Contents
The position and size of an element's box(es) are sometimes calculated relative to a certain rectangle, called the containing block of the element. The containing block of an element is defined as follows:
Note: This may cause the containing block's width to be negative.
If there is no such ancestor, the containing block is the initial containing block.
In paged media, an absolutely positioned element is positioned relative to its containing block ignoring any page breaks (as if the document were continuous). The element may subsequently be broken over several pages.
For absolutely positioned content that resolves to a position on a page other than the page being laid out (the current page), or resolves to a position on the current page which has already been rendered for printing, printers may place the content
Note that a block-level element that is split over several pages may have a different width on each page and that there may be device-specific limits.
With no positioning, the containing blocks (C.B.) in the following document:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"> <HTML> <HEAD> <TITLE>Illustration of containing blocks</TITLE> </HEAD> <BODY id="body"> <DIV id="div1"> <P id="p1">This is text in the first paragraph...</P> <P id="p2">This is text <EM id="em1"> in the <STRONG id="strong1">second</STRONG> paragraph.</EM></P> </DIV> </BODY> </HTML>
are established as follows:
For box generated by | C.B. is established by |
---|---|
html | initial C.B. (UA-dependent) |
body | html |
div1 | body |
p1 | div1 |
p2 | div1 |
em1 | p2 |
strong1 | p2 |
If we position "div1":
#div1 { position: absolute; left: 50px; top: 50px }
its containing block is no longer "body"; it becomes the initial containing block (since there are no other positioned ancestor boxes).
If we position "em1" as well:
#div1 { position: absolute; left: 50px; top: 50px } #em1 { position: absolute; left: 100px; top: 100px }
the table of containing blocks becomes:
For box generated by | C.B. is established by |
---|---|
html | initial C.B. (UA-dependent) |
body | html |
div1 | initial C.B. |
p1 | div1 |
p2 | div1 |
em1 | div1 |
strong1 | em1 |
By positioning "em1", its containing block becomes the nearest positioned ancestor box (i.e., that generated by "div1").
Value: | <length> | <percentage> | auto | inherit |
Initial: | auto |
Applies to: | all elements but non-replaced inline elements, table rows, and row groups |
Inherited: | no |
Percentages: | refer to width of containing block |
Media: | visual |
Computed value: | the percentage or 'auto' as specified or the absolute length |
This property specifies the content width of boxes.
This property does not apply to non-replaced inline elements. The content width of a non-replaced inline element's boxes is that of the rendered content within them (before any relative offset of children). Recall that inline boxes flow into line boxes. The width of line boxes is given by the their containing block, but may be shorted by the presence of floats.
Values have the following meanings:
Negative values for 'width' are illegal.
For example, the following rule fixes the content width of paragraphs at 100 pixels:
p { width: 100px }
The values of an element's 'width', 'margin-left', 'margin-right', 'left' and 'right' properties as used for layout depend on the type of box generated and on each other. (The value used for layout is sometimes referred to as the used value.) In principle, the values used are the same as the computed values, with 'auto' replaced by some suitable value, and percentages calculated based on the containing block, but there are exceptions. The following situations need to be distinguished:
For Points 1-6 and 9-10, the values of 'left' and 'right' in the case of relatively positioned elements are determined by the rules in section 9.4.3.
The 'width' property does not apply. A computed value of 'auto' for 'margin-left' or 'margin-right' becomes a used value of '0'.
A computed value of 'auto' for 'margin-left' or 'margin-right' becomes a used value of '0'.
If 'height' and 'width' both have computed values of 'auto' and the element also has an intrinsic width, then that intrinsic width is the used value of 'width'.
If 'height' and 'width' both have computed values of 'auto' and the element has no intrinsic width, but does have an intrinsic height and intrinsic ratio; or if 'width' has a computed value of 'auto', 'height' has some other computed value, and the element does have an intrinsic ratio; then the used value of 'width' is:
(used height) * (intrinsic ratio)
If 'height' and 'width' both have computed values of 'auto' and the element has an intrinsic ratio but no intrinsic height or width and the containing block's width does not itself depend on the replaced element's width, then the used value of 'width' is calculated from the constraint equation used for block-level, non-replaced elements in normal flow.
Otherwise, if 'width' has a computed value of 'auto', and the element has an intrinsic width, then that intrinsic width is the used value of 'width'.
Otherwise, if 'width' has a computed value of 'auto', but none of the conditions above are met, then the used value of 'width' becomes 300px. If 300px is too wide to fit the device, UAs should use the width of the largest rectangle that has a 2:1 ratio and fits the device instead.
Percentage intrinsic widths are first evaluated with respect to the containing block's width, if that width does not itself depend on the replaced element's width. If it does, then the resulting layout is undefined in CSS 2.1.
The following constraints must hold among the used values of the other properties:
'margin-left' + 'border-left-width' + 'padding-left' + 'width' + 'padding-right' + 'border-right-width' + 'margin-right' = width of containing block
If 'width' is not 'auto' and 'border-left-width' + 'padding-left' + 'width' + 'padding-right' + 'border-right-width' (plus any of 'margin-left' or 'margin-right' that are not 'auto') is larger than the width of the containing block, then any 'auto' values for 'margin-left' or 'margin-right' are, for the following rules, treated as zero.
If all of the above have a computed value other than 'auto', the values are said to be "over-constrained" and one of the used values will have to be different from its computed value. If the 'direction' property of the containing block has the value 'ltr', the specified value of 'margin-right' is ignored and the value is calculated so as to make the equality true. If the value of 'direction' is 'rtl', this happens to 'margin-left' instead.
If there is exactly one value specified as 'auto', its used value follows from the equality.
If 'width' is set to 'auto', any other 'auto' values become '0' and 'width' follows from the resulting equality.
If both 'margin-left' and 'margin-right' are 'auto', their used values are equal. This horizontally centers the element with respect to the edges of the containing block.
The used value of 'width' is determined as for inline replaced elements. Then the rules for non-replaced block-level elements are applied to determine the margins.
If 'margin-left', or 'margin-right' are computed as 'auto', their used value is '0'.
If 'width' is computed as 'auto', the used value is the "shrink-to-fit" width.
Calculation of the shrink-to-fit width is similar to calculating the width of a table cell using the automatic table layout algorithm. Roughly: calculate the preferred width by formatting the content without breaking lines other than where explicit line breaks occur, and also calculate the preferred minimum width, e.g., by trying all possible line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, find the available width: in this case, this is the width of the containing block minus the used values of 'margin-left', 'border-left-width', 'padding-left', 'padding-right', 'border-right-width', 'margin-right', and the widths of any relevant scroll bars.
Then the shrink-to-fit width is: min(max(preferred minimum width, available width), preferred width).
If 'margin-left' or 'margin-right' are computed as 'auto', their used value is '0'. The used value of 'width' is determined as for inline replaced elements.
For the purposes of this section and the next, the term "static position" (of an element) refers, roughly, to the position an element would have had in the normal flow. More precisely:
But rather than actually calculating the dimensions of that hypothetical box, user agents are free to make a guess at its probable position.
For the purposes of calculating the static position, the containing block of fixed positioned elements is the initial containing block instead of the viewport, and all scrollable boxes should be assumed to be scrolled to their origin.
The constraint that determines the used values for these elements is:
'left' + 'margin-left' + 'border-left-width' + 'padding-left' + 'width' + 'padding-right' + 'border-right-width' + 'margin-right' + 'right' = width of containing block
If all three of 'left', 'width', and 'right' are 'auto': First set any 'auto' values for 'margin-left' and 'margin-right' to 0. Then, if the 'direction' property of the element establishing the static-position containing block is 'ltr' set 'left' to the static position and apply rule number three below; otherwise, set 'right' to the static position and apply rule number one below.
If none of the three is 'auto': If both 'margin-left' and 'margin-right' are 'auto', solve the equation under the extra constraint that the two margins get equal values, unless this would make them negative, in which case when direction of the containing block is 'ltr' ('rtl'), set 'margin-left' ('margin-right') to zero and solve for 'margin-right' ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto', solve the equation for that value. If the values are over-constrained, ignore the value for 'left' (in case the 'direction' property of the containing block is 'rtl') or 'right' (in case 'direction' is 'ltr') and solve for that value.
Otherwise, set 'auto' values for 'margin-left' and 'margin-right' to 0, and pick the one of the following six rules that applies.
Calculation of the shrink-to-fit width is similar to calculating the width of a table cell using the automatic table layout algorithm. Roughly: calculate the preferred width by formatting the content without breaking lines other than where explicit line breaks occur, and also calculate the preferred minimum width, e.g., by trying all possible line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, calculate the available width: this is found by solving for 'width' after setting 'left' (in case 1) or 'right' (in case 3) to 0.
Then the shrink-to-fit width is: min(max(preferred minimum width, available width), preferred width).
In this case, section 10.3.7 applies up through and including the constraint equation, but the rest of section 10.3.7 is replaced by the following rules:
If 'width' is 'auto', the used value is the shrink-to-fit width as for floating elements.
A computed value of 'auto' for 'margin-left' or 'margin-right' becomes a used value of '0'.
Exactly as inline replaced elements.
Value: | <length> | <percentage> | inherit |
Initial: | 0 |
Applies to: | all elements but non-replaced inline elements, table rows, and row groups |
Inherited: | no |
Percentages: | refer to width of containing block |
Media: | visual |
Computed value: | the percentage as specified or the absolute length |
Value: | <length> | <percentage> | none | inherit |
Initial: | none |
Applies to: | all elements but non-replaced inline elements, table rows, and row groups |
Inherited: | no |
Percentages: | refer to width of containing block |
Media: | visual |
Computed value: | the percentage as specified or the absolute length or 'none' |
These two properties allow authors to constrain content widths to a certain range. Values have the following meanings:
Negative values for 'min-width' and 'max-width' are illegal.
The following algorithm describes how the two properties influence the used value of the 'width' property:
These steps do not affect the real computed values of the above properties.
However, for replaced elements with an intrinsic ratio and both 'width' and 'height' specified as 'auto', the algorithm is as follows:
Select from the table the resolved height and width values for the appropriate constraint violation. Take the max-width and max-height as max(min, max) so that min ≤ max holds true. In this table w and h stand for the results of the width and height computations ignoring the 'min-width', 'min-height', 'max-width' and 'max-height' properties. Normally these are the intrinsic width and height, but they may not be in the case of replaced elements with intrinsic ratios.
Note: In cases where an explicit width or height is set and the other dimension is auto, applying a minimum or maximum constraint on the auto side can cause an over-constrained situation. The spec is clear in the behavior but it might not be what the author expects. The CSS3 object-fit property can be used to obtain different results in this situation.
Constraint Violation | Resolved Width | Resolved Height |
---|---|---|
none | w | h |
w > max-width | max-width | max(max-width * h/w, min-height) |
w < min-width | min-width | min(min-width * h/w, max-height) |
h > max-height | max(max-height * w/h, min-width) | max-height |
h < min-height | min(min-height * w/h, max-width) | min-height |
(w > max-width) and (h > max-height), where (max-width/w ≤ max-height/h) | max-width | max(min-height, max-width * h/w) |
(w > max-width) and (h > max-height), where (max-width/w > max-height/h) | max(min-width, max-height * w/h) | max-height |
(w < min-width) and (h < min-height), where (min-width/w ≤ min-height/h) | min(max-width, min-height * w/h) | min-height |
(w < min-width) and (h < min-height), where (min-width/w > min-height/h) | min-width | min(max-height, min-width * h/w) |
(w < min-width) and (h > max-height) | min-width | max-height |
(w > max-width) and (h < min-height) | max-width | min-height |
Then apply the rules under "Calculating widths and margins" above, as if 'width' were computed as this value.
Value: | <length> | <percentage> | auto | inherit |
Initial: | auto |
Applies to: | all elements but non-replaced inline elements, table columns, and column groups |
Inherited: | no |
Percentages: | see prose |
Media: | visual |
Computed value: | the percentage or 'auto' (see prose under <percentage>) or the absolute length |
This property specifies the content height of boxes.
This property does not apply to non-replaced inline elements. See the section on computing heights and margins for non-replaced inline elements for the rules used instead.
Values have the following meanings:
Note that the height of the containing block of an absolutely positioned element is independent of the size of the element itself, and thus a percentage height on such an element can always be resolved. However, it may be that the height is not known until elements that come later in the document have been processed.
Negative values for 'height' are illegal.
For example, the following rule sets the content height of paragraphs to 100 pixels:
p { height: 100px }
Paragraphs of which the height of the contents exceeds 100 pixels will overflow according to the 'overflow' property.
For calculating the values of 'top', 'margin-top', 'height', 'margin-bottom', and 'bottom' a distinction must be made between various kinds of boxes:
For Points 1-6 and 9-10, the used values of 'top' and 'bottom' are determined by the rules in section 9.4.3.
Note: these rules apply to the root element just as to any other element.
The 'height' property does not apply. The height of the content area should be based on the font, but this specification does not specify how. A UA may, e.g., use the em-box or the maximum ascender and descender of the font. (The latter would ensure that glyphs with parts above or below the em-box still fall within the content area, but leads to differently sized boxes for different fonts; the former would ensure authors can control background styling relative to the 'line-height', but leads to glyphs painting outside their content area.)
Note: level 3 of CSS will probably include a property to select which measure of the font is used for the content height.
The vertical padding, border and margin of an inline, non-replaced box start at the top and bottom of the content area, not the 'line-height'. But only the 'line-height' is used when calculating the height of the line box.
If more than one font is used (this could happen when glyphs are found in different fonts), the height of the content area is not defined by this specification. However, we suggest that the height is chosen such that the content area is just high enough for either (1) the em-boxes, or (2) the maximum ascenders and descenders, of all the fonts in the element. Note that this may be larger than any of the font sizes involved, depending on the baseline alignment of the fonts.
If 'margin-top', or 'margin-bottom' are 'auto', their used value is 0.
If 'height' and 'width' both have computed values of 'auto' and the element also has an intrinsic height, then that intrinsic height is the used value of 'height'.
Otherwise, if 'height' has a computed value of 'auto', and the element has an intrinsic ratio then the used value of 'height' is:
(used width) / (intrinsic ratio)
Otherwise, if 'height' has a computed value of 'auto', and the element has an intrinsic height, then that intrinsic height is the used value of 'height'.
Otherwise, if 'height' has a computed value of 'auto', but none of the conditions above are met, then the used value of 'height' must be set to the height of the largest rectangle that has a 2:1 ratio, has a height not greater than 150px, and has a width not greater than the device width.
Percentage intrinsic heights are evaluated with respect to the containing block's height, if that height is specified explicitly, or if the replaced element is absolutely positioned. If neither of these conditions is met, then percentage values on such replaced elements cannot be resolved and such elements are assumed to have no intrinsic height.
For 'inline' and 'inline-block' elements, the margin box is used when calculating the height of the line box.
This section also applies to block-level non-replaced elements in normal flow when 'overflow' does not compute to 'visible' but has been propagated to the viewport.
If 'margin-top', or 'margin-bottom' are 'auto', their used value is 0. If 'height' is 'auto', the height depends on whether the element has any block-level children and whether it has padding or borders:
If it only has inline-level children, the height is the distance between the top of the topmost line box and the bottom of the bottommost line box.
If it has block-level children, the height is the distance between the top border-edge of the topmost block-level child box that does not have margins collapsed through it and the bottom border-edge of the bottommost block-level child box that does not have margins collapsed through it. However, if the element has a non-zero top padding and/or top border, or is the root element, then the content starts at the top margin edge of the topmost child. (The first case expresses the fact that the top and bottom margins of the element collapse with those of the topmost and bottommost children, while in the second case the presence of the padding/border prevents the top margins from collapsing.) Similarly, if the bottom margin of the block does not collapse with the bottom margin of its last in-flow child, then the content ends at the bottom margin edge of the bottommost child.
Only children in the normal flow are taken into account (i.e., floating boxes and absolutely positioned boxes are ignored, and relatively positioned boxes are considered without their offset). Note that the child box may be an anonymous block box.
For the purposes of this section and the next, the term "static position" (of an element) refers, roughly, to the position an element would have had in the normal flow. More precisely, the static position for 'top' is the distance from the top edge of the containing block to the top margin edge of a hypothetical box that would have been the first box of the element if its specified 'position' value had been 'static' and its specified 'float' had been 'none' and its specified 'clear' had been 'none'. (Note that due to the rules in section 9.7 this might require also assuming a different computed value for 'display'.) The value is negative if the hypothetical box is above the containing block.
But rather than actually calculating the dimensions of that hypothetical box, user agents are free to make a guess at its probable position.
For the purposes of calculating the static position, the containing block of fixed positioned elements is the initial containing block instead of the viewport.
For absolutely positioned elements, the used values of the vertical dimensions must satisfy this constraint:
'top' + 'margin-top' + 'border-top-width' + 'padding-top' + 'height' + 'padding-bottom' + 'border-bottom-width' + 'margin-bottom' + 'bottom' = height of containing block
If all three of 'top', 'height', and 'bottom' are auto, set 'top' to the static position and apply rule number three below.
If none of the three are 'auto': If both 'margin-top' and 'margin-bottom' are 'auto', solve the equation under the extra constraint that the two margins get equal values. If one of 'margin-top' or 'margin-bottom' is 'auto', solve the equation for that value. If the values are over-constrained, ignore the value for 'bottom' and solve for that value.
Otherwise, pick the one of the following six rules that applies.
This situation is similar to the previous one, except that the element has an intrinsic height. The sequence of substitutions is now:
This section applies to:
If 'margin-top', or 'margin-bottom' are 'auto', their used value is 0. If 'height' is 'auto', the height depends on the element's descendants per 10.6.7.
For 'inline-block' elements, the margin box is used when calculating the height of the line box.
In certain cases (see, e.g., sections 10.6.4 and 10.6.6 above), the height of an element that establishes a block formatting context is computed as follows:
If it only has inline-level children, the height is the distance between the top of the topmost line box and the bottom of the bottommost line box.
If it has block-level children, the height is the distance between the top margin-edge of the topmost block-level child box and the bottom margin-edge of the bottommost block-level child box.
Absolutely positioned children are ignored, and relatively positioned boxes are considered without their offset. Note that the child box may be an anonymous block box.
In addition, if the element has any floating descendants whose bottom margin edge is below the element's bottom content edge, then the height is increased to include those edges. Only floats that participate in this block formatting context are taken into account, e.g., floats inside absolutely positioned descendants or other floats are not.
It is sometimes useful to constrain the height of elements to a certain range. Two properties offer this functionality:
Value: | <length> | <percentage> | inherit |
Initial: | 0 |
Applies to: | all elements but non-replaced inline elements, table columns, and column groups |
Inherited: | no |
Percentages: | see prose |
Media: | visual |
Computed value: | the percentage as specified or the absolute length |
Value: | <length> | <percentage> | none | inherit |
Initial: | none |
Applies to: | all elements but non-replaced inline elements, table columns, and column groups |
Inherited: | no |
Percentages: | see prose |
Media: | visual |
Computed value: | the percentage as specified or the absolute length or 'none' |
These two properties allow authors to constrain box heights to a certain range. Values have the following meanings:
Negative values for 'min-height' and 'max-height' are illegal.
In CSS 2.1, the effect of 'min-height' and 'max-height' on table cells, table rows, and row groups is undefined.
The following algorithm describes how the two properties influence the used value of the 'height' property:
These steps do not affect the real computed values of the above properties. The change of used 'height' has no effect on margin collapsing except as specifically required by rules for 'min-height' or 'max-height' in "Collapsing margins" (8.3.1).
However, for replaced elements with both 'width' and 'height' computed as 'auto', use the algorithm under Minimum and maximum widths above to find the used width and height. Then apply the rules under "Computing heights and margins" above, using the resulting width and height as if they were the computed values.
As described in the section on inline formatting contexts, user agents flow inline-level boxes into a vertical stack of line boxes. The height of a line box is determined as follows:
Empty inline elements generate empty inline boxes, but these boxes still have margins, padding, borders and a line height, and thus influence these calculations just like elements with content.
CSS assumes that every font has font metrics that specify a characteristic height above the baseline and a depth below it. In this section we use A to mean that height (for a given font at a given size) and D the depth. We also define AD = A + D, the distance from the top to the bottom. (See the note below for how to find A and D for TrueType and OpenType fonts.) Note that these are metrics of the font as a whole and need not correspond to the ascender and descender of any individual glyph.
User agent must align the glyphs in a non-replaced inline box to each other by their relevant baselines, and to nested inline boxes according to 'vertical-align'. Then, for each glyph, determine the A and D. Note that glyphs in a single element may come from different fonts and thus need not all have the same A and D. If the inline box contains no glyphs at all, it is considered to contain a strut (an invisible glyph of zero width) with the A and D of the element's first available font.
Still for each glyph, determine the leading L to add, where L = line-height - AD. Half the leading is added above A and the other half below D, giving the glyph and its leading a total height above the baseline of A' = A + L/2 and a total depth of D' = D + L/2.
The height of the inline box is then the smallest such that it encloses all glyphs and their leading, as well as all nested inline boxes.
Although margins, borders, and padding of non-replaced elements do not enter into the line box calculation, they are still rendered around inline boxes. This means that if the height specified by 'line-height' is less than the content height of contained boxes, backgrounds and colors of padding and borders may "bleed" into adjoining line boxes. User agents should render the boxes in document order. This will cause the borders on subsequent lines to paint over the borders and text of previous lines.
Note. CSS 2.1 does not define what the content area of an inline box is (see 10.6.1 above) and thus different UAs may draw the backgrounds and borders in different places.
Note. It is recommended that implementations that use OpenType or TrueType fonts use the metrics "sTypoAscender" and "sTypoDescender" from the font's OS/2 table for A and D (after scaling to the current element's font size). In the absence of these metrics, the "Ascent" and "Descent" metrics from the HHEA table should be used.
Value: | normal | <number> | <length> | <percentage> | inherit |
Initial: | normal |
Applies to: | all elements |
Inherited: | yes |
Percentages: | refer to the font size of the element itself |
Media: | visual |
Computed value: | for <length> and <percentage> the absolute value; otherwise as specified |
On a block container element whose content is composed of inline-level elements, 'line-height' specifies the minimal height of line boxes within the element. The minimum height consists of a minimum height above the baseline and a minimum depth below it, exactly as if each line box starts with a zero-width inline box with the element's font and line height properties. We call that imaginary box a "strut." (The name is inspired by TeX.).
The height and depth of the font above and below the baseline are assumed to be metrics that are contained in the font. (For more details, see CSS level 3.)
On an inline-level element, 'line-height' specifies the height that is used in the calculation of the line box height (except for inline replaced elements, where the height of the box is given by the 'height' property).
Values for this property have the following meanings:
The three rules in the example below have the same resultant line height:
div { line-height: 1.2; font-size: 10pt } /* number */ div { line-height: 1.2em; font-size: 10pt } /* length */ div { line-height: 120%; font-size: 10pt } /* percentage */
When an element contains text that is rendered in more than one font, user agents may determine the 'normal' 'line-height' value according to the largest font size.
Generally, when there is only one value of 'line-height' for all inline boxes in a block-level box (and no replaced elements, inline-block elements, etc.), the above will ensure that baselines of successive lines are exactly 'line-height' apart. This is important when columns of text in different fonts have to be aligned, for example in a table.
Value: | baseline | sub | super | top | text-top | middle | bottom | text-bottom | <percentage> | <length> | inherit |
Initial: | baseline |
Applies to: | inline-level and 'table-cell' elements |
Inherited: | no |
Percentages: | refer to the 'line-height' of the element itself |
Media: | visual |
Computed value: | for <percentage> and <length> the absolute length, otherwise as specified |
This property affects the vertical positioning inside a line box of the boxes generated by an inline-level element.
Note. Values of this property have different meanings in the context of tables. Please consult the section on table height algorithms for details.
The following values only have meaning with respect to a parent inline element, or to the strut of a parent block container element.
The following values align the element relative to the line box. Since the element may have children aligned relative to it (which in turn may have descendants aligned relative to them), these values use the bounds of the aligned subtree. The aligned subtree of an inline element contains that element and the aligned subtrees of all children inline elements whose computed 'vertical-align' value is not 'top' or 'bottom'. The top of the aligned subtree is the highest of the tops of the boxes in the subtree, and the bottom is analogous.
The baseline of an 'inline-table' is the baseline of the first row of the table.
The baseline of an 'inline-block' is the baseline of its last line box in the normal flow, unless it has either no in-flow line boxes or if its 'overflow' property has a computed value other than 'visible', in which case the baseline is the bottom margin edge.