independence . Style sheets enable documents
to remain vendor, platform, and device independent. Style sheets themselves
are also vendor and platform independent, but CSS 2.1 allows you to target a
style sheet for a group of devices (e.g., printers).

Maintainability . By pointing to style sheets from documents, webmasters can
simplify site maintenance and retain consistent look and feel throughout the site.
For example, if the organization’s background color changes, only one file
needs to be changed.

Simplicity . CSS is a simple style language which is human readable and
writable. The CSS properties are kept independent of each other to the largest
extent possible and there is generally only one way to achieve a certain effect.

Network performance . CSS provides for compact encodings of how to present
content. Compared to images or audio files, which are often used by authors to
achieve certain rendering effects, style sheets most often decrease the content
size. Also, fewer network connections have to be opened which further
increases network performance.

Flexibility . CSS can be applied to content in several ways. The key feature is
the ability to cascade style information specified in the default (user agent) style
sheet, user style sheets, linked style sheets, the document head, and in
attributes for the elements forming the document body.

19 Jul 2007 15:54

Introduction to CSS 2.1

® Richness . Providing authors with a rich set of rendering effects increases the
richness of the Web as a medium of expression. Designers have been longing
for functionality commonly found in desktop publishing and slide-show
applications. Some of the requested rendering effects conflict with device
independence, but CSS 2.1 goes a long way toward granting designers their
requests.

® Alternative language bindings . The set of CSS properties described in this
specification form a consistent formatting model for visual and aural
presentations. This formatting model can be accessed through the CSS
language, but bindings to other languages are also possible. For example, a
JavaScript program may dynamically change the value of a certain element’s
property.

® Accessibility . Several CSS features will make the Web more accessible to
users with disabilities:

O Properties to control font appearance allow authors to eliminate
inaccessible bit-mapped text images.

O Positioning properties allow authors to eliminate mark-up tricks (e.g.,
invisible images) to force layout.

O The semantics of limportant ~ rules mean that users with particular
presentation requirements can override the author’s style sheets.

O The 'inherit’ value for all properties improves cascading generality and
allows for easier and more consistent style tuning.

O Improved media support, including media groups and the braille,
embossed, and tty media types, will allow users and authors to tailor pages
to those devices.

Note. For more information about designing accessible documents using CSS

and HTML, see [WAI-PAGEAUTH]

19 Jul 2007 15:54 36

Conformance: requirements and recommendations

3 Conformance: Requirements and

Recommendations

Contents
3.1 Definitions| 37
[3.2 UA Conformance] "
[3.3 Error conditions| 42
[3.4 The text/css content type] N 24

3.1 Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (see [REC2119]).
However, for readability, these words do not appear in all uppercase letters in this
specification.

At times, this specification recommends good practice for authors and user
agents. These recommendations are not normative and conformance with this
specification does not depend on their realization. These recommendations contain
the expression "We recommend ...", "This specification recommends ...", or some
similar wording.

The fact that a feature is marked as deprecated (namely the [aural] [p. 289]
keyword) or going to be deprecated in CSS3 (namely the [system colors|[p. 282])
also has no influence on conformance. (For example, 'aural’ is marked as
non-normative, so UAs do not need to support it; the system colors are normative,
so UAs must support them.)

All sections of this specification, including appendices, are normative unless
otherwise noted.

[Examples and notes|[p. 26] are not normative.

Example(s):

Examples usually have the word "example" near their start ("Example:”, "The
following example...," "For example," etc.) and are shown in the color maroon, like
this paragraph.

Notes start with the word "Note," are indented and shown in green, like this
paragraph.

Figures are for illustration only, they are not reference renderings, unless explicitly
stated.

37 19 Jul 2007 15:54

Conformance: requirements and recommendations

Style sheet
A set of statements that specify presentation of a document.

Style sheets may have three different origins: [p. 40] ,[user [p. 40] , and
[p. 40] . The interaction of these sources is described in the section
on|cascading and inheritance|[p. 91] .

Valid style sheet

The validity of a style sheet depends on the level of CSS used for the style
sheet. All valid CSS1 style sheets are valid CSS 2.1 style sheets, but some
changes from CSS1 mean that a few CSS1 style sheets will have slightly
different semantics in CSS 2.1. Some features in CSS2 are not part of CSS 2.1,
so not all CSS2 style sheets are valid CSS 2.1 style sheets.

A valid CSS 2.1 style sheet must be written according to the [grammar of]

[CSS 2.1][p. 385] . Furthermore, it must contain only at-rules, property names,
and property values defined in this specification. An illegal (invalid) at-rule,
property name, or property value is one that is not valid.

Source document
The document to which one or more style sheets apply. This is encoded in
some language that represents the document as a tree of elements|[p. 38] .
Each element consists of a name that identifies the type of element, optionally a
number of [attributes| [p. 39] , and a (possibly empty) [content] [p. 39] . For
example, the source document could be an XML or SGML instance.

Document language
The encoding language of the source document (e.g., HTML, XHTML or SVG).
CSS is used to describe the presentation of document languages and CSS does
not change the underlying semantics of the document languages.

Element
(An SGML term, see[[ISO8879]}) The primary syntactic constructs of the
document language. Most CSS style sheet rules use the names of these
elements (such as P, TABLE, and OL in HTML) to specify how the elements
should be rendered.

Replaced element

An element whose content is outside the scope of the CSS formatting model,
such as an image, embedded document, or applet. For example, the content of
the HTML IMG element is often replaced by the image that its "src" attribute
designates. Replaced elements often have intrinsic dimensions: an intrinsic
width, an intrinsic height, and an intrinsic ratio. For example, a bitmap image
has an intrinsic width and an intrinsic height specified in absolute units (from
which the intrinsic ratio can obviously be determined). On the other hand, other
documents may not have any intrinsic dimensions (for example a blank HTML
document).

User agents may consider a replaced element to not have any intrinsic
dimensions if it is believed that those dimensions could leak sensitive
information to a third party. For example, if an HTML document changed
intrinsic size depending on the user’s bank balance, then the UA might want to
act as if that resource had no intrinsic dimensions.

19 Jul 2007 15:54 38

Conformance: requirements and recommendations

Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the
surroundings. CSS does not define how the intrinsic dimensions are found. In
CSS 2.1 only replaced elements can come with intrinsic dimensions.
Attribute
A value associated with an element, consisting of a name, and an associated
(textual) value.
Content
The content associated with an element in the source document. Some
elements have no content, in which case they are called empty . The content of
an element may include text, and it may include a number of sub-elements, in
which case the element is called the parent of those sub-elements.
Ignore
This term has two slightly different meanings in this specification. First, a CSS
parser must follow certain rules when it discovers unknown or illegal syntax in a
style sheet. The parser must then ignore certain parts of the style sheets. The
exact rules for what parts must be ignored is given in these section:
[Declarations and properties| [p. 52] , [Rules for handling parsing errors|[p. 53] ,
[Unsupported Values][p. 63] , or may be explained in the text where the term
"ignore" appears. Second, a user agent may (and, in some cases must)
disregard certain properties or values in the style sheet even if the syntax is
legal. For example, table-column elements can’t affect the font of the column, so
the font properties must be ignored.
Rendered content
The content of an element after the rendering that applies to it according to the
relevant style sheets has been applied. How a replaced element’s content is
rendered is not defined by this specification. Rendered content may also be
alternate text for an element (e.g., the value of the XHTML "alt" attribute), and
may include items inserted implicitly or explicitly by the style sheet, such as
bullets, numbering, etc.
Document tree
The tree of elements encoded in the source document. Each element in this tree
has exactly one parent, with the exception of the root element, which has none.
Child
An element A is called the child of element B if and only if B is the parent of A.
Descendant
An element A is called a descendant of an element B, if either (1) A is a child of
B, or (2) A is the child of some element C that is a descendant of B.
Ancestor
An element A is called an ancestor of an element B, if and only if B is a
descendant of A.
Sibling
An element A is called a sibling of an element B, if and only if B and A share the
same parent element. Element A is a preceding sibling if it comes before B in
the document tree. Element B is a following sibling if it comes after A in the
document tree.

39 19 Jul 2007 15:54

Conformance: requirements and recommendations

Preceding element
An element A is called a preceding element of an element B, if and only if (1) A
is an ancestor of B or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a
preceding element of A.

Author
An author is a person who writes documents and associated style sheets. An
authoring tool is a[User Agent][p. 40] that generates style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise
use a document and its associated style sheet. The user may provide a
personal style sheet that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document
language and applies associated style sheets according to the terms of this
specification. A user agent may display a document, read it aloud, cause it to be
printed, convert it to another format, etc.
An HTML user agent is one that supports the HTML 2.x, HTML 3.x, or HTML 4.x
specifications. A user agent that supports XHTML [XHTML]} but not HTML (as
listed in the previous sentence) is not considered an HTML user agent for the
purpose of conformance with this specification.

Property
CSS defines a finite set of parameters, called properties, that direct the
rendering of a document. Each property has a name (e.g., 'color’, 'font’ or
border’) and a value (e.g., 'red’, '12pt Times’ or 'dotted’). Properties are attached
to various parts of the document and to the page on which the document is to
be displayed by the mechanisms of specificity, cascading and inheritance (see
the chapter on|Assigning property values, Cascading, and Inheritancel[p. 91]).

Here is an example of a source document written in HTML:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<TITLE>My home page</TITLE>
<BODY>
<H1>My home page</H1>
<P>Welcome to my home page! Let me tell you about my favorite
COMpOSsers:

 Elvis Costello
 Johannes Brahms
 Georges Brassens

</BODY>
</HTML>

19 Jul 2007 15:54 40

Conformance: requirements and recommendations

This results in the following tree:
HTML

/ \
HEAD BODY

H1 P UL
AN
LI LI LI

According to the definition of HTML 4, HEAD elements will be inferred during
parsing and become part of the document tree even if the "head" tags are not in the
document source. Similarly, the parser knows where the P and LI elements end,
even though there are no </p> and tags in the source.

TITLE

Documents written in XHTML (and other XML-based languages) behave
differently: there are no inferred elements and all elements must have end tags.

3.2 UA Conformance

This section defines conformance with the CSS 2.1 specification only. There may be
other levels of CSS in the future that may require a user agent to implement a
different set of features in order to conform.

In general, the following points must be observed by a user agent claiming
conformance to this specification:

1. It must recognize one or more of the CSS 2.1 [media types] [p. 99] .

2. For each source document, it must attempt to retrieve all associated style
sheets that are appropriate for the recognized media types. If it cannot retrieve
all associated style sheets (for instance, because of network errors), it must
display the document using those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it
must recognize all at-rules, blocks, declarations, and selectors (see the
[grammar of CSS 2.1][p. 385]). If a user agent encounters a property that
applies for a supported media type, the user agent must parse the value
according to the property definition. This means that the user agent must accept
all valid values and must ignore declarations with invalid values. User agents
must ignore rules that apply to unsupported [media types] [p. 99] .

4. For each element in a[document treg|[p. 39] , it must assign a value for every
property according to the property’s definition and the rules of|cascading and |
[p. 91] .

5. If the source document comes with alternate style sheet sets (such as with the
"alternate" keyword in HTML 4 [HTML4]), the UA must allow the user to select
which style sheet set the UA should apply.

6. The UA must allow the user to turn off the influence of author style sheets.

41 19 Jul 2007 15:54

Conformance: requirements and recommendations

Not every user agent must observe every point, however:

® An application that reads style sheets without rendering any content (e.g., a
CSS 2.1 validator) must respect points 1-3.

® An authoring tool is only required to output |valid style sheets|[p. 38]

® A user agent that renders a document with associated style sheets must respect
points 1-6 and render the document according to the media-specific
requirements set forth in this specification. [p. 92] may be approximated
when required by the user agent.

The inability of a user agent to implement part of this specification due to the
limitations of a particular device (e.g., a user agent cannot render colors on a
monochrome monitor or page) does not imply non-conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that
run on devices without any means of writing or specifying files are exempted from
this requirement. Additionally, UAs may offer other means to specify user
preferences, for example through a GUI.

CSS 2.1 does not define which properties apply to form controls and frames, or
how CSS can be used to style them. User agents may apply CSS properties to these
elements. Authors are recommended to treat such support as experimental. A future
level of CSS may specify this further.

3.3 Error conditions

In general, this document specifies error handling behavior throughout the
specification. For example, see the [rules for handling parsing errors|[p. 53] .

3.4 The text/css content type

CSS style sheets that exist in separate files are sent over the Internet as a sequence
of bytes accompanied by encoding information. The structure of the transmission,
termed a message entity, is defined by RFC 2045 and RFC 2616 (see [REC2045]
and[REC2616]). A message entity with a content type of "text/css" represents an
independent CSS document. The "text/css" content type has been registered by

RFC 2318 ([REC2318]).

19 Jul 2007 15:54 42

Syntax and basic data types

4 Syntax and basic data types

Contents

:
[4.1.1 Tokenization|

[4.1.2 Keywords|
|4.1.2.1 Vendor-specific extensions|
[4.1.2.2 Informative Historical Notes| .

|4.1.3 Characters and case|

INIEN
.
D
)
—
Q
2
@
3
D
=)
=1
174

.1.5 At-rules .
4.1.6 Blocks| . . .

|4.1.7 Rule sets, declaration blocks, and selectors|

|4.1.8 Declarations and properties|

[4.1.9 Comments| ..
|4.2 Rules for handling parsing errors| .

[4.3.1 Integers and real numbers| .

4.3.2 Lengths|

|4.3.3 Percentages|

N | N[FN
w||w
15 [EN
@) | [e=
2||R
3|
@
wl|3]

C
Y
O |

.3.6 Colors .
.3.7 Strings .
|4.3.8 Unsupported Values|
|4.4 CSS style sheet representation|

i

43
44
47
47
48
48
49
50
50
51
52
53
53
55
55
55
59
59
60
61
62
63
63

|4.4.1 Referring to characters not represented in a

character encoding| a7

4.1 Syntax

This section describes a grammar (and forward-compatible parsing rules) common
to any level of CSS (including CSS 2.1). Future updates of CSS will adhere to this
core syntax, although they may add additional syntactic constraints.

These descriptions are normative. They are also complemented by the normative

grammar rules presented in[Appendix G| [p. 385] .

In this specification, the expressions "immediately before" or "immediately after"

mean with no intervening whitespace or comments.

43

19 Jul 2007 15:54

Syntax and basic data types

4.1.1 Tokenization

All levels of CSS — level 1, level 2, and any future levels — use the same core
syntax. This allows UAs to parse (though not completely understand) style sheets
written in levels of CSS that didn’t exist at the time the UAs were created. Designers
can use this feature to create style sheets that work with older user agents, while
also exercising the possibilities of the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of
tokens for CSS is as follows. The definitions use Lex-style regular expressions. Octal
codes refer to ISO 10646 ([ISO10646]). As in Lex, in case of multiple matches, the
longest match determines the token.

19 Jul 2007 15:54 44

Syntax and basic data types

Token Definition
IDENT {ident}
ATKEYWORD @i dent}
STRING {string}
INVALID {invalid}
HASH #{ nane}
NUMBER {nun}
PERCENTAGE {num %
DIMENSION {nun}{i dent}

URI

UNICODE-RANGE
CDO
CDC

{
}
(
)
[
]

S

COMMENT
FUNCTION
INCLUDES
DASHMATCH

DELIM

45

url\({w}{string}{w}\)
[urh({w} (['#$%E&*-~]| {nonascii}|{escape})* {w}\)

U\+[0-9a-f?]{1,6}(-[0-9a-f|{1,6})?
<l--

>

\

\}

\(

Y

\[

\

[\\rAn\f]+

VKA ([)R
{ident}\(

|=

any other character not matched by the above rules, and
neither a single nor a double quote

19 Jul 2007 15:54

The macros in curly braces ({}) above are defined as follows:

Syntax and basic data types

Macro Definition

ident [[]? {nnmstart}{nnthar}*
name {nnthar}+

nmstart [a-z]] {nonascii}|{escape}

nonascii [M0-\177]

unicode
escape
nmchar
num
string
stringl
string2
invalid
invalidl
invalid2
nl

w

Below is the core syntax for CSS. The sections that follow describe how to use it.
[p. 385] describes a more restrictive grammar that is closer to the CSS

\[0-9a-f[{1,6}(\r\n|[\n\r\t\f])?

{ uni code} \\[M\n\r\f0-9a-f]

[a-z0-9-]| {nonascii}|{escape}
[0-9]+|[0-9]*\.[0-9]+

{stringl}| {string2}

\"((MNN\ARNT NN} {escape})*\"
V([N nl}| {escape})*V
{invalidi}|{invalid2}

\"(MN\ARNT NN} {escape})*
V([N NI} {escape})*
\n[\r\n|\r|\f

[\\r\n\f]*

level 2 language. Parts of style sheets that can be parsed according to this grammar

but not according to the grammar in Appendix G are among the parts that will be
ignored according to the|rules for handling parsing errors|[p. 53] .

stylesheet : [CDO | CDC | S | statement]*;
statement : ruleset | at-rule;

at-rule
block
ruleset
selector

: ATKEYWORD S* any* [block | ’;’ S*];

' S*[any | block | ATKEYWORD S* | ';’ S*]* '} S¥%;

: selector? '{" S* declaration? [’;’ S* declaration? |* '}’ S*;
:any+;

declaration : DELIM? property S* "’ S* value;

property
value

- IDENT;
:[any | block | ATKEYWORD S*]+;

19 Jul 2007 15:54

46

Syntax and basic data types

any : [IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
| DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
| DASHMATCH | FUNCTION S* any*)’
|'C S*any*’)" | [S*any* T] S*

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere between other tokens.

The token S in the grammar above stands for whitespace. Only the characters
"space” (U+0020), "tab" (U+0009), "line feed" (U+000A), "carriage return" (U+000D),
and "form feed" (U+000C) can occur in whitespace. Other space-like characters,
such as "em-space” (U+2003) and "ideographic space" (U+3000), are never part of
whitespace.

The meaning of input that cannot be tokenized or parsed is undefined in CSS 2.1.

4.1.2 Keywords

Keywords have the form of identifiers] [p. 48] Keywords must not be placed between
quotes ("..." or "..."). Thus,

red

is a keyword, but

"red"

is not. (It is a[string|[p. 62] .) Other illegal examples:
lllegal example(s):

width: "auto";
border: "none";
background: "red";

4.1.2.1 Vendor-specific extensions

In CSS, identifiers may begin with -’ (dash) or ’_’ (underscore). Keywords and
[property names|[p. 52] beginning with - " or’_" are reserved for vendor-specific
extensions. Such vendor-specific extensions should have one of the following
formats:

'-' + vendor identifier + -’ + meaningful name
'+ vendor identifier + -’ + meaningful name

Example(s):

For example, if XYZ organization added a property to describe the color of the
border on the East side of the display, they might call it -xyz-border-east-color.

Other known examples:
-moz-box-sizing

-moz-border-radius
-wap-accesskey

47 19 Jul 2007 15:54

Syntax and basic data types

An initial dash or underscore is guaranteed never to be used in a property or
keyword by any current or future level of CSS. Thus typical CSS implementations
may not recognize such properties and may ignore them according to the [rules for]
[handling parsing errors|[p. 53] . However, because the initial dash or underscore is
part of the grammar, CSS 2.1 implementers should always be able to use a
CSS-conforming parser, whether or not they support any vendor-specific extensions.

Authors should avoid vendor-specific extensions

4.1.2.2 Informative Historical Notes
This section is informative.

At the time of writing, the following prefixes are known to exist:

prefix organization
-ms- Microsoft
mso- Microsoft Office

-moz- Mozilla

-0- Opera Software

-atsc- Advanced Television Standards Committee

-wap- The WAP Forum

4.1.3 Characters and case

The following rules always hold:

® All CSS style sheets are case-insensitive, except for parts that are not under the
control of CSS. For example, the case-sensitivity of values of the HTML
attributes "id" and "class", of font names, and of URIs lies outside the scope of
this specification. Note in particular that element names are case-insensitive in
HTML, but case-sensitive in XML.

e In CSS, identifiers (including element names, classes, and IDs in[selectors]|
[p. 69]) can contain only the characters [a-z0-9] and ISO 10646 characters
U+00AL and higher, plus the hyphen (-) and the underscore (); they cannot
start with a digit, or a hyphen followed by a digit. Identifiers can also contain
escaped characters and any ISO 10646 character as a numeric code (see next
item). For instance, the identifier "B&W?" may be written as "B\&W\?" or "B\26
WA3F".

Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE
and [[ISO10646]).

19 Jul 2007 15:54 48

Syntax and basic data types

® In CSS 2.1, a backslash (\) character indicates three types of character

escapes.
First, inside alstring] [p. 62] , a backslash followed by a newline is ignored (i.e.,
the string is deemed not to contain either the backslash or the newline).

Second, it cancels the meaning of special CSS characters. Any character
(except a hexadecimal digit) can be escaped with a backslash to remove its
special meaning. For example, "\"" is a string consisting of one double quote.
Style sheet preprocessors must not remove these backslashes from a style
sheet since that would change the style sheet’'s meaning.

Third, backslash escapes allow authors to refer to characters they can’t easily
put in a document. In this case, the backslash is followed by at most six
hexadecimal digits (0..9A..F), which stand for the ISO 10646
character with that number, which must not be zero. (It is undefined in CSS 2.1
what happens if a style sheet does contain a character with Unicode codepoint
zero.) If a character in the range [0-9a-f] follows the hexadecimal number, the
end of the number needs to be made clear. There are two ways to do that:

1. with a space (or other whitespace character): "\26 B" ("&B"). In this case,
user agents should treat a "CR/LF" pair (U+000D/U+000A) as a single
whitespace character.

2. by providing exactly 6 hexadecimal digits: "\O00026B" ("&B")

In fact, these two methods may be combined. Only one whitespace character
is ignored after a hexadecimal escape. Note that this means that a "real" space
after the escape sequence must itself either be escaped or doubled.

If the number is outside the range allowed by Unicode (e.g., "\110000" is
above the maximum 10FFFF allowed in current Unicode), the UA may replace
the escape with the "replacement character" (U+FFFD). If the character is to be
displayed, the UA should show a visible symbol, such as a "missing character"
glyph (cf.[15.2] [p. 231] point 5).

Note: Backslash escapes, where allowed, are always considered to be part of
an [p. 48] or a string (i.e., "\7B" is not punctuation, even though "{" is,
and "\32" is allowed at the start of a class name, even though "2" is not).

The identifier "te\st" is exactly the same identifier as "test".

4.1.4 Statements

A CSS style sheet, for any level of CSS, consists of a list of statements (see the
[p. 44] above). There are two kinds of statements: at-rules and rule sets.
There may be [whitespace][p. 47] around the statements.

49

19 Jul 2007 15:54

Syntax and basic data types

4.1.5 At-rules

At-rules start with an at-keyword, an '@’ character followed immediately by an
identifier] [p. 48] (for example, '@import’,’@page’).

An at-rule consists of everything up to and including the next semicolon (;) or the
next [p. 50] whichever comes first.

CSS 2.1 user agents must[ignore] [p. 53] any [@import] [p. 94] rule that occurs
inside afblocK| [p. 50] or after any valid statement other than an @charset or an
@import rule.

lllegal example(s):
Assume, for example, that a CSS 2.1 parser encounters this style sheet:

@import "subs.css";
h1 { color: blue }
@import "list.css";

The second '@import’ is illegal according to CSS 2.1. The CSS 2.1 parser[ignores]
[p. 53] the whole at-rule, effectively reducing the style sheet to:

@import "subs.css";
h1 { color: blue }

lllegal example(s):
In the following example, the second '@import’ rule is invalid, since it occurs inside

a’'@media’ block] [p. 50] .

@import "subs.css";
@media print {
@import "print-main.css";
body { font-size: 10pt }

}
h1 {color: blue }

Instead, to achieve the effect of only importing a style sheet for 'print’ media, use
the @import rule with media syntax, e.g.:

@import "subs.css";
@import "print-main.css" print;
@media print {

body { font-size: 10pt }

h1 {color: blue }

4.1.6 Blocks

A block starts with a left curly brace ({) and ends with the matching right curly brace
(). In between there may be any tokens, except that parentheses (()), brackets ([])
and braces ({ }) must always occur in matching pairs and may be nested. Single (')
and double quotes () must also occur in matching pairs, and characters between
them are parsed as a string. See [Tokenization| [p. 44] above for the definition of a

19 Jul 2007 15:54 50

Syntax and basic data types

string.
lllegal example(s):

Here is an example of a block. Note that the right brace between the double
quotes does not match the opening brace of the block, and that the second single
guote is anjescaped character|[p. 49] , and thus doesn’t match the first single quote:

{causta: "}" + ({7} *'\") }

Note that the above rule is not valid CSS 2.1, but it is still a block as defined
above.

4.1.7 Rule sets, declaration blocks, and selectors

A rule set (also called "rule") consists of a selector followed by a declaration block.

A declaration block starts with a left curly brace ({) and ends with the matching
right curly brace (}). In between there must be a list of zero or more
semicolon-separated (;) declarations.

The selector (see also the section on [p. 69]) consists of everything up
to (but not including) the first left curly brace ({). A selector always goes together with
a declaration block. When a user agent can’t parse the selector (i.e., it is not valid
CSS 2.1), it must[ignore] [p. 53] the declaration block as well.

CSS 2.1 gives a special meaning to the comma (,) in selectors. However, since it
is not known if the comma may acquire other meanings in future updates of CSS,
the whole statement should be ignored] [p. 53] if there is an error anywhere in the
selector, even though the rest of the selector may look reasonable in CSS 2.1.

lllegal example(s):

For example, since the "&" is not a valid token in a CSS 2.1 selector, a CSS 2.1
user agent must[ignore] [p. 53] the whole second line, and not set the color of H3 to
red:

h1, h2 {color: green }
h3, h4 & h5 {color: red }
h6 {color: black }

Example(s):

Here is a more complex example. The first two pairs of curly braces are inside a
string, and do not mark the end of the selector. This is a valid CSS 2.1 rule.

p[example="public class foo\
{\

private int x;\
\

foo(int x) {\

this.x = x;\

h
\
}'1{ color: red }

51 19 Jul 2007 15:54

Syntax and basic data types

4.1.8 Declarations and properties

A declaration is either empty or consists of a property name, followed by a colon (),
followed by a value. Around each of these there may be [whitespace] [p. 47] .

Because of the way selectors work, multiple declarations for the same selector
may be organized into semicolon (;) separated groups.

Example(s):
Thus, the following rules:

h1 { font-weight: bold }

h1 { font-size: 12px }

hl { line-height: 14px }

h1 { font-family: Helvetica }
h1 { font-variant: normal }
h1 { font-style: normal }

are equivalent to:

h1 {
font-weight: bold;
font-size: 12px;
line-height: 14px;
font-family: Helvetica;
font-variant: normal;
font-style: normal

}

A property name is an [identifier] [p. 48] . Any token may occur in the value.
Parentheses ("()"), brackets ("[]"), braces ("{ }"), single quotes (') and double quotes
(") must come in matching pairs, and semicolons not in strings must be [escaped|
[p. 49] . Parentheses, brackets, and braces may be nested. Inside the quotes,
characters are parsed as a string.

The syntax of values is specified separately for each property, but in any case,
values are built from identifiers, strings, numbers, lengths, percentages, URIs,
colors, etc.

A user agent mustfignore] [p. 53] a declaration with an invalid property name or an
invalid value. Every CSS 2.1 property has its own syntactic and semantic restrictions
on the values it accepts.

lllegal example(s):

For example, assume a CSS 2.1 parser encounters this style sheet:

h1 { color: red; font-style: 12pt} /* Invalid value: 12pt */

p { color: blue; font-vendor: any; /* Invalid prop.: font-vendor */

font-variant: small-caps }
em em { font-style: normal }

19 Jul 2007 15:54 52

Syntax and basic data types

The second declaration on the first line has an invalid value '12pt’. The second
declaration on the second line contains an undefined property 'font-vendor’. The
CSS 2.1 parser willignore] [p. 53] these declarations, effectively reducing the style
sheet to:

h1l { color: red; }
p { color: blue; font-variant: small-caps }
em em { font-style: normal }

4.1.9 Comments

Comments begin with the characters "/*" and end with the characters "*/". They may
occur anywhere between tokens, and their contents have no influence on the
rendering. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places
defined by the grammar, but they do not delimit CSS comments. They are permitted
so that style rules appearing in an HTML source document (in the STYLE element)
may be hidden from pre-HTML 3.2 user agents. See the HTML 4 specification

((HTMLA4]) for more information.

4.2 Rules for handling parsing errors

In some cases, user agents must ignore part of an illegal style sheet. This
specification defines ignore to mean that the user agent parses the illegal part (in
order to find its beginning and end), but otherwise acts as if it had not been there.
CSS 2.1 reserves for future updates of CSS all property:value combinations and
@-keywords that do not contain an identifier beginning with dash or underscore.
Implementations must ignore such combinations (other than those introduced by
future updates of CSS).

To ensure that new properties and new values for existing properties can be
added in the future, user agents are required to obey the following rules when they
encounter the following scenarios:

e Unknown properties. User agents must[ignore] [p. 53] a[declaration] [p. 52] with

an unknown property. For example, if the style sheet is:

h1 { color: red; rotation: 70minutes }

the user agent will treat this as if the style sheet had been

hl { color: red }

e |llegal values. User agents must ignore a declaration with an illegal value. For
example:

img { float: left } [* correct CSS 2.1 */

img { float: left here } /* "here" is not a value of 'float’ */

img { background: "red" } /* keywords cannot be quoted */

img { border-width: 3} /* a unit must be specified for length values */

53 19 Jul 2007 15:54

Syntax and basic data types

A CSS 2.1 parser would honor the first rule and[ignore] [p. 53] the rest, as if the
style sheet had been:

img { float: left }
img { }
img { }
img {}

A user agent conforming to a future CSS specification may accept one or
more of the other rules as well.

e Malformed declarations. User agents must handle unexpected tokens
encountered while parsing a declaration by reading until the end of the
declaration, while observing the rules for matching pairs of (), [], {3, ™, and ", and
correctly handling escapes. For example, a malformed declaration may be
missing a property, colon (:) or value. The following are all equivalent:

p { color:green }

p { color:green; color } /* malformed declaration missing "', value */

p { color:red; color; color:green} /* same with expected recovery */

p { color:green; color: } /* malformed declaration missing value */

p { color:red; color:; color:green } /* same with expected recovery */

p { color:green; color{;color:maroon} } /* unexpected tokens { } */

p { color:red; color{;color:maroon}; color:green } /* same with recovery */

e Invalid at-keywords. User agents must[ignore] [p. 53] an invalid at-keyword
together with everything following it, up to and including the next semicolon (;) or
block ({...}), whichever comes first. For example, consider the following:

@three-dee {
@background-lighting {
azimuth: 30deg;
elevation: 190deg;

}
hl { color: red }

}
h1 { color: blue }

The '@three-dee’ at-rule is not part of CSS 2.1. Therefore, the whole at-rule
(up to, and including, the third right curly brace) is ignored][p. 53] A CSS 2.1
user agent[ignores|[p. 53] it, effectively reducing the style sheet to:

h1 { color: blue }

Something inside an at-rule that is ignored because it is invalid, such as an
invalid declaration within an @media-rule, does not make the entire at-rule
invalid.

® Unexpected end of style sheet.
User agents must close all open constructs (for example: blocks,
parentheses, brackets, rules, strings, and comments) at the end of the style
sheet. For example:

19 Jul 2007 15:54 54

Syntax and basic data types

@media screen {
p:before { content: 'Hello

would be treated the same as:

@media screen {
p:before { content: 'Hello’; }

}

in a conformant UA.

e Unexpected end of string.
User agents must close strings upon reaching the end of a line, but then drop
the construct (declaration or rule) in which the string was found. For example:

p{
color: green;

font-family: 'Courier New Times
color: red;
color: green;

}
...would be treated the same as:

p { color: green; color: green; }

...because the second declaration (from 'font-family’ to the semicolon after
‘color: red’) is invalid and is dropped.

® See also|Rule sets, declaration blocks, and selectors|[p. 51] for parsing rules for
declaration blocks.

4.3 Values

4.3.1 Integers and real numbers

Some value types may have integer values (denoted by <integer>) or real number
values (denoted by <number>). Real numbers and integers are specified in decimal
notation only. An <integer> consists of one or more digits "0" to "9". A <number> can
either be an <integer>, or it can be zero or more digits followed by a dot (.) followed
by one or more digits. Both integers and real numbers may be preceded by a "-" or
"+" to indicate the sign. -0 is equivalent to 0 and is not a negative number.

Note that many properties that allow an integer or real number as a value actually
restrict the value to some range, often to a non-negative value.

4.3.2 Lengths

Lengths refer to horizontal or vertical measurements.

The format of a length value (denoted by <length> in this specification) is a
(with or without a decimal point) immediately followed by a unit identifier
(e.g., px, em, etc.). After a zero length, the unit identifier is optional.

55 19 Jul 2007 15:54

Syntax and basic data types

Some properties allow negative length values, but this may complicate the
formatting model and there may be implementation-specific limits. If a negative
length value cannot be supported, it should be converted to the nearest value that
can be supported.

If a negative length value is set on a property that does not allow negative length
values, the declaration is ignored.

There are two types of length units: relative and absolute. Relative length units
specify a length relative to another length property. Style sheets that use relative
units will more easily scale from one medium to another (e.g., from a computer
display to a laser printer).

Relative units are:

e em:the of the relevant font
® ex: the 'x-height’ of the relevant font

® px: pixels, relative to the viewing device

Example(s):

hl{margin: 0.5em} /*em?*/
hl { margin: 1ex} [*ex*l
p {font-size: 12px} /* px*/

The 'em’ unit is equal to the computed value of the [font-size] property of the
element on which it is used. The exception is when 'em’ occurs in the value of the
'font-size’ property itself, in which case it refers to the font size of the parent element.
It may be used for vertical or horizontal measurement. (This unit is also sometimes
called the quad-width in typographic texts.)

The ’ex’ unit is defined by the element’s first available font. The 'x-height’ is so
called because it is often equal to the height of the lowercase "x". However, an 'ex’ is
defined even for fonts that don’t contain an "x".

The x-height of a font can be found in different ways. Some fonts contain reliable
metrics for the x-height. If reliable font metrics are not available, UAs may determine
the x-height from the height of a lowercase glyph. One possible heuristics is to look
at how far the glyph for the lowercase "0" extends below the baseline, and subtract
that value from the top of its bounding box. In the cases where it is impossible or
impractical to determine the x-height, a value of 0.5em should be used.

Example(s):

The rule:

h1 { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size
of the "h1" elements. On the other hand:

19 Jul 2007 15:54 56

Syntax and basic data types

h1l { font-size: 1.2em }

means that the font-size of "h1" elements will be 20% greater than the font size
inherited by "h1" elements.

When specified for the root of the [document tree|[p. 39] (e.g., "HTML" in HTML),
'em’ and ’ex’ refer to the property’s|initial value] [p. 25] .

Pixel units are relative to the resolution of the viewing device, i.e., most often a
computer display. If the pixel density of the output device is very different from that of
a typical computer display, the user agent should rescale pixel values. It is
recommended that the reference pixel be the visual angle of one pixel on a device
with a pixel density of 96dpi and a distance from the reader of an arm’s length. For a
nominal arm’s length of 28 inches, the visual angle is therefore about 0.0213
degrees.

For reading at arm’s length, 1px thus corresponds to about 0.26 mm (1/96 inch).
When printed on a laser printer, meant for reading at a little less than arm’s length
(55 cm, 21 inches), 1px is about 0.20 mm. On a 300 dots-per-inch (dpi) printer, that
may be rounded up to 3 dots (0.25 mm); on a 600 dpi printer, it can be rounded to 5
dots.

The two images below illustrate the effect of viewing distance on the size of a pixel
and the effect of a device’s resolution. In the first image, a reading distance of 71 cm
(28 inch) results in a px of 0.26 mm, while a reading distance of 3.5 m (12 feet)
requires a px of 1.3 mm.

1.3 m

<3 4]

viewer
-
28 inch
71 cm

140 inch
3.5m

In the second image, an area of 1px by 1px is covered by a single dot in a
low-resolution device (a computer screen), while the same area is covered by 16
dots in a higher resolution device (such as a 400 dpi laser printer).

57 19 Jul 2007 15:54

Syntax and basic data types

laserprint

Il monitor screen

1px
e

<

. = 1 device pixel

Child elements do not inherit the relative values specified for their parent; they
inherit the [computed values|[p. 92] .

Example(s):

In the following rules, the computed [text-indent] value of "h1" elements will be
36px, not 45px, if "h1" is a child of the "body" element.

body {
font-size: 12px;
text-indent: 3em; /*i.e., 36px */

}
h1 { font-size: 15px }

Absolute length units are only useful when the physical properties of the output
medium are known. The absolute units are:

in: inches — 1 inch is equal to 2.54 centimeters.

cm: centimeters

mm: millimeters

pt: points — the points used by CSS 2.1 are equal to 1/72nd of an inch.
pc: picas — 1 pica is equal to 12 points.

Example(s):

hl{margin: 0.5in} /*inches */

h2 { line-height: 3cm } /* centimeters */
h3 { word-spacing: 4mm } /* millimeters */
h4 { font-size: 12pt} /* points */

h4 { font-size: 1pc} /* picas */

19 Jul 2007 15:54 58

Syntax and basic data types

In cases where the [used] [p. 92] length cannot be supported, user agents must
approximate it in the [actual value] [p. 92]

4.3.3 Percentages

The format of a percentage value (denoted by <percentage> in this specification) is

afknumber>]immediately followed by '%'.

Percentage values are always relative to another value, for example a length.
Each property that allows percentages also defines the value to which the
percentage refers. The value may be that of another property for the same element,
a property for an ancestor element, or a value of the formatting context (e.g., the
width of afcontaining block|[p. 120]). When a percentage value is set for a property
of the[roof [p. 39] element and the percentage is defined as referring to the inherited
value of some property, the resultant value is the percentage times the [initial value]
[p. 25] of that property.

Example(s):

Since child elements (generally) inherit the [computed values|[p. 92] of their parent,
in the following example, the children of the P element will inherit a value of 12px for
'line-height’, not the percentage value (120%):

p { font-size: 10px }
p { line-height: 120% } /* 120% of 'font-size’ */

4.3.4 URLs and URIs

URI values (Uniform Resource Identifiers, see [RFC3986], which includes URLs,
URNSs, etc) in this specification are denoted by <uri>. The functional notation used to
designate URIs in property values is "url()", as in:

Example(s):
body { background: url("http://www.example.com/pinkish.png") }

The format of a URI value is 'url(’ followed by optional [p. 47] followed
by an optional single quote (’) or double quote (") character followed by the URI
itself, followed by an optional single quote (') or double quote (") character followed
by optional whitespace followed by ’)’. The two quote characters must be the same.

Example(s):
An example without quotes:

li { list-style: url(http://www.example.com/redball.png) disc }

Some characters appearing in an unquoted URI, such as parentheses, commas,
whitespace characters, single quotes (*) and double quotes ("), must be escaped
with a backslash so that the resulting URI value is a URI token: \(', 'V)", '\,".

59 19 Jul 2007 15:54

Syntax and basic data types

Depending on the type of URI, it might also be possible to write the above
characters as URI-escapes (where "(" = %28, ")" = %29, etc.) as described in

RFC3986

In order to create modular style sheets that are not dependent on the absolute
location of a resource, authors may use relative URIs. Relative URIs (as defined in
are resolved to full URIs using a base URI. RFC 3986, section 5, defines
the normative algorithm for this process. For CSS style sheets, the base URI is that
of the style sheet, not that of the source document.

Example(s):

For example, suppose the following rule:

body { background: url("yellow") }

is located in a style sheet designated by the URI:
http://www.example.org/style/basic.css

The background of the source document’s BODY will be tiled with whatever image
is described by the resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle invalid URIs or URIs that designate
unavailable or inapplicable resources.

4.3.5 Counters

Counters are denoted by identifiers (see the [counter-increment]and|counter-reset]
properties). To refer to the value of a counter, the notation 'counter(<identifier>)" or
‘counter(<identifier>, <list-style-type’>)’, with optional whitespace separating the
tokens, is used. The default style is 'decimal’.

To refer to a sequence of nested counters of the same name, the notation is
‘counters(<identifier>, <string>)’ or ‘'counters(<identifier>, <string>,
<list-style-type’>)’ with optional whitespace separating the tokens.

See['Nested counters and scope’|[p. 202] in the chapter on[generated content]
[p. 193] for how user agents must determine the value or values of the counter. See
the definition of counter values of the [content] property for how it must convert these
values to a string.

In CSS 2.1, the values of counters can only be referred to from the [content]
property. Note that 'none’ is a possible <’list-style-type’>: ‘counter(x, none)’ yields an
empty string.

Example(s):

Here is a style sheet that numbers paragraphs (p) for each chapter (h1). The
paragraphs are numbered with roman numerals, followed by a period and a space:

19 Jul 2007 15:54 60

Syntax and basic data types

p {counter-increment: par-num}
h1 {counter-reset: par-num}
p:before {content: counter(par-num, upper-roman) ". "}

4.3.6 Colors

A <color> is either a keyword or a numerical RGB specification.

The list of color keywords is: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, orange, purple, red, silver, teal, white, and yellow. These 17 colors have
the following values:

maroon #800000red #ff0000orange #ffA500yellow #ffff00olive #808000
purple #800080 fuchsia #ffOOff white #ffffff lime #00ffO0 green #008000
navy #000080 blue #0000ff aqua #00ffff teal #008080

black #000000 silver #c0c0c0 gray #808080

In addition to these color keywords, users may specify keywords that correspond
to the colors used by certain objects in the user’'s environment. Please consult the

section on [p. 282] for more information.
Example(s):

body {color: black; background: white }
h1 { color: maroon }
h2 { color: olive }

The RGB color model is used in humerical color specifications. These examples
all specify the same color:

Example(s):
em { color: #f00 } [* #rgb */
em { color: #ff0000 } [* #rrggbb */

em { color: rgh(255,0,0) }
em { color: rgh(100%, 0%, 0%) }

The format of an RGB value in hexadecimal notation is a '# immediately followed
by either three or six hexadecimal characters. The three-digit RGB notation (#rgb) is
converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For
example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be specified
with the short notation (#fff) and removes any dependencies on the color depth of
the display.

The format of an RGB value in the functional notation is 'rgb(’ followed by a
comma-separated list of three numerical values (either three integer values or three
percentage values) followed by ’)'. The integer value 255 corresponds to 100%, and
to F or FF in the hexadecimal notation: rgh(255,255,255) = rgb(100%,100%,100%) =
#FFF. [p. 47] characters are allowed around the numerical values.

All RGB colors are specified in the SRGB color space (see [SRGB]). User agents
may vary in the fidelity with which they represent these colors, but using sRGB
provides an unambiguous and objectively measurable definition of what the color
should be, which can be related to international standards (see [COLORIMETRY]).

61 19 Jul 2007 15:54

Syntax and basic data types

[Conforming user agents|[p. 41] may limit their color-displaying efforts to
performing a gamma-correction on them. sRGB specifies a display gamma of 2.2
under specified viewing conditions. User agents should adjust the colors given in
CSS such that, in combination with an output device’s "natural” display gamma, an
effective display gamma of 2.2 is produced. See the section on|gamma correction|
[p. 228] for further details. Note that only colors specified in CSS are affected; e.g.,
images are expected to carry their own color information.

Values outside the device gamut should be clipped or mapped into the gamut
when the gamut is known: the red, green, and blue values must be changed to fall
within the range supported by the device. Users agents may perform higher quality
mapping of colors from one gamut to another. For a typical CRT monitor, whose
device gamut is the same as sRGB, the four rules below are equivalent:

Example(s):

em { color: rgh(255,0,0) } /* integer range 0 - 255 */

em { color: rgh(300,0,0) } [* clipped to rgb(255,0,0) */

em { color: rgh(255,-10,0) } /* clipped to rgb(255,0,0) */

em { color: rgh(110%, 0%, 0%) } /* clipped to rgh(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors
outside the 0..255 sRGB range will be representable (inside the device gamut), while
other colors inside the 0..255 sRGB range will be outside the device gamut and will
thus be mapped.

Note. Mapping or clipping of color values should be done to the actual device
gamut if known (which may be larger or smaller than 0..255).

4.3.7 Strings

Strings can either be written with double quotes or with single quotes. Double quotes
cannot occur inside double quotes, unless escaped (e.g., as '\ or as '\22").
Analogously for single quotes (e.g., "\"" or "\27").

Example(s):

"this is a ’'string™
"this is a \"string\""
‘this is a "string™
‘this is a \'string\”

A string cannot directly contain a newline. To include a newline in a string, use an
escape representing the line feed character in 1ISO-10646 (U+000A), such as "\A" or
"\00000a". This character represents the generic notion of "newline" in CSS. See the

property for an example.

It is possible to break strings over several lines, for esthetic or other reasons, but
in such a case the newline itself has to be escaped with a backslash (\). For
instance, the following two selectors are exactly the same:

19 Jul 2007 15:54 62

Syntax and basic data types

Example(s):

aftitle="a not s\
o very long title"] {/*...*/}
aftitle="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values

If a UA does not support a particular value, it should ignore that value when parsing
style sheets, as if that value was an [llegal value|[p. 53] . For example:

Example(s):

h3 {
display: inline;
display: run-in;

}

A UA that supports the 'run-in’ value for the 'display’ property will accept the first
display declaration and then "write over" that value with the second display
declaration. A UA that does not support the 'run-in’ value will process the first display
declaration and ignore the second display declaration.

4.4 CSS style sheet representation

A CSS style sheet is a sequence of characters from the Universal Character Set
(see[[[SO10646]). For transmission and storage, these characters must be encoded
by a character encoding that supports the set of characters available in US-ASCII
(e.g., UTF-8, ISO 8859-x, SHIFT JIS, etc.). For a good introduction to character sets
and character encodings, please consult the HTML 4 specification chapter
5). See also the XML 1.0 specification ((XML10], sections 2.2 and 4.3.3, and
Appendix F).

When a style sheet is embedded in another document, such as in the STYLE

element or "style" attribute of HTML, the style sheet shares the character encoding
of the whole document.

When a style sheet resides in a separate file, user agents must observe the
following priorities when determining a style sheet’s character encoding (from
highest priority to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field (or similar parameters in
other protocols)

BOM and/or @charset (see below)

<link charset=""> or other metadata from the linking mechanism (if any)
charset of referring style sheet or document (if any)

Assume UTF-8

AN N

63 19 Jul 2007 15:54

Syntax and basic data types

Authors using an @charset rule must place the rule at the very beginning of the
style sheet, preceded by no characters. (If a byte order mark is appropriate for the
encoding used, it may precede the @charset rule.)

After "@charset", authors specify the name of a character encoding (in quotes).
For example:

@charset "ISO-8859-1";

@charset must be written literally, i.e., the 10 characters '@charset " (lowercase,
no backslash escapes), followed by the encoding name, followed by ™;'.

The name must be a charset name as described in the IANA registry. See
CHARSETS]for a complete list of charsets. Authors should use the charset names
marked as "preferred MIME name" in the IANA registry.

User agents must support at least the UTF-8 encoding.

User agents must ignore any @charset rule not at the beginning of the style sheet.
When user agents detect the character encoding using the BOM and/or the
@charset rule, they should follow the following rules:

® Except as specified in these rules, all @charset rules are ignored.

® The encoding is detected based on the stream of bytes that begins the style
sheet. The following table gives a set of possibilities for initial byte sequences
(written in hexadecimal). The first row that matches the beginning of the style
sheet gives the result of encoding detection based on the BOM and/or @charset
rule. If no rows match, the encoding cannot be detected based on the BOM
and/or @charset rule. The notation (...)* refers to repetition for which the best
match is the one that repeats as few times as possible. The bytes marked "XX"
are those used to determine the name of the encoding, by treating them, in the
order given, as a sequence of ASCII characters. Bytes marked "YY" are similar,
but need to be transcoded into ASCII as noted. User agents may ignore entries
in the table if they do not support any encodings relevant to the entry.

Initial Bytes Result
EF BB BF 40 63 68 61 72 73 65 74 20 22 as specified
(XX)* 22 3B P
EF BB BF UTE-8
40 63 68 61 72 73 65 74 20 22 (XX)* 22 -
as specified

3B

FE FF 00 40 00 63 00 68 00 61 00 72 00
73 00 65 00 74 00 20 00 22 (00 XX)* 00
22 00 3B

as specified (with BE endianness
if not specified)

19 Jul 2007 15:54 64

65

Syntax and basic data types

00 40 00 63 00 68 00 61 00 72 00 73 00
65 00 74 00 20 00 22 (00 XX)* 00 22 00
3B

as specified (with BE endianness
if not specified)

FF FE 40 00 63 00 68 00 61 00 72 00 73
00 65 00 74 00 20 00 22 00 (XX 00)* 22
00 3B 00

as specified (with LE endianness
if not specified)

40 00 63 00 68 00 61 00 72 00 73 00 65
00 74 00 20 00 22 00 (XX 00)* 22 00 3B
00

as specified (with LE endianness
if not specified)

00 00 FE FF 00 00 00 40 00 00 00 63 00
00 00 68 00 00 00 61 00 00 00 72 00 00
00 73 00 00 00 65 00 00 00 74 00 00 00
20 00 00 00 22 (00 00 00 XX)* 00 00 00

22 00 00 00 3B

as specified (with BE endianness
if not specified)

00 00 00 40 00 00 00 63 00 00 00 68 00
00 00 61 00 00 00 72 00 00 00 73 00 00
00 65 00 00 00 74 00 00 00 20 00 00 00
22 (00 00 00 XX)* 00 00 00 22 00 00 00
3B

as specified (with BE endianness
if not specified)

00 00 FF FE 00 00 40 00 00 00 63 00 00
00 68 00 00 00 61 00 00 00 72 00 00 00
73 00 00 00 65 00 00 00 74 00 00 00 20
00 00 00 22 00 (00 00 XX 00)* 00 00 22

00 00 00 3B 00

as specified (with 2143
endianness if not specified)

00 00 40 00 00 00 63 00 00 00 68 00 00
00 61 00 00 00 72 00 00 00 73 00 00 00
65 00 00 00 74 00 00 00 20 00 00 00 22
00 (00 00 XX 00)* 00 00 22 00 00 00 3B
00

as specified (with 2143
endianness if not specified)

FE FF 00 00 00 40 00 00 00 63 00 00 00
68 00 00 00 61 00 00 00 72 00 00 00 73

00 00 00 65 00 00 00 74 00 00 00 20 00
00 00 22 00 00 (00 XX 00 00)* 00 22 00

00 00 3B 00 00

as specified (with 3412
endianness if not specified)

00 40 00 00 00 63 00 00 00 68 00 00 00
61 00 00 00 72 00 00 00 73 00 00 00 65
00 00 00 74 00 00 00 20 00 00 00 22 00
00 (00 XX 00 00)* 00 22 00 00 00 3B 00
00

as specified (with 3412
endianness if not specified)

19 Jul 2007 15:54

Syntax and basic data types

FF FE 00 00 40 00 00 00 63 00 00 00 68
00 00 00 61 00 00 00 72 00 00 00 73 00
00 00 65 00 00 00 74 00 00 00 20 00 00
00 22 00 00 00 (XX 00 00 00)* 22 00 00

00 3B 00 00 00

as specified (with LE endianness
if not specified)

40 00 00 00 63 00 00 00 68 00 00 00 61
00 00 00 72 00 00 00 73 00 00 00 65 00
00 00 74 00 00 00 20 00 00 00 22 00 00
00 (XX 00 00 00)* 22 00 00 00 3B 00 00

as specified (with LE endianness
if not specified)

00

00 00 FE FF UTF-32-BE
FF FE 00 00 UTF-32-LE
00 00 FF FE UTF-32-2143
FE FF 00 00 UTF-32-3412
FE FF UTF-16-BE
FF FE UTF-16-LE

7C 83 88 81 99 A2 85 A3 40 7F (YY)* 7F
5E

as specified, transcoded from
EBCDIC to ASCII

AE 8388 8199 A285A340 FC (YY)*FC
5E

as specified, transcoded from
IBM1026 to ASCII

00 63 68 61 72 73 65 74 20 22 (YY)* 22
3B

as specified, transcoded from
GSM 03.38 to ASCII

analogous patterns

User agents may support
additional, analogous, patterns if
they support encodings that are
not handled by the patterns here

e |[f the encoding is detected based on one of the entries in the table above
marked "as specified", the user agent ignores the style sheet if it does not parse
an appropriate @charset rule at the beginning of the stream of characters
resulting from decoding in the chosen @charset. This ensures that:

O @charset rules should only function if they are in the encoding of the style

sheet,

O byte order marks are ignored only in encodings that support a byte order

mark, and

O encoding names cannot contain newlines.

19 Jul 2007 15:54

Syntax and basic data types

User agents must ignore style sheets in unknown encodings.

4.4.1 Referring to characters not represented in a character
encoding

A style sheet may have to refer to characters that cannot be represented in the
current character encoding. These characters must be written as[escaped] [p. 49]
references to ISO 10646 characters. These escapes serve the same purpose as
numeric character references in HTML or XML documents (see [HTMLA4], chapters 5
and 25).

The character escape mechanism should be used when only a few characters
must be represented this way. If most of a style sheet requires escaping, authors
should encode it with a more appropriate encoding (e.g., if the style sheet contains a
lot of Greek characters, authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these
escaped sequences into byte sequences of that encoding. Intermediate processors
must not, on the other hand, alter escape sequences that cancel the special
meaning of an ASCII character.

[Conforming user agents|[p. 41] must correctly map to ISO-10646 all characters in
any character encodings that they recognize (or they must behave as if they did).

For example, a style sheet transmitted as 1SO-8859-1 (Latin-1) cannot contain
Greek letters directly: "koupo¢" (Greek: "kouros") has to be written as
"\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4, numeric character references are interpreted in "style" attribute
values but not in the content of the STYLE element. Because of this asymmetry, we
recommend that authors use the CSS character escape mechanism rather than
numeric character references for both the "style" attribute and the STYLE element.
For example, we recommend:

...
rather than:

...

67 19 Jul 2007 15:54

19 Jul 2007 15:54

Syntax and basic data types

68

Selectors

5 Selectors

Contents

5.

[5.1 Pattern matching|
[5.2 Selector syntax|

[5.2.1 Grouping|
[5.3 Universal selector]
[5.4 Type selectors|
[5.5 Descendant selectors|
[5.6 Child selectors|

[5.7 Adjacent sibling selectors|

[5.8 Attribute selectors|

[5.8.1 Matching attributes and attrlbute valuesl

[5.8.2 Default attribute values in DTDs|

|5.8.3 Class selectors|
[5.9 ID selectors| .

[5.10 Pseudo-elements and pseudo classesl

[5.11 Pseudo-classes|

[5.11.1 :first-child pseudo- classl

[5.11.2 The link pseudo-classes: :link and :visited] .

[5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus|

[5.11.4 The language pseudo-class: :lang|

[5.12 Pseudo-elements|

[5.12.1 The :first-line pseudo- elemenﬂ

[5.12.2 The :first-letter pseudo-element|

[5.12.3 The :before and :after pseudo-elements|

1 Pattern matching

69
71
71
72
72
72
73
73
74
74
76
76
78
79
80
80
81
81
83
84
84
86
89

In CSS, pattern matching rules determine which style rules apply to elements in the

[document tree|[p. 39] . These patterns, called selectors, may range from simple

element names to rich contextual patterns. If all conditions in the pattern are true for
a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors depends
on the document language. For example, in HTML, element names are
case-insensitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:

Pattern

Meaning

Described in
section

69

19 Jul 2007 15:54

Selectors

Matches any element.

|[Universal selector|
[p. 72]

Matches any E element (i.e., an element

[Type selectors|

of type E). [p. 72]
EE Matches any F element that is a
descendant of an E element. [selectors][p. 72]
Matches any F element that is a child of ||Child selectors|
E>F
an element E. [p. 73]
- . Matches element E when E is the first [The -first-child |
E:first-child : i
child of its parent.
[p. 80]
Matches element E if E is the source :
E:link anchor of a hyperlink of which the target is The Tink
L . - . Ipseudo-classes|
E:visited not yet visited (:link) or already visited
) [p. 81]
(:visited).
E:active
E:hover Matches E during certain user actions. Ipseudo-classes|
E:focus [p. 81]
Matches element of type E if it is in | ,
, (human) language c (the document :m‘
E:lang(c) . : [pseudo-class|
language specifies how language is 0. 83]
determined). P
E+F Matches any F element immediately |Adjacent selectors|
preceded by a sibling element E. [p. 73]
Effoo] Matches any E element with the "foo" |Attribute selectors|

attribute set (whatever the value).

[p. 74]

E[foo="warning"]

Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

[Attribute selectors|
[p. 74]

E[foo~="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated
values, one of which is exactly equal to
"warning".

|Attribute selectors|
[p. 74]

E[lang|="en"]

Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with "en".

|[Attribute selectors|
[p. 74]

19 Jul 2007 15:54

70

Selectors

DIV warnin Language specific. (In HTML, the same as ||Class selectors|
' 9 DIV[class~="warning"].) [p. 76]
. Matches any E element with ID equal to
E#myid "myid". [p. 78]

5.2 Selector syntax

A simple selector is either altype selector] [p. 72] or[universal selector] [p. 72] followed
immediately by zero or more [attribute selectors|[p. 74] , [[D selectors|[p. 78] , or

[pseudo-classes|[p. 79] , in any order. The simple selector matches if all of its
components match.

Note: the terminology used here in CSS 2.1 is different from what is used in CSS3.
For example, a "simple selector” refers to a smaller part of a selector in CSS3 than
in CSS 2.1. See the CSS3 Selectors module [CSS3SEL

A selector is a chain of one or more simple selectors separated by combinators.
Combinators are: whitespace, ">", and "+". Whitespace may appear between a
combinator and the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the
selector. A selector consisting of a single simple selector matches any element
satisfying its requirements. Prepending a simple selector and combinator to a chain
imposes additional matching constraints, so the subjects of a selector are always a
subset of the elements matching the last simple selector.

One |pseudo-element| [p. 79] may be appended to the last simple selector in a
chain, in which case the style information applies to a subpart of each subject.

5.2.1 Grouping

When several selectors share the same declarations, they may be grouped into a
comma-separated list.

Example(s):

In this example, we condense three rules with identical declarations into one.
Thus,

h1 { font-family: sans-serif }
h2 { font-family: sans-serif }
h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including [multiple declarations|
[p. 52] and[shorthand properties|[p. 26] .

71 19 Jul 2007 15:54

Selectors

5.3 Universal selector

The universal selector, written "*", matches the name of any element type. It
matches any single element in the [document tree | [p. 39]

If the universal selector is not the only component of a|simple selector|[p. 71] , the
"' may be omitted. For example:

® *[lang=fr] and [lang=fr] are equivalent.
e *warning and.warning are equivalent.
e *#myid and #myid are equivalent.

5.4 Type selectors

A type selector matches the name of a document language element type. A type
selector matches every instance of the element type in the document tree.

Example(s):
The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors

At times, authors may want selectors to match an element that is the descendant of
another element in the document tree (e.g., "Match those EM elements that are
contained by an H1 element"). Descendant selectors express such a relationship in
a pattern. A descendant selector is made up of two or more selectors separated by
[p. 47] . A descendant selector of the form "A B " matches when an
element B is an arbitrary descendant of some [ancestor] [p. 39] element A.

Example(s):
For example, consider the following rules:

h1 { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing its
color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that sets the
text color to blue whenever an EM occurs anywhere within an H1:

h1 { color: red }
em { color: red }
h1 em { color: blue }

19 Jul 2007 15:54 72

Selectors

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</H1>

Example(s):

The following selector:

div*p

matches a P element that is a grandchild or later descendant of a DIV element.
Note the whitespace on either side of the "*" is not part of the universal selector; the

whitespace is a combinator indicating that the DIV must be the ancestor of some
element, and that that element must be an ancestor of the P.

Example(s):

The selector in the following rule, which combines descendant and [attribute
[selectord|[p. 74] , matches any element that (1) has the "href" attribute set and (2) is
inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors

A child selector matches when an element is the [p. 39] of some element. A
child selector is made up of two or more selectors separated by ">".

Example(s):

The following rule sets the style of all P elements that are children of BODY:
body > P { line-height: 1.3 }

Example(s):

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be the
child of an OL element; the OL element must be a descendant of a DIV. Notice that
the optional whitespace around the ">" combinator has been left out.

For information on selecting the first child of an element, please see the section on

the [:first-child|[p. 80] pseudo-class below.

5.7 Adjacent sibling selectors

Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the
subject of the selector. The selector matches if E1 and E2 share the same parent in
the document tree and E1 immediately precedes E2, ignoring non-element nodes
(such as text nodes and comments).

73 19 Jul 2007 15:54

Selectors

Example(s):

Thus, the following rule states that when a P element immediately follows a MATH
element, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that
immediately follows it:

hl + h2 { margin-top: -5mm }
Example(s):

The following rule is similar to the one in the previous example, except that it adds
a class selector. Thus, special formatting only occurs when H1 has
class="opener"

hl.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors

CSS 2.1 allows authors to specify rules that match elements which have certain
attributes defined in the source document.

5.8.1 Matching attributes and attribute values

Attribute selectors may match in four ways:

[att]
Match when the element sets the "att" attribute, whatever the value of the
attribute.

[att=val]
Match when the element’s "att" attribute value is exactly "val".

[att~=val]
Match when the element’s "att" attribute value is a space-separated list of
"words", one of which is exactly "val". If this selector is used, the words in the
value must not contain spaces (since they are separated by spaces).

[att|=val]
Match when the element’s "att" attribute value is a hyphen-separated list of
"words", beginning with "val". The match always starts at the beginning of the
attribute value. This is primarily intended to allow language subcode matches
(e.g., the "lang" attribute in HTML) as described in RFC 3066 ([REC3066]).

Attribute values must be identifiers or strings. The case-sensitivity of attribute
names and values in selectors depends on the document language.

Example(s):

19 Jul 2007 15:54 74

Selectors

For example, the following attribute selector matches all H1 elements that specify
the "title" attribute, whatever its value:

hi[title] { color: blue; }
Example(s):

In the following example, the selector matches all SPAN elements whose "class"
attribute has exactly the value "example™:

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element,
or even several times to the same attribute.

Example(s):

Here, the selector matches all SPAN elements whose "hello" attribute has exactly
the value "Cleveland" and whose "goodbye" attribute has exactly the value
"Columbus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }
Example(s):

The following selectors illustrate the differences between "=" and "~=". The first
selector will match, for example, the value "copyright copyleft copyeditor" for the "rel"
attribute. The second selector will only match when the "href" attribute has the value
"http://www.w3.org/".

afrel~="copyright"]
alhref="http://www.w3.0org/"]

Example(s):

The following rule hides all elements for which the value of the "lang" attribute is
"fr* (i.e., the language is French).

*[lang=fr] { display : none }
Example(s):

The following rule will match for values of the "lang" attribute that begin with "en",
including "en", "en-US", and "en-cockney":

*[lang|="en"] { color : red }
Example(s):

Similarly, the following aural style sheet rules allow a script to be read aloud in
different voices for each role:

DIALOGUE[character=romeo]
{ voice-family: "Laurence Olivier", charles, male }

DIALOGUE[character=juliet]
{ voice-family: "Vivien Leigh", victoria, female }

75 19 Jul 2007 15:54

Selectors

5.8.2 Default attribute values in DTDs

Matching takes place on attribute values in the document tree. Default attribute
values may be defined in a DTD or elsewhere, but cannot always be selected by
attribute selectors. Style sheets should be designed so that they work even if the
default values are not included in the document tree.

More precisely, a UA is not required to read an "external subset" of the DTD but is
required to look for default attribute values in the document’s "internal subset." (See

XML10J for definitions of these subsets.)

A UA that recognizes an XML namespace [XMLNAMESPACES]is not required to
use its knowledge of that namespace to treat default attribute values as if they were
present in the document. (E.g., an XHTML UA is not required to use its built-in
knowledge of the XHTML DTD.)

Note that, typically, implementations choose to ignore external subsets.

Example(s):
Example:

For example, consider an element EXAMPLE with an attribute "notation” that has
a default value of "decimal”. The DTD fragment might be

<IATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }
EXAMPLE[notation=octal] {/*... other settings...*/ }

the first rule will not match elements whose "notation" attribute is set by default,
i.e. not set explicitly. To catch all cases, the attribute selector for the default value
must be dropped:

EXAMPLE { I*... default property settings ...*/ }
EXAMPLE[notation=octal] {/*... other settings...*/ }

Here, because the selector EXAMPLE[notation=octal] is more [specific|[p. 96]
than the tag selector alone, the style declarations in the second rule will override
those in the first for elements that have a "notation" attribute value of "octal". Care
has to be taken that all property declarations that are to apply only to the default
case are overridden in the non-default cases’ style rules.

5.8.3 Class selectors

Working with HTML, authors may use the period (.) notation as an alternative to the
~= notation when representing the class attribute. Thus, for HTML, div.value

and div[class~=value] have the same meaning. The attribute value must
immediately follow the "period” (.). UAs may apply selectors using the period (.)
notation in XML documents if the UA has namespace specific knowledge that allows
it to determine which attribute is the "class" attribute for the respective namespace.

19 Jul 2007 15:54 76

Selectors

One such example of namespace specific knowledge is the prose in the specification

for a particular namespace (e.g. SVG 1.1[SVG11] describes the|SVG "class”
[p. 2?] and how a UA should interpret it, and similarly MathML 2.0

MATH20] describes the [MathML "class™ attribute] [p. ??] .)
Example(s):

For example, we can assign style information to all elements with
class~="pastoral" as follows:

* pastoral { color: green } /* all elements with class~=pastoral */

or just
.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral"

H1.pastoral { color: green } /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the
second would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".
Example(s):

For example, the following rule matches any P element whose "class" attribute
has been assigned a list of space-separated values that includes "pastoral" and
"marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not
match for class="pastoral blue"

Note. CSS gives so much power to the "class" attribute, that authors could
conceivably design their own "document language” based on elements with almost
no associated presentation (such as DIV and SPAN in HTML) and assigning style
information through the "class" attribute. Authors should avoid this practice since the
structural elements of a document language often have recognized and accepted
meanings and author-defined classes may not.

Note: If an element has multiple class attributes, their values must be
concatenated with spaces between the values before searching for the class. As of
this time the working group is not aware of any manner in which this situation can be
reached, however, so this behavior is explicitly non-normative in this specification.

7 19 Jul 2007 15:54

Selectors

5.9 ID selectors

Document languages may contain attributes that are declared to be of type ID. What
makes attributes of type ID special is that no two such attributes can have the same
value; whatever the document language, an ID attribute can be used to uniquely
identify its element. In HTML all ID attributes are named "id"; XML applications may
name ID attributes differently, but the same restriction applies.

The ID attribute of a document language allows authors to assign an identifier to
one element instance in the document tree. CSS ID selectors match an element
instance based on its identifier. A CSS ID selector contains a "#" immediately
followed by the ID value, which must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an element.
The UA may, e.g., read a document’s DTD, have the information hard-coded or ask
the user.

Example(s):

The following ID selector matches the H1 element whose ID attribute has the
value "chapterl":

hl#chapterl { text-align: center }

In the following example, the style rule matches the element that has the ID value
"z98y". The rule will thus match for the P element:

<HEAD>
<TITLE>Match P</TITLE>
<STYLE type="text/css">
*#298y { letter-spacing: 0.3em }
</STYLE>
</HEAD>
<BODY>
<P id=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element that
has an ID value of "z98y". The rule will not match the P element in this example:

<HEAD>
<TITLE>Match H1 only</TITLE>
<STYLE type="text/css">
H1#z98y { letter-spacing: 0.5em }
</STYLE>
</HEAD>
<BODY>
<P id=z98y>Wide text</P>
</BODY>

ID selectors have a higher specificity than attribute selectors. For example, in
HTML, the selector #p123 is more specific than [id=p123] in terms of the [cascade]

[p. 91].

19 Jul 2007 15:54 78

Selectors

Note. In XML 1.0[[XML10]} the information about which attribute contains an
element’s IDs is contained in a DTD. When parsing XML, UAs do not always read
the DTD, and thus may not know what the ID of an element is. If a style sheet
designer knows or suspects that this will be the case, he should use normal attribute
selectors instead: [nane=p371] instead of #p371. However, the cascading order of
normal attribute selectors is different from ID selectors. It may be necessary to add
an "limportant" priority to the declarations: [nane=p371] {color: red !

i mportant}.

If an element has multiple ID attributes, all of them must be treated as IDs for that
element for the purposes of the ID selector. Such a situation could be reached using
mixtures of xml:id [XMLID], DOM3 Core [DOM-LEVEL-3-CORE], XML DTDs
[XML10] and namespace-specific knowledge.

5.10 Pseudo-elements and pseudo-classes

In CSS 2.1, style is normally attached to an element based on its position in the
[document tree| [p. 39] . This simple model is sufficient for many cases, but some
common publishing scenarios may not be possible due to the structure of the
[document tre€] [p. 39] . For instance, in HTML 4 (see [HTMLA4]), no element refers to
the first line of a paragraph, and therefore no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit
formatting based on information that lies outside the document tree.

® Pseudo-elements create abstractions about the document tree beyond those
specified by the document language. For instance, document languages do not
offer mechanisms to access the first letter or first line of an element’s content.
CSS pseudo-elements allow style sheet designers to refer to this otherwise
inaccessible information. Pseudo-elements may also provide style sheet
designers a way to assign style to content that does not exist in the source
document (e.g., the|before and :after[p. 193] pseudo-elements give access to
generated content).

® Pseudo-classes classify elements on characteristics other than their name,
attributes or content; in principle characteristics that cannot be deduced from the
document tree. Pseudo-classes may be dynamic, in the sense that an element
may acquire or lose a pseudo-class while a user interacts with the document.
The exceptions are [:first-child] [p. 80] , which can be deduced from the
document tree, and[:Jang()][p. 83] , which can be deduced from the document
tree in some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or
document tree.

Pseudo-classes are allowed anywhere in selectors while pseudo-elements may
only be appended after the last simple selector of the selector.

79 19 Jul 2007 15:54

Selectors

Pseudo-element and pseudo-class hames are case-insensitive.

Some pseudo-classes are mutually exclusive, while others can be applied
simultaneously to the same element. In case of conflicting rules, the normal
[cascading order|[p. 95] determines the outcome.

5.11 Pseudo-classes

5.11.1 :first-child pseudo-class

The :first-child pseudo-class matches an element that is the first child element of
some other element.

Example(s):

In the following example, the selector matches any P element that is the first child
of a DIV element. The rule suppresses indentation for the first paragraph of a DIV:

div > p:first-child { text-indent: 0 }
This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">

<P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
<H2>Note</H2>
<P> The first P inside the note.
</DIV>

Example(s):

The following rule sets the font weight to 'bold’ for any EM element that is some
descendant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since [anonymous][p. 123] boxes are not part of the document tree, they
are not counted when calculating the first child.

For example, the EM in:
<P>abc default
is the first child of the P.

The following two selectors are equivalent:

19 Jul 2007 15:54 80

Selectors

* > afirst-child /* A is first child of any element */
a:first-child [* Same */

5.11.2 The link pseudo-classes: :link and :visited

User agents commonly display unvisited links differently from previously visited
ones. CSS provides the pseudo-classes ":link’ and ":visited’ to distinguish them:

® The :link pseudo-class applies for links that have not yet been visited.

® The :visited pseudo-class applies once the link has been visited by the user.
UAs may return a visited link to the (unvisited) :link’ state at some point.

The two states are mutually exclusive.

The document language determines which elements are hyperlink source
anchors. For example, in HTMLA4, the link pseudo-classes apply to A elements with
an "href" attribute. Thus, the following two CSS 2.1 declarations have similar effect:

a:link { color: red }
:link { color: red }

Example(s):
If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and :visited
pseudo-classes to determine which sites a user has visited without the user’s
consent.

UAs may therefore treat all links as unvisited links, or implement other measures
to preserve the user’s privacy while rendering visited and unvisited links differently.
See for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and
:focus

Interactive user agents sometimes change the rendering in response to user actions.
CSS provides three pseudo-classes for common cases:

® The :hover pseudo-class applies while the user designates an element (with
some pointing device), but does not activate it. For example, a visual user agent
could apply this pseudo-class when the cursor (mouse pointer) hovers over a
box generated by the element. User agents not supporting interactive media
[p. 102] do not have to support this pseudo-class. Some conforming user agents

81 19 Jul 2007 15:54

Selectors

supporting [interactive medial [p. 102] may not be able to support this
pseudo-class (e.g., a pen device).

® The :active pseudo-class applies while an element is being activated by the
user. For example, between the times the user presses the mouse button and
releases it.

® The :focus pseudo-class applies while an element has the focus (accepts
keyboard events or other forms of text input).

An element may match several pseudo-classes at the same time.

CSS doesn't define which elements may be in the above states, or how the states
are entered and left. Scripting may change whether elements react to user events or
not, and different devices and UAs may have different ways of pointing to, or
activating elements.

CSS 2.1 doesn't define if the parent of an element that is ":active’ or ":hover’ is also
in that state.

User agents are not required to reflow a currently displayed document due to
pseudo-class transitions. For instance, a style sheet may specify that the [font-size]
of an :active link should be larger than that of an inactive link, but since this may
cause letters to change position when the reader selects the link, a UA may ignore
the corresponding style rule.

Example(s):

a:link {color:red} /*unvisited links */
a:visited { color: blue } /* visited links */
a:hover {color: yellow } /* user hovers */
a:active {color: lime} /*active links */

Note that the A:hover must be placed after the A:link and A:visited rules, since
otherwise the cascading rules will hide the property of the A:hover rule.
Similarly, because A:active is placed after A:hover, the active color (lime) will apply
when the user both activates and hovers over the A element.

Example(s):

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in
pseudo-class :hover.

For information about the presentation of focus outlines, please consult the section
on|dynamic focus outlines|[p. 284] .

Note. In CSS1, the ":active’ pseudo-class was mutually exclusive with ":link’ and
".visited’. That is no longer the case. An element can be both ":visited’ and ".active’
(or :link’ and ":active”) and the normal cascading rules determine which style
declarations apply.

19 Jul 2007 15:54 82

Selectors

Note. Also note that in CSS1, the ":active’ pseudo-class only applied to links.

5.11.4 The language pseudo-class: :lang

If the document language specifies how the human language of an element is
determined, it is possible to write selectors in CSS that match an element based on
its language. For example, in HTML [HTML4], the language is determined by a
combination of the "lang" attribute, the META element, and possibly by information
from the protocol (such as HTTP headers). XML uses an attribute called xml:lang,
and there may be other document language-specific methods for determining the
language.

The pseudo-class ":lang(C)’ matches if the element is in language C. Whether
there is a match is based solely on the identifier C being either equal to, or a
hyphen-separated substring of, the element’s language value, in the same way as if
performed by the[[=][p. 74] operator. The identifier C doesn’t have to be a valid
language name.

C must not be empty.

Note: It is recommended that documents and protocols indicate language using
codes from RFC 3066 [REC3066] or its successor, and by means of "xml:lang"
attributes in the case of XML-based documents [XML10] See[FFAQ: Two-letter of
three-letter language codes."|[p. ?7]

Example(s):

The following rules set the quotation marks for an HTML document that is either in
Canadian French or German:

html:lang(fr-ca) { quotes: '« '’ »" }
html:lang(de) { quotes: '»’ '«’ \2039’ \203A’ }
lang(fr) > Q { quotes: '« »'}

:lang(de) > Q { quotes: '»" '«’ \2039’ \203A" }

The second pair of rules actually set the [quotes] property on Q elements
according to the language of its parent. This is done because the choice of quote
marks is typically based on the language of the element around the quote, not the
quote itself: like this piece of French “a I'improviste” in the middle of an English text
uses the English quotation marks.

Note the difference between [lang|=xx] and :lang(xx). In this HTML example, only
the BODY matches [lang|=fr] (because it has a LANG attribute) but both the BODY
and the P match :lang(fr) (because both are in French).

<body lang=fr>

<p>Je suis Francais.</p>
</body>

83 19 Jul 2007 15:54

Selectors

5.12 Pseudo-elements

5.12.1 The :first-line pseudo-element

The :first-line pseudo-element applies special styles to the contents of the first
formatted line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph to
uppercase". However, the selector "P:first-line" does not match any real HTML
element. It does match a pseudo-element that|conforming user agents|[p. 41] will
insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including the
width of the page, the font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first

line will be identified by a fictional tag

sequence. The other lines will be treated as

ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for
first-line. This fictional tag sequence helps to show how properties are inherited.

<P><P: first-1|ine>Thisis a somewhat long HTML

paragraph that </ P:first-1ine>will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

If a pseudo-element breaks up a real element, the desired effect can often be
described by a fictional tag sequence that closes and then re-opens the element.
Thus, if we mark up the previous paragraph with a SPAN element:

<P> This is a somewhat long HTML
paragraph that will be broken into several

lines. </ SPAN> The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

19 Jul 2007 15:54

84

Selectors

the user agent could simulate start and end tags for SPAN when inserting the
fictional tag sequence for :first-line.

<P><P:first-line> Thisis a
somewhat long HTML
paragraph that will </ SPAN></P-first-line> be

broken into several

lines. </ SPAN> The first line will be identified
by a fictional tag sequence. The other lines

will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a[block-level| [p. 121]
element, inline-block, table-caption or a table-cell.

The "first formatted line" of an element may occur inside a block-level descendant
in the same flow (i.e., a block-level descendant that is not positioned and not a float).
E.g., the first line of the DIV in <DIV><P>This line...</P></DIV> is the first
line of the P (assuming that both P and DIV are block-level).

The first line of a table-cell or inline-block cannot be the first formatted line of an
ancestor element. Thus, in <DIV><P STYLE="display:

inline-block">Hello
Goodbye</P> etcetera</DIV> the first formatted
line of the DIV is not the line "Hello".
Note that the first line of the P in this fragment: <p>
First... doesn’t

contain any letters (assuming the default style for BR in HTML 4). The word "First" is
not on the first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-elements were
nested just inside the innermost enclosing block-level element. (Since CSS1 and
CSS2 were silent on this case, authors should not rely on this behavior.) Here is an
example. The fictional tag sequence for

<DIv>
<P>First paragraph</P>
<P>Second paragraph</P>
</DIV>

is

<DIV>
<P><DIV-first-line><P:first-line>First paragraph</P:first-line></DIVfirst-line></P>
<P><Pfirst-line>Second paragraph</P:first-line></P>

</DIV>

The first-line pseudo-element is similar to an inline-level element, but with certain
restrictions. The following properties apply to a :first-line pseudo-element:

[properties,|[p. 231]color property,| [p. 221] [background properties | [p. 222]
j'word—sﬁacinﬁ’;||’Ietter—spacinq’;||’text—decoration’;||’vertical—aliqn’;||’text—transform’,|

[Tine-height’] UAs may apply other properties as well.

85 19 Jul 2007 15:54

Selectors

5.12.2 The :first-letter pseudo-element

The :first-letter pseudo-element must select the first letter of the first line of a block, if
it is not preceded by any other content (such as images or inline tables) on its line.
The first-letter pseudo-element may be used for "initial caps" and "drop caps", which
are common typographical effects. This type of initial letter is similar to an inline-level
element if its[float] property is 'none’, otherwise it is similar to a floated element.

These are the properties that apply to :first-letter pseudo-elements: [font properties,|
[p. 231][text-decoration’|[text-transform’[letter-spacing’ J[word-spacing] (when
appropriate), (only if 'float’ is 'none),
[properties | [p. 107] [padding properties] [p. 110] oorder properties] [p. 112] [color]
[property] [p. 221] background properties][p. 222] UAs may apply other properties as
well. To allow UAs to render a typographically correct drop cap or initial cap, the UA
may choose a line-height, width and height based on the shape of the letter, unlike
for normal elements. CSS3 is expected to have specific properties that apply to
first-letter.

This example shows a possible rendering of an initial cap. Note that the
'line-height’ that is inherited by the first-letter pseudo-element is 1.1, but the UA in
this example has computed the height of the first letter differently, so that it doesn’t
cause any unnecessary space between the first two lines. Also note that the fictional
start tag of the first letter is inside the SPAN, and thus the font weight of the first
letter is normal, not bold as the SPAN:

p { line-height: 1.1}
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }

<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

Hel hemelsche gerecht heeft zich ten lange lesten
Erbarremt over my en mijn benacuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

The following CSS 2.1 will make a drop cap initial letter span about two lines:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>

<TITLE>Drop cap initial letter</TITLE>

<STYLE type="text/css">

P { font-size: 12pt; line-height: 1.2 }

P:first-letter { font-size: 200%; font-style: italic;

font-weight: bold; float: left }
SPAN { text-transform: uppercase }

19 Jul 2007 15:54 86

Selectors

</STYLE>
</HEAD>
<BODY>
<P>The first few words of an article
in The Economist.</P>
</BODY>
</HTML>

This example might be formatted as follows:

HE FIRST few

words of an
article in the
Economist

The fictional tag sequence is:

<p>

<P:first-letter>

T

</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial
character), while the :first-line pseudo-element start tag is inserted right after the
start tag of the block element.

In order to achieve traditional drop caps formatting, user agents may approximate
font sizes, for example to align baselines. Also, the glyph outline may be taken into
account when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE]|in the "open" (Ps),
"close" (Pe), "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that
precedes or follows the first letter should be included, as in:

44 bird in
the hand

is worth
two in the bush,"
says an old proverb.

The "first-letter’ also applies if the first letter is in fact a digit, e.g., the "6" in "67
million dollars is a lot of money."

The first-letter pseudo-element applies to block, list-item, table-cell, table-caption
and inline-block elements.

The :first-letter pseudo-element can be used with all such elements that contain
text, or that have a descendant in the same flow that contains text. A UA should act
as if the fictional start tag of the first-letter pseudo-element is just before the first text
of the element, even if that first text is in a descendant.

87 19 Jul 2007 15:54

Selectors

Example(s):
Here is an example. The fictional tag sequence for this HTML fragment:

<div>
<p>The first text.

is:
<div>

<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an ancestor
element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first letter of
the DIV is not the letter "H". In fact, the DIV doesn’t have a first letter.

The first letter must occur on the ffirst formatted line.|[p. 85] For example, in this
fragment: <p>
First... the first line doesn’t contain any letters and
"first-letter’ doesn’t match anything (assuming the default style for BR in HTML 4). In
particular, it does not match the "F" of "First."

If an element is a[list item] [p. 204] ('display: list-item’), the "first-letter’ applies to
the first letter in the principal box after the marker. UAs may ignore ’first-letter’ on list
items with ’list-style-position: inside’. If an element has ':before’ or :after’ content, the
"first-letter applies to the first letter of the element including that content.

E.g., after the rule 'p:before {content: "Note: "}, the selector 'p:first-letter’ matches
the "N" of "Note".

Some languages may have specific rules about how to treat certain letter
combinations. In Dutch, for example, if the letter combination "ij" appears at the
beginning of a word, both letters should be considered within the :first-letter
pseudo-element.

If the letters that would form the first-letter are not in the same element, such as
"T"in <p>'T... ,the UA may create a first-letter pseudo-element from one of
the elements, both elements, or simply not create a pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for example
due to bidirectional reordering), then the UA need not create the pseudo-element(s).

Example(s):

The following example illustrates how overlapping pseudo-elements may interact.
The first letter of each P element will be green with a font size of '24pt’. The rest of
the first formatted line will be 'blue’ while the rest of the paragraph will be 'red’.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

19 Jul 2007 15:54 88

Selectors

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment might be:

<P>
<P:first-line>
<P:first-letter>

S
</P:first-letter>ome text that

</P-first-line>
ends up on two lines
</P>

Note that the :first-letter element is inside the :first-line element. Properties set on
first-line are inherited by :first-letter, but are overridden if the same property is set on

first-letter.

5.12.3 The :before and :after pseudo-elements

The ":before’ and ":after’ pseudo-elements can be used to insert generated content
before or after an element’s content. They are explained in the section on [generated]

[p. 193]
Example(s):
hl:before {content: counter(chapno, upper-roman) ". "}

When the :first-letter and :first-line pseudo-elements are combined with :before
and :after, they apply to the first letter or line of the element including the inserted

text.
Example(s):

p.special:before {content: "Special! "}
p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.

89 19 Jul 2007 15:54

19 Jul 2007 15:54

Selectors

90

Assigning property values, Cascading, and Inheritance

6 Assigning property values, Cascading, and
Inheritance

Contents
[6.1 Specified, computed, and actualvalues] 91
6.1.1 Specifiedvalues| 9
6.1.2 Computed values| 9
[6.1.3Usedvaluesl 9
[6.1.4 Actualvalues| 9
6.2 Inheritance| 9
[6.2.1 The 'inherit' value 93
|6.3 The @import rule e 7
[6.4 The cascade] e, e V|
6.4.1 Cascadingorderqy 95
[6.4.2 limportantrules, 95
|6.4.3 Calculating a selector’s specificityy 96
|6.4.4 Precedence of non-CSS presentational hintsf 97

6.1 Specified, computed, and actual values

Once a user agent has parsed a document and constructed a|document tree|[p. 39],
it must assign, for every element in the tree, a value to every property that applies to

the target[media type] [p. 99] .

The final value of a property is the result of a four-step calculation: the value is
determined through specification (the "specified value"), then resolved into a value
that is used for inheritance (the "computed value"), then converted into an absolute
value if necessary (the "used value"), and finally transformed according to the
limitations of the local environment (the "actual value").

6.1.1 Specified values

User agents must first assign a specified value to each property based on the
following mechanisms (in order of precedence):

1. If the[cascade][p. 94] results in a value, use it.

2. Otherwise, if the property is [inherited| [p. 92] and the element is not the root of
the document tree, use the computed value of the parent element.

3. Otherwise use the property’s initial value. The initial value of each property is
indicated in the property’s definition.

91 19 Jul 2007 15:54

Assigning property values, Cascading, and Inheritance

6.1.2 Computed values

Specified values are resolved to computed values during the cascade; for example
URIs are made absolute and 'em’ and 'ex’ units are computed to pixel or absolute
lengths. Computing a value never requires the user agent to render the document.

The computed value of URIs that the UA cannot resolve to absolute URIs is the
specified value.

When the specified value is not 'inherit’, the computed value of a property is
determined as specified by the Computed Value line in the definition of the property.
See the section on [inheritance] [p. 92] for the definition of computed values when the
specified value is 'inherit’.

The computed value exists even when the property doesn’t apply, as defined by
the [p. 25] line. However, some properties may define the computed
value of a property for an element to depend on whether the property applies to that
element.

6.1.3 Used values

Computed values are processed as far as possible without formatting the document.
Some values, however, can only be determined when the document is being laid
out. For example, if the width of an element is set to be a certain percentage of its
containing block, the width cannot be determined until the width of the containing
block has been determined. The used value is the result of taking the computed
value and resolving any remaining dependencies into an absolute value.

6.1.4 Actual values

A used value is in principle the value used for rendering, but a user agent may not
be able to make use of the value in a given environment. For example, a user agent
may only be able to render borders with integer pixel widths and may therefore have
to approximate the computed width, or the user agent may be forced to use only
black and white shades instead of full colour. The actual value is the used value after
any approximations have been applied.

6.2 Inheritance

Some values are inherited by the children of an element in the |[document treeg| [p. 39]

, as described [above] [p. 91] . Each property [defines|[p. 23] whether it is inherited or
not.

Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline is important!</H1>

19 Jul 2007 15:54 92

Assigning property values, Cascading, and Inheritance

If no color has been assigned to the EM element, the emphasized "is" will inherit
the color of the parent element, so if H1 has the color blue, the EM element will
likewise be in blue.

When inheritance occurs, elements inherit computed values. The computed value
from the parent element becomes both the specified value and the computed value
on the child.

Example(s):
For example, given the following style sheet:

body { font-size: 10pt }
h1l { font-size: 130% }

and this document fragment:

<BODY>
<H1>A large heading</H1>
</BODY>

the 'font-size’ property for the H1 element will have the computed value '13pt’
(130% times 10pt, the parent’s value). Since the computed value of [font-size] is
inherited, the EM element will have the computed value '13pt’ as well. If the user
agent does not have the 13pt font available, the actual value of [font-size] for both H1
and EM might be, for example, '12pt’.

6.2.1 The 'inherit’ value

Each property may also have a specified value of ‘inherit’, which means that, for a
given element, the property takes the same computed value as the property for the
element’s parent. The ’inherit’ value can be used to strengthen inherited values, and
it can also be used on properties that are not normally inherited.

If the inherit’ value is set on the root element, the property is assigned its initial
value.

Example(s):

In the example below, the[color]and[background’|properties are set on the BODY
element. On all other elements, the 'color’ value will be inherited and the background
will be transparent. If these rules are part of the user’s style sheet, black text on a
white background will be enforced throughout the document.

body {
color: black !limportant;
background: white !important;

}
“{

color: inherit limportant;
background: transparent limportant;

}

93 19 Jul 2007 15:54

Assigning property values, Cascading, and Inheritance

6.3 The @import rule

The '@import’ rule allows users to import style rules from other style sheets. Any
@import rules must precede all other rules (except the @charset rule, if present).
The '@import’ keyword must be followed by the URI of the style sheet to include. A
string is also allowed; it will be interpreted as if it had url(...) around it.

Example(s):

The following lines are equivalent in meaning and illustrate both '@import’
syntaxes (one with "url()" and one with a bare string):

@import "mystyle.css";
@import url("mystyle.css");

So that user agents can avoid retrieving resources for unsupported
[p. 99], authors may specify media-dependent @import rules. These conditional
imports specify comma-separated media types after the URI.

Example(s):
The following rules illustrate how @import rules can be made media-dependent:

@import url("fineprint.css") print;
@import url("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying 'all’ for
the medium has the same effect.

6.4 The cascade

Style sheets may have three different origins: author, user, and user agent.

® Author . The author specifies style sheets for a source document according to
the conventions of the document language. For instance, in HTML, style sheets
may be included in the document or linked externally.

® User: The user may be able to specify style information for a particular
document. For example, the user may specify a file that contains a style sheet
or the user agent may provide an interface that generates a user style sheet (or
behaves as if it did).

® User agent :[Conforming user agents|[p. 41] must apply a default style sheet (or
behave as if they did). A user agent’s default style sheet should present the
elements of the document language in ways that satisfy general presentation
expectations for the document language (e.g., for visual browsers, the EM
element in HTML is presented using an italic font). See |A sample style sheet for |
[p. 371] for a recommended default style sheet for HTML documents.

Note that the user may modify system settings (e.g. system colors) that affect
the default style sheet. However, some user agent implementations make it
impossible to change the values in the default style sheet.

19 Jul 2007 15:54 94

Assigning property values, Cascading, and Inheritance

Style sheets from these three origins will overlap in scope, and they interact
according to the cascade.

The CSS cascade assigns a weight to each style rule. When several rules apply,
the one with the greatest weight takes precedence.

By default, rules in author style sheets have more weight than rules in user style
sheets. Precedence is reversed, however, for "limportant” rules. All user and author
rules have more weight than rules in the UA’s default style sheet.

6.4.1 Cascading order

To find the value for an element/property combination, user agents must apply the
following sorting order:

1. Find all declarations that apply to the element and property in question, for the
target[media typel [p. 99] . Declarations apply if the associated selector [matches]
[p. 69] the element in question.
2. Sort according to importance (normal or important) and origin (author, user, or
user agent). In ascending order of precendence:
1. user agent declarations
2. user normal declarations
3. author normal declarations
4. author important declarations
5. user important declarations
3. Sort rules with the same importance and origin by [specificity] [p. 96] of selector:
more specific selectors will override more general ones. Pseudo elements and
pseudo-classes are counted as normal elements and classes, respectively.
4. Finally, sort by order specified: if two declarations have the same weight, origin
and specificity, the latter specified wins. Declarations in imported style sheets
are considered to be before any declarations in the style sheet itself.

Apart from the "limportant” setting on individual declarations, this strategy gives
author’s style sheets higher weight than those of the reader. User agents must give
the user the ability to turn off the influence of specific author style sheets, e.qg.,
through a pull-down menu. Conformance to UAAG 1.0 checkpoint 4.14 satisfies this

condition [UAAG10

6.4.2 limportant rules

CSS attempts to create a balance of power between author and user style sheets.
By default, rules in an author’s style sheet override those in a user’s style sheet (see
cascade rule 3).

However, for balance, an "limportant” declaration (the delimiter token "!" and
keyword "important" follow the declaration) takes precedence over a hormal
declaration. Both author and user style sheets may contain "limportant” declarations,
and user "limportant" rules override author "limportant” rules. This CSS feature

95 19 Jul 2007 15:54

Assigning property values, Cascading, and Inheritance

improves accessibility of documents by giving users with special requirements (large
fonts, color combinations, etc.) control over presentation.

Declaring a shorthand property (e.g.,[background’) to be "limportant” is equivalent
to declaring all of its sub-properties to be "limportant".

Example(s):

The first rule in the user’s style sheet in the following example contains an
"limportant" declaration, which overrides the corresponding declaration in the
author’s style sheet. The second declaration will also win due to being marked
"limportant”. However, the third rule in the user’s style sheet is not "limportant” and
will therefore lose to the second rule in the author’s style sheet (which happens to
set style on a shorthand property). Also, the third author rule will lose to the second
author rule since the second rule is "limportant". This shows that "limportant"
declarations have a function also within author style sheets.

/* From the user’s style sheet */
p { text-indent: 1em ! important }
p { font-style: italic ! important }

p { font-size: 18pt }

/* From the author’s style sheet */

p { text-indent: 1.5em !important }

p { font: normal 12pt sans-serif limportant }
p { font-size: 24pt }

6.4.3 Calculating a selector’s specificity

A selector’s specificity is calculated as follows:

e count 1 if the declaration is from is a 'style’ attribute rather than a rule with a
selector, 0 otherwise (= a) (In HTML, values of an element’s "style" attribute are
style sheet rules. These rules have no selectors, so a=1, b=0, ¢=0, and d=0.)

® count the number of ID attributes in the selector (= b)

® count the number of other attributes and pseudo-classes in the selector (= ¢)

® count the number of element names and pseudo-elements in the selector (= d)

The specificity is based only on the form of the selector. In particular, a selector of
the form "[id=p33]" is counted as an attribute selector (a=0, b=0, c=1, d=0), even if
the id attribute is defined as an "ID" in the source document’s DTD.

Concatenating the four numbers a-b-c-d (in a number system with a large base)
gives the specificity.

Example(s):

Some examples:

19 Jul 2007 15:54 96

Assigning property values, Cascading, and Inheritance

* {} *a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */

li {} I*a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */
li:first-line {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */

ul li {} *@a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
ulol+li {} /*a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */

hl + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */
ul ol li.red {} /*a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */
li.red.level {} /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */
#x34y {} I*a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */
style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

<HEAD>
<STYLE type="text/css">
#x97z { color: red }
</STYLE>
</HEAD>
<BODY>
<P ID=x97z style="color: green">
</BODY>

In the above example, the color of the P element would be green. The declaration
in the "style" attribute will override the one in the STYLE element because of
cascading rule 3, since it has a higher specificity.

6.4.4 Precedence of non-CSS presentational hints

The UA may choose to honor presentational attributes in an HTML source
document. If so, these attributes are translated to the corresponding CSS rules with
specificity equal to 0, and are treated as if they were inserted at the start of the
author style sheet. They may therefore be overridden by subsequent style sheet
rules. In a transition phase, this policy will make it easier for stylistic attributes to
coexist with style sheets.

For HTML, any attribute that is not in the following list should be considered
presentational: abbr, accept-charset, accept, accesskey, action, alt, archive, axis,
charset, checked, cite, class, classid, code, codebase, codetype, colspan, coords,
data, datetime, declare, defer, dir, disabled, enctype, for, headers, href, hreflang,
http-equiv, id, ismap, label, lang, language, longdesc, maxlength, media, method,
multiple, name, nohref, object, onblur, onchange, onclick, ondbilclick, onfocus,
onkeydown, onkeypress, onkeyup, onload, onload, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup, onreset, onselect, onsubmit, onunload,
onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope, selected,
shape, span, src, standby, start, style, summary, title, type (except on LI, OL and UL
elements), usemap, value, valuetype, version.

For other languages, all document language-based styling should be handled in
the user agent style sheet.

Example(s):

The following user style sheet would override the font weight of 'b’ elements in all
documents, and the color of 'font’ elements with color attributes in XML documents.
It would not affect the color of any 'font’ elements with color attributes in HTML

97 19 Jul 2007 15:54

Assigning property values, Cascading, and Inheritance

documents:

b { font-weight: normal; }
font[color] { color: orange; }

The following, however, would override the color of font elements in all
documents:

font[color] { color: orange ! important; }

19 Jul 2007 15:54

98

Media types

7 Media types

Contents
[7.1 Introduction to mediatypes] 99
[7.2 Specifying media-dependent style sheets| e L
[7.2.1 The @mediarulel100
[7.3 Recognized mediatypes100
[7.3.1 Mediagroups|102

7.1 Introduction to media types

One of the most important features of style sheets is that they specify how a
document is to be presented on different media: on the screen, on paper, with a
speech synthesizer, with a braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the
[page-break-before’| property only applies to paged media). On occasion, however,
style sheets for different media types may share a property, but require different
values for that property. For example, the [font-size] property is useful both for
screen and print media. The two media types are different enough to require
different values for the common property; a document will typically need a larger font
on a computer screen than on paper. Therefore, it is necessary to express that a
style sheet, or a section of a style sheet, applies to certain media types.

7.2 Specifying media-dependent style sheets

There are currently two ways to specify media dependencies for style sheets:

® Specify the target medium from a style sheet with the @media or @import
at-rules.

Example(s):

@import url("fancyfonts.css") screen;
@media print {
[* style sheet for print goes here */

}

e Specify the target medium within the document language. For example, in
HTML 4 ([HTML4]), the "media" attribute on the LINK element specifies the
target media of an external style sheet:

99 19 Jul 2007 15:54

Media types

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Link to a target medium</TITLE>
<LINK REL="stylesheet" TYPE="text/css"
MEDIA="print, handheld" HREF="foo.css">
</HEAD>
<BODY>
<P>The body...
</BODY>
</HTML>

The [@import| [p. 94] rule is defined in the [chapter on the cascade][p. 91] .

7.2.1 The @media rule

An @media rule specifies the target[media types]| [p. 100] (separated by commas) of
a set of rules (delimited by curly braces). The @media construct allows style sheet
rules for various media in the same style sheet:

@media print {
body { font-size: 10pt }
}

@media screen {
body { font-size: 13px }
}

@media screen, print {
body { line-height: 1.2 }
}

Style rules outside of @media rules apply to all media types that the style sheet
applies to.

7.3 Recognized media types

The names chosen for CSS media types reflect target devices for which the relevant
properties make sense. In the following list of CSS media types the names of media
types are normative, but the descriptions are informative. Likewise, the "Media" field
in the description of each property is informative.

all
Suitable for all devices.
braille
Intended for braille tactile feedback devices.
embossed
Intended for paged braille printers.
handheld
Intended for handheld devices (typically small screen, limited bandwidth).
print
Intended for paged material and for documents viewed on screen in print

preview mode. Please consult the section on[paged media [p. 211] for

19 Jul 2007 15:54 100

Media types

information about formatting issues that are specific to paged media.

projection
Intended for projected presentations, for example projectors. Please consult the
section on [paged media| [p. 211] for information about formatting issues that are
specific to paged media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called
‘aural’ for this purpose. See the appendix onjaural style sheets|[p. 289] for

details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes,
terminals, or portable devices with limited display capabilities). Authors should
not use [pixel units]| [p. 57] with the "tty" media type.

tv

Intended for television-type devices (low resolution, color, limited-scrollability
screens, sound available).

Media type names are case-insensitive.

Media types are mutually exclusive in the sense that a user agent can only
support one media type when rendering a document. However, user agents may use
different media types on different canvases. For example, a document may
(simultaneously) be shown in 'screen’ mode on one canvas and 'print’ mode on
another canvas.

Note that a multimodal media type is still only one media type. The 'tv’ media type,
for example, is a multimodal media type that renders both visually and aurally to a
single canvas.

@media and @import rules with unknown media types are treated as if the
unknown media types are not present.

Example(s):

For example, in the following snippet, the rule on the P element applies in 'screen’
mode (even though the '3D’ media type is not known).

@media screen, 3D {
P { color: green; }

}

Note. Future updates of CSS may extend the list of media types. Authors should
not rely on media type names that are not yet defined by a CSS specification.

101 19 Jul 2007 15:54

Media types

7.3.1 Media groups

This section is informative, not normative.

Each CSS property definition specifies which media types the property applies to.
Since properties generally apply to several media types, the