o
o
(@]
g
=7
S
S
)
oM
S

WaC

Scalable Vector Graphics (SVG) 1.1 (Second Edition)

W3C Working Draft 12 May 2011

This version:
http://www.w3.0rg/TR/2011/WD-SVG11-20110512/

Latest version:
http://www.w3.0rg/TR/SVG11/

Previous version:
http://www.w3.0rg/TR/2010/WD-SVG11-20100622/

Public comments:
www-svg@w3.org (archive)

Editors:
Erik Dahlstrom, Opera Software - ed@opera.com
Patrick Dengler, Microsoft Corporation - patd @microsoft.com
Anthony Grasso, Canon Inc. - anthony.grasso@cisra.canon.com.au
Chris Lilley, W3C - chris@w3.org
Cameron McCormack, Mozilla Corporation - cam@mcc.id.au
Doug Schepers, W3C - schepers@w3.org
Jonathan Watt, Mozilla Corporation - jwatt@jwatt.org

Jon Ferraiolo, ex Adobe Systems - jferrai@us.ibm.com Versions 1.0 and 1.1 First Edition; until 10 May 2006
IR 7% (FUJISAWA Jun), Canon Inc. - fujisawa.jun@canon.co.jp Version 1.1 First Edition
Dean Jackson, ex W3C - dean@w3.org Version 1.1 First Edition; until February 2007

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: a single-page version and a PDF. See also trans-
lations, noting that the English version of this specification is the only normative version.

Copyright © 2011 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2011/WD-SVG11-20110512/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/2010/WD-SVG11-20100622/
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
mailto:ed@opera.com
mailto:patd@microsoft.com
mailto:anthony.grasso@cisra.canon.com.au
mailto:chris@w3.org
mailto:cam@mcc.id.au
mailto:schepers@w3.org
mailto:jwatt@jwatt.org
mailto:jferrai@us.ibm.com
mailto:fujisawa.jun@canon.co.jp
mailto:dean@w3.org
http://www.w3.org/Graphics/SVG/svg-updates/translations
http://www.w3.org/Graphics/SVG/svg-updates/translations
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

o
o
(@]
g
=7
S
S
)
oM
S

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG) Version 1.1, a modularized
language for describing two-dimensional vector and mixed vector/raster graphics in XML.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current W3C publications and the latest revision of this technical report can be found in
the W3C technical reports index at http://www.w3.org/TR/.

This document is the 12 May 2011 Working Draft of the SVG 1.1 Second Edition specification. The Second Edition
incorporates a number of corrections that were published as errata against the First Edition, as well as numerous
other changes that help make the specification more readable and unambiguous. The Changes appendix lists all
of the changes that were made since the first Last Call Working Draft publication of the Second Edition. For the
changes made between the First Edition and the Second Edition Working Draft, see that document's Changes ap-
pendix.

Comments on this Last Call Working Draft are welcome. This Last Call ends on 2 June 2011. The document
has been republished as a Last Call Working Draft primarily for the community to validate changes we have made
in response to previous Last Call comments. The Working Group expects to progress this document to Proposed
Recommandation after the Last Call comment period, and is not expecting to make substantive corrections. New
issues raised against the document will be handled as errata and subsequently incorporated into future editions
of SVG 1.1 or into SVG 2.0. Comments can be sent to www-svg@w3.org, the public email list for issues related to
vector graphics on the Web. This list is archived and senders must agree to have their message publicly archived
from their first posting. To subscribe send an email to www-svg-request@w3.org with the word subscribe in the
subject line.

The W3C SVG Working Group has released an expanded test suite for SVG 1.1 along with an implementation
report. This test suite will continue to be updated with new tests to improve interoperability even after Recom-
mendation phase.

This document has been produced by the W3C SVG Working Group as part of the Graphics Activity within
the W3C Interaction Domain. The goals of the W3C SVG Working Group are discussed in the W3C SVG Charter.
The W3C SVG Working Group maintains a public Web page, http://www.w3.0rg/Graphics/SVG/, that contains fur-
ther background information. The authors of this document are the SVG Working Group participants.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C main-
tains a public list of any patent disclosures made in connection with the deliverables of the group; that page also
includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the indi-
vidual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

A list of current W3C Recommendations and other technical documents can be found at http://www.w3.org/
TR/. W3C publications may be updated, replaced, or obsoleted by other documents at any time.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft docu-

http://www.w3.org/TR/
http://www.w3.org/2003/01/REC-SVG11-20030114-errata
http://www.w3.org/TR/2010/WD-SVG11-20100622/changes.html
http://www.w3.org/TR/2010/WD-SVG11-20100622/changes.html
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
mailto:www-svg-request@w3.org
http://dev.w3.org/SVG/profiles/1.1F2/test/harness/index.html
http://dev.w3.org/SVG/profiles/1.1F2/test/status/implementation_matrix.html
http://dev.w3.org/SVG/profiles/1.1F2/test/status/implementation_matrix.html
http://www.w3.org/Graphics/SVG/WG
http://www.w3.org/Graphics/Activity
http://www.w3.org/Interaction/
http://www.w3.org/2007/11/SVG_rechartering/SVG-WG-charter.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/19480/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/TR/
http://www.w3.org/TR/

o
o
(@]
g
=7
S
S
)
oM
S

ment and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

Available languages

The English version of this specification is the only normative version. However, for translations in other lan-
guages see http://www.w3.org/Graphics/SVG/svg-updates/translations.html.

Acknowledgments

The SVG Working Group would like to thank the following people for contributing to this specification by raising
issues that resulted in errata that were folded in to this document: Tavmjong Bah, Brian Birtles, Tolga Capin,
Alex Danilo, Thomas DeWeese, Alexey Feldgendler, Vincent Hardy, lan Hickson, Olaf Hoffmann, Daniel Holbert,
Oliver Hunt, Anne van Kesteren, Takeshi Kurosawa, Paul Libbrecht, Robert Longson, Helder Magalhaes, Robert
O’Callahan, Olli Pettay, Antoine Quint, Kalle Raita, Tim Rowley, Peter Sorotokin, Henry S. Thompson, Jasper van
de Gronde, Mohamed Zergaoui, Boris Zbarsky.

In addition, the SVG Working Group would like to acknowledge the contributions of the editors and authors
of SVG 1.0 and SVG 1.1 (First Edition), as much of the text in this document derives from these earlier versions of
the SVG specification.

Finally, the SVG Working Group would like to acknowledge the great many people outside of the SVG Work-
ing Group who help with the process of developing the SVG specifications. These people are too numerous to list
individually. They include but are not limited to the early implementers of the SVG 1.0 and 1.1 languages (in-
cluding viewers, authoring tools, and server-side transcoders), developers of SVG content, people who have con-
tributed on the www-svg@w3.org and svg-developers @yahoogroups.com email lists, other Working Groups at the
W3C, and the W3C Team. SVG 1.1 is truly a cooperative effort between the SVG Working Group, the rest of the
W3C, and the public and benefits greatly from the pioneering work of early implementers and content developers,
feedback from the public, and help from the W3C team.

http://www.w3.org/Graphics/SVG/svg-updates/translations.html
http://www.w3.org/TR/2001/REC-SVG-20010904/
http://www.w3.org/TR/2003/REC-SVG11-20030114/

Table of Contents

o
o
(@]
g
=7
S
S
)
oM
S

1 Introduction

L1 ADOUL SVG . L oo 20
1.2 SVG MIME type, file name extension and Macintosh file type............. 20
1.3 SVG Namespace, Public Identifier and System Identifier 21
1.4 Compatibility with Other Standards Efforts............... 21
1.5 Terminology. . . . oo oottt ettt e 22
1.6 DefIntionS oo o 23
2 Concepts
2.1 Explaining the name: SVG 29
2.2 Important SVG CONCEPLS. 30
2.3 Options for using SVG in Web pages. 31
3 Rendering Model

3.1 INtroduction. 33
3.2 The painters model 33
3.3 Rendering Order 33
3.4 How groups are rendered 34
3.5 How elements are rendered o 34
3.6 Types of graphics elements. 34

3.6.1 Painting shapes and text 34

3.6.2 Painting raster images. 35
3.7 Filtering painted reions. 35
3.8 Clipping, masking and object opacity 35
3.9 Parent Compositing.t 36

4 Basic Data Types and Interfaces

4.1 SYIEAX. . ot 84
4.2 BasiC data tyPes. . .. v vttt 84
4.3 Real number precision 89
4.4 Recognized color keyword namest 89
4.5Basic DOM INterfacesot 92
4.5.1 Interface SVGElement oottt 92
4.5.2 Interface SVGAnimatedBoolean. 93
4.5.3 Interface SVGAnimatedString i 93
4.5.4 Interface SVGStringList. 9%
4.5.5 Interface SVGAnimatedEnumeration. i i i i 97
4.5.6 Interface SVGAnimatedInteger.t 98

4.5.7 Interface SVGNUIMDETot e e e e e e e 98

o
o
(@]
g
=7
S
S
)
oM
S

4.5.8 Interface SVGAnimatedNumber. 99
4.5.9 Interface SVGNumberList 99
4.5.10 Interface SVGAnimatedNumberList. 103
4.5.11 Interface SVGLengtho 103
4.5.12 Interface SVGAnimatedLength. 107
4.5.13 Interface SVGLengthList o i 108
4.5.14 Interface SVGAnimatedLengthList. i 111
4.5.15 Interface SVGANgle 112
4.5.16 Interface SVGAnimatedAngle. 115
4.5.17 Interface SVGCOIOT\t e 115
4.5.18 Interface SVGICCCOIOTottt e e e 118
4.5.19 Interface SVGRECEot 118
4.5.20 Interface SVGAnimatedRect 119
4.5.21 Interface SVGUNItTYPesot e 120
4.5.22 Interface SVGStylable 120
4.5.23 Interface SVGLocatable i 121
4.5.24 Interface SVGTransformable. 123
4525 Interface SVGTEStSottt et e e e 124
4.5.26 Interface SVGLANGSPACE . . .« oottt ettt et 124
4.5.27 Interface SVGExternalResourcesRequired 125
4.5.28 Interface SVGFItToOVIeWBOXo 126
4.5.29 Interface SVGZoomANdPan i 126
4.5.30 Interface SVGVIEWSPEC. . .« oottt 127
4.5.31 Interface SVGURIRELEIeNcettt e 128
4.5.32 Interface SVGCSSRULE.ot 128
4.5.33 Interface SVGRenderingIntent 128

5 Document Structure

5.1 Defining an SVG document fragment: the ‘svg’ element. L. 38
5.1 L OVEIVIEW .ot ittt ettt et e e e e 38
5.1.2 The ‘svg’ element 39

5.2 Grouping: the ‘g’ element. 42
5.2.1 OVEIVIEW . o\ ittt ettt et e e e e 42
5.2.2The ‘g element. o 43

5.3 Defining content for reuse, and the ‘defs’ element. L. 44
5.3.1 OVIVIEW . ottt ittt et e ettt e e e e e e 44
5.3.2 The ‘defs” element i 44

5.4 The ‘desc’ and ‘title’ elements. 46

5.5 The ‘symbol’ €lement.ttt ettt e e e e e 48

5.6 The ‘use’” €lement. e 50

5.7 The ‘image’ €lement.ttt ettt et e e e e 57

5.8 Conditional PrOCESSIE v v vttt 59

o
o
(@]
g
=7
S
S
)
oM
S

5.8.1 Conditional processing overview 59
5.8.2 The ‘switch’ element e 60
5.8.3 The ‘requiredFeatures’ attribute i 61
5.8.4 The ‘requiredExtensions’ attribute 61
5.8.5 The ‘systemLanguage’ attribute.ottt 62
5.8.6 Applicability of test attributes 63
5.9 Specifying whether external resources are required for proper rendering. 63
5.10 Common attributes o e 64
5.10.1 Attributes common to all elements: id’ and ‘xml:base’.t 64
5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes 64
511 DOM NI ACES . . . o oo vttt et et 65
5.11.1 Interface SVGDOCUIMENT\ttt ettt e ettt 65
5.11.2 Interface SVGSVGElement 66
5.11.3 Interface SVGGElement. o i 76
5.11.4 Interface SVGDefsElement i 76
5.11.5 Interface SVGDescElementttt 76
5.11.6 Interface SVGTitleElement oo o 76
5.11.7 Interface SVGSymbolElement. 77
5.11.8 Interface SVGUseElement oo i 77
5.11.9 Interface SVGElementInstancettt 78
5.11.10 Interface SVGElementInstanceList o it 80
5.11.11 Interface SVGImageElement o o it 80
5.11.12 Interface SVGSwitchElement o 81
5.11.13 Interface GetSVGDOCUMENLottt ettt e ettt 81
6 Styling
6.1 SVG's styling propertiesttt 130
6.2 Usage scenarios for styling. 132
6.3 Alternative ways to specify styling properties 133
6.4 Specifying properties using the presentation attributes. 133
6.5 Styling with XSL o 135
6.6 Styling with CSS 136
6.7 Case sensitivity of property names and values. i 138
6.8 Facilities from CSS and XSL used by SVG 138
6.9 Referencing external style sheets. i i i i i 139
6.10 The ‘style’ €lement.ttt 139
6.11 The “class” attribute 140
6.12 The ‘style’ attribUte oot e 141
6.13 Specifying the default style sheet language i 141
6.14 Property inheritance 142
6.15 The scope/range of StYleso 142

6.16 User agent style sheet o 143

6.17 Aural style sheets 143
6.18 DOM INterfaceso 145
6.18.1 Interface SVGStyleElement 145

o
o
(@]
g
=7
S
S
)
oM
S

7 Coordinate Systems, Transformations and Units

7 INtrOdUCHION vt 146
7.2 The initial VIEWDOTL. oo o 147
7.3 The initial coordinate SyStem.t 148
7.4 Coordinate system transformations. 149
7.5 Nested transformations.o oot 154
7.6 The ‘transform’ attribute. 156
7.7 The ‘viewBox” attribute. 159
7.8 The ‘preserveAspectRatio’ attribute i 161
7.9 Establishing a new VIEWpPOIt o o 164
T A0 UnES . . oottt e e 165
7.11 Object bounding box Units. oo 168
7.12 Intrinsic sizing properties of the viewport of SVG content L. 170
7.13 Geographic coordinate SYStEIMS vuut i 172
7.14 The ‘svg:itransform’ attribute. e 172
715 DOM INErfaceso oottt 176
7.15.1 Interface SVGPOINL.o oot 176
7.15.2 Interface SVGPOINtLISto o 177
7.15.3 Interface SVGMALTiXottt e 181
7.15.4 Interface SVGTransform 186
7.15.5 Interface SVGTransformListt e 190
7.15.6 Interface SVGAnimatedTransformList. e 195
7.15.7 Interface SVGPreserve AspectRatio.ttt 195
7.15.8 Interface SVGAnimatedPreserve AspectRatio 197
8 Paths
8.1 INtrodUCtiONt 200
8.2 The ‘path’ €lement. 200
83 Path data 201
8.3.1 General information about path data. 201
8.3.2 The "moveto” commandsttt 203
8.3.3 The "closepath” command 203
8.3.4 The "lineto” commandsottt 204
8.3.5 The curve commands. oottt 204
8.3.6 The cubic Bézier curve commands. oottt 204
8.3.7 The quadratic Bézier curve commands 207
8.3.8 The elliptical arc curve commands. i 208

8.3.9 The grammar for path data. 210

o
o
(@]
g
=7
S
S
)
oM
S

8.4 Distance alongapath 213
8.5 DOM INEEITACES v 213
8.5.1 Interface SVGPathSeg 213
8.5.2 Interface SVGPathSegClosePath. 216
8.5.3 Interface SVGPathSegMovetoAbs. 216
8.5.4 Interface SVGPathSegMovetoRel 217
8.5.5 Interface SVGPathSegLinetoAbs.t 217
8.5.6 Interface SVGPathSegLinetoRel 218
8.5.7 Interface SVGPathSegCurvetoCubicAbso i i i 219
8.5.8 Interface SVGPathSegCurvetoCubicRel. o i i 220
8.5.9 Interface SVGPathSegCurvetoQuadraticAbs. i i 222
8.5.10 Interface SVGPathSegCurvetoQuadraticRel, 223
8.5.11 Interface SVGPathSegAICADSst 224
8.5.12 Interface SVGPathSegArcRel. 226
8.5.13 Interface SVGPathSegLinetoHorizontalAbs. i i i 228
8.5.14 Interface SVGPathSegLinetoHorizontalRel o i i i 228
8.5.15 Interface SVGPathSegLinetoVerticalAbs i i 228
8.5.16 Interface SVGPathSegLinetoVerticalRel........... 229
8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs. oo i i 229
8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel 230
8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs 232
8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel o L. 232
8.5.21 Interface SVGPathSegList it 233
8.5.22 Interface SVGAnimatedPathData. 237
8.5.23 Interface SVGPathElemento 238

9 Basic Shapes

9.1 INtrodUCHION\ttt e e e 249
9.2 The ‘rect’ €lement 250
9.3 The ‘circle’ €lement 253
9.4 The “ellipse’ €lEMENLtttt e e e 255
9.5 The ‘line’ element 257
9.6 The ‘polyline’ €lement. ittt e e e e 259
9.7 The ‘polygon’ element. i 260
9.7.1 The grammar for points specifications in ‘polyline’ and ‘polygon’ elements 262
9.8 DOM INErfaCESot 263
9.8.1 Interface SVGRectElement 263
9.8.2 Interface SVGCircleElement i 264
9.8.3 Interface SVGEllipseElement 265
9.8.4 Interface SVGLINeElement it 265
9.8.5 Interface SVGAnimatedPoints e 266

9.8.6 Interface SVGPolylineElement 267

o
o
(@]
g
=7
S
S
)
oM
S

9.8.7 Interface SVGPolygonElementt 267
10 Text
10.1 Introductiono 269
10.2 Characters and their corresponding glyphs 270
10.3 Fonts, font tables and baselinesottt 271
10.4 The ‘text’ €lemento . 272
10.5 The ‘tspan’ €lement ot 276
10.6 The ‘tref” €lement 287
10.7 Text LayOUL . . oo oottt 288
10.7.1 Text layout introduction 288
10.7.2 Setting the inline-progression-direction.c.coiiiiiiiiiii ... 290
10.7.3 Glyph orientation within a textrun.......... i 291
10.7.4 Relationship with bidirectionality i 294
10.8 Text rendering order 296
10.9 AlIgNment PrOPETLIESo v vttt et 296
10.9.1 Text alignment Propertiesttt 296
10.9.2 Baseline alignment properties.uuuetiti ittt 297
10.10 Font selection properties.ttt 305
10.11 Spacing Properties 308
10.12 Text deCOTationttt et ettt e e e e e 310
10.13 Text on a patho 312
10.13.1 Introduction to text onapath. 312
10.13.2 The “textPath’ elementttt 312
10.13.3 Text on a path layout rules 317
10.14 Alternate glyphsot 320
10.14.1 The ‘altGlyph’ element.t e e 320
10.14.2 The “altGlyphDef’, “altGlyphltem’ and ‘glyphRef” elements 323
10.15 White space handling 326
10.16 Text selection and clipboard operationsuuut e 328
10.17 DOM INterfaces oo o ot 329
10.17.1 Interface SVGTextContentElement. i 329
10.17.2 Interface SVGTextPositioningElement 334
10.17.3 Interface SVGTextElement. o 335
10.17.4 Interface SVGTSpanElement. i 335
10.17.5 Interface SVGTRefElementot 335
10.17.6 Interface SVGTextPathElement. o i i i i 335
10.17.7 Interface SVGAItGlyphElement i i i 337
10.17.8 Interface SVGAItGlyphDefElement i 337
10.17.9 Interface SVGAItGlyphltemElement 337

10.17.10 Interface SVGGlyphRefElemento i, 338

o
o
(@]
g
=7
S
S
)
oM
S

11 Painting: Filling, Stroking and Marker Symbols

111 IntrodUuction oot 340
11.2 Specifying paint.ot 341
113 Fill Properties.ottt e 342
11.4 Stroke Properties oo 344
11.5 Controlling visibilityo 348
11.6 MArKeTS . . oo 350
11.6.1 Introductionot 350
11.6.2 The ‘marker’ element 351
11.6.3 Marker Properties.t 355
11.6.4 Details on how markers are rendered i il 356
11.7 Rendering properties.o e 358
11.7.1 Color interpolation properties: ‘color-interpolation’ and ‘color-interpolation-filters’. 358
11.7.2 The ‘color-rendering’ PrOPEeItYttt e 360
11.7.3 The ‘shape-rendering’ PrOPertyuoeitttettttet ettt 361
11.7.4 The ‘text-rendering’ PrOPEItYottt 362
11.7.5 The ‘image-rendering’ Property.ttt 362
11.8 Inheritance of painting Properties e 363
11.9 DOM INEErfaces oo oot 364
11.9.1 Interface SVGPaINt.o 364
11.9.2 Interface SVGMarkerElement i 367
12 Color
12,1 INtrodUCHION . .« oot 370
12.2 The “COlor PIOPEITY oottt ettt e e e e e e e e e e e e e e e 370
12.3 Color profile descriptions 371
12.3.1 Overview of color profile descriptions., 371
12.3.2 Alternative ways of defining a color profile description 371
12.3.3 The ‘color-profile’ element.t e 371
12.3.4 The CSS @color-profile rule. i 373
12.3.5 The ‘color-profile’ PrOPertyt e 375
12.4 DOM INEITACES . .« o oottt et e e e e e e e e e e 376
12.4.1 Interface SVGColorProfileElement. i 376
12.4.2 Interface SVGColorProfileRule 376

13 Gradients and Patterns

13.1 Introduction 378
13.2 Gradients 378
13.2.1 Introductiono 378
13.2.2 Linear gradientsttt 379
13.2.3 Radial gradients 383

13.2.4 Gradient StOPSo ottt et 386

o
o
(@]
g
=7
S
S
)
oM
S

133 Patterns. . ..o 388
13.4 DOM INterfaceso 393
13.4.1 Interface SVGGradientElement. 393
13.4.2 Interface SVGLinearGradientElement i 394
13.4.3 Interface SVGRadialGradientElement i 395
13.4.4 Interface SVGStopElement 396
13.4.5 Interface SVGPatternElement i 396

14 Clipping, Masking and Compositing

14.1Introductiono 398
14.2 Simple alpha compositing. o 398
14.3 CLppIng pathiso oo 399
14.3.1 Introduction 399
14.3.2 The initial clipping path 399
14.3.3 The ‘overflow’ and ‘clip” Propertiesttt 400
14.3.4 Clip to viewport vs. clip t0 ‘VIeWBOX\ttt 401
14.3.5 Establishing a new clipping path: the ‘clipPath’ element 401
14.3.6 Clipping paths, geometry, and pointer events.c.cooiiiiiiiiiineeneenn .. 404
14.4 MasKingo oo 405
14.5 Object and group opacity: the ‘opacity” property 409
14.6 DOM INterfaceso 411
14.6.1 Interface SVGClipPathElement. i, 411
14.6.2 Interface SVGMaskElement. 412

15 Filter Effects

15.1 Introduction . . .« oo 415
15.2 AN EXAIMPLE . . o oottt e 416
15.3 The “filter’ €lementttt e 418
15.4 The “filter’ PrOPertyttt et e 420
15.5 Filter effects regiono o 421
15.6 Accessing the background image. 422
15.7 Filter primitives OVEIVIEW.o e 426
15.7. 1 OVEIVIEW . oottt ettt e e et e 426
15.7.2 Common attributes 426
15.7.3 Filter primitive subregion 428
15.8 Light source elements and properties 431
15.8.1 INtroductionot 431
15.8.2 Light source ‘feDistantLight’ttt 431
15.8.3 Light source “fePointLight’.ttt 432
15.8.4 Light source ‘feSpotLight’ttt 433
15.8.5 The Tighting-color’ PrOPEItYttt e 435

15.9 Filter primitive “feBlend’ e 435

o
o
(@]
g
=7
S
S
)
oM
S

15.10 Filter primitive ‘feColorMatrix’.ot 438
15.11 Filter primitive ‘feComponentTransfer’uuuu e, 441
15.12 Filter primitive ‘feComposite’t 447
15.13 Filter primitive ‘feConvolveMatrix’o.uutt ittt 452
15.14 Filter primitive “feDiffuseLighting’ it 456
15.15 Filter primitive ‘feDisplacementMap’ttt ettt 460
15.16 Filter primitive “feFlood’ 462
15.17 Filter primitive ‘feGaussianBIur’. oot 463
15.18 Filter primitive ‘felmage’. 465
15.19 Filter primitive FeMerge’.ottt e e 467
15.20 Filter primitive ‘feMorphology’. 468
15.21 Filter primitive FeOffset’. oot e 470
15.22 Filter primitive ‘feSpecularLighting’t 472
15.23 Filter primitive FeTile’.t 474
15.24 Filter primitive ‘feTurbulence’. 475
15.25 DOM INEEITACESot vttt ettt et 481
15.25.1 Interface SVGFilterElement. oo 481
15.25.2 Interface SVGFilterPrimitiveStandardAttributes. oo 482
15.25.3 Interface SVGFEBlendElemento i 483
15.25.4 Interface SVGFEColorMatrixElement oo, 484
15.25.5 Interface SVGFEComponentTransferElement o o i i it 486
15.25.6 Interface SVGComponentTransferFunctionElement. 486
15.25.7 Interface SVGFEFuncRElement.t 488
15.25.8 Interface SVGFEFuncGElement i i i i i 488
15.25.9 Interface SVGFEFuncBElement.o i i 488
15.25.10 Interface SVGFEFuncAElementttt 488
15.25.11 Interface SVGFECompositeElement 488
15.25.12 Interface SVGFEConvolveMatrixElemento i, 490
15.25.13 Interface SVGFEDiffuseLightingElement. i i ... 492
15.25.14 Interface SVGFEDistantLightElement i L. 493
15.25.15 Interface SVGFEPointLightElement o i i i i i 493
15.25.16 Interface SVGFESpotLightElement. 494
15.25.17 Interface SVGFEDisplacementMapElement.t .. 495
15.25.18 Interface SVGFEFloodElement, 496
15.25.19 Interface SVGFEGaussianBlurElement. o i 496
15.25.20 Interface SVGFEImageElement. o i i i i i 497
15.25.21 Interface SVGFEMergeElement. i i i i 498
15.25.22 Interface SVGFEMergeNodeElement i i 498
15.25.23 Interface SVGFEMorphologyElement.t ... 498
15.25.24 Interface SVGFEOffsetElement 499
15.25.25 Interface SVGFESpecularLightingElement. i i ... 500

15.25.26 Interface SVGFETIleElement.o e e 501

o
o
(@]
g
=7
S
S
)
oM
S

15.25.27 Interface SVGFETurbulenceElement. i 501

16 Interactivity

16.1 INtrodUCHiON . . . o o oot 504
16.2 Complete list of supported eVents e 505
16.3 User interface eVENTS. ot 509
16.4 POINtEr @VENTS i 510
16.5 Hit-testing and processing order for user interface events 510
16.5.1 Hit-testing.o 510
16.5.2 EVent Processing.t 511
16.6 The ‘pointer-events’ PrOPEItYt e 512
16.7 Magnification and panning 514
16.8 CUISOTS . -+ ¢ v vttt ettt e 515
16.8.1 INtroduction t0 CUISOTS v vttt ittt 515
16.8.2 The ‘CUSOT” PrOPEILY vttt ettt 515
16.8.3 The ‘cursor’ element. 516
16.9 DOM INEEITaCES . . . o oo oottt et e 518
16.9.1 Interface SVGCursorElement 518

17 Linking

171 RefeIeNCeS . . .o o 519
1701 OVEIVIEW . oottt et e e et e e e e e e e e e e e e e e 519
1712 TRIS and URISottt e e e e e e e e 519
17.1.3 Syntactic forms: IRTand FuncIRI i 520
17.1.4 Processing of IRITeferencesouunuuui ittt 520
17.1.5 IRI reference attributes 522

17.2 Links out of SVG content: the ‘a’ element. 523

17.3 Linking into SVG content: IRI fragments and SVG Views 526
17.3.1 Introduction: IRI fragments and SVG viewsot 526
17.3.2 SVG fragment identifiers. 526
17.3.3 Predefined views: the ‘view’ element 528
17.3.4 Highlighting VIews. 529

17.4 DOM Interfaces o o 529
17.4.1 Interface SVGAElement. 529
17.4.2 Interface SVGViewElement. 530

18 Scripting

18.1 Specifying the scripting language 531
18.1.1 Specifying the default scripting language il 531
18.1.2 Local declaration of a scripting language. oo i i 531

18.2 The “script’ element 532

18.3 Event handling. o 534

o
o
(@]
g
=7
S
S
)
oM
S

18.4 Event attributes 534
18.4.1 Event attribute for the SVGLoad event 534
18.4.2 Event attributes on graphics and container elements................. oo L. 534
18.4.3 Document-level event attributes. 535
18.4.4 Animation event attributes i 535

18.5 DOM INterfaceso oottt e e e 536
18.5.1 Interface SVGScriptElement 536
18.5.2 Interface SVGZoomEVeNt 536

19 Animation

101 INtrodUCION . . . o oottt et e e e 538
19.2 Animation elements it 539
19.2.1 OVEIVIEW . oottt ettt e e e e e e e e 539
19.2.2 Relationship to SMIL Animationc.ooiiiiiiiiiiiiiiiia... 539
19.2.3 Animation elements example i 540
19.2.4 Attributes to identify the target element for an animation 542
19.2.5 Attributes to identify the target attribute or property for an animation. 543
19.2.6 Animation with namespaces. 543
19.2.7 Paced animation and complex types 544
19.2.8 Attributes to control the timing of the animation. 545
19.2.8.1 Clock valueso 550

19.2.9 Attributes that define animation valuesovertime................c.cun... 551
19.2.10 Attributes that control whether animations are additive.............................. 556
19.2.11 INheritance ot 557
19.2.12 The ‘animate’ element i i 557
19.2.13 The ‘set’ €lement. i e 558
19.2.14 The ‘animateMotion’ element 559
19.2.15 The ‘animateColor’ element. it 564
19.2.16 The ‘animateTransform’ element. 565
19.2.17 Elements, attributes and properties that can be animated 568

19.3 Animation using the SVG DOM e 571
19.4 DOM INterfacesottt 572
19.4.1 Interface ElementTimeControl 572
19.4.2 Interface TIMEEVENL. e e 574
19.4.3 Interface SVGAnimationElement 575
19.4.4 Interface SVGAnimateElement. i 577
19.4.5 Interface SVGSetElement.ttt 577
19.4.6 Interface SVGAnimateMotionElement. i 577
19.4.7 Interface SVGMPathElement. 577
19.4.8 Interface SVGAnimateColorElement 578

19.4.9 Interface SVGAnimateTransformElement i 578

o
o
(@]
g
=7
S
S
)
oM
S

20 Fonts
20.1 IntrodUcCtion e 579
20.2 Overview of SVG fOnts 580
20.3 The “font’ €lementottt et e e e 582
20.4 The ‘glyph’ €lement.ttt e e e 584
20.5 The ‘missing-glyph’ element 588
20.6 Glyph selection rules. 589
20.7 The ‘hkern’ and ‘vkern’ elements i 589
20.8 Describing a font.o 592
20.8.1 Overview of font descriptions. o 592
20.8.2 Alternative ways for providing a font description 592
20.8.3 The “font-face’ element i 592
20.8.4 The ‘font-face-src’ €lement i 598
20.8.5 The ‘font-face-uri’ and ‘font-face-format’ elements................ 599
20.8.6 The ‘font-face-name’ element it 600
209 DOM INEEIfaceso e 601
20.9.1 Interface SVGFontElement 601
20.9.2 Interface SVGGlyphElement. o 601
20.9.3 Interface SVGMissingGlyphElement 601
20.9.4 Interface SVGHKernElement i 601
20.9.5 Interface SVGVKernElement. 602
20.9.6 Interface SVGFontFaceElement. e 602
20.9.7 Interface SVGFontFaceSrcElement 602
20.9.8 Interface SVGFontFaceUriElement. i 602
20.9.9 Interface SVGFontFaceFormatElement i, 602
20.9.10 Interface SVGFontFaceNameElement. i, 603

21 Metadata

211 Introduction 604
21.2 The ‘metadata’ €lementttt 604
213 Anexampleo 605
214 DOMINLEITACES oo 606

21.4.1 Interface SVGMetadataElement it 606

22 Backwards Compatibility

23 Extensibility

23.1 Foreign namespaces and privatedata 609
23.2 Embedding foreign object types. 610
23.3 The ‘foreignObject’ €lementttt 610
234 Anexample 611

23.5 Adding private elements and attributestothe DTD o i i i 612

23.6 DOM INterfaces oot 613
23.6.1 Interface SVGForeignObjectElement 613

o
o
(@]
g
=7
S
S
)
oM
S

Appendix A: Document Type Definition

AT INtrodUCtionttt 616
A2 Modularization.ot e 616
A.2.1 Element and attribute collections o it 617
A.2.2 Profiling the SVG specificationoo i 617
A.2.3 Practical considerations 617
A.3 SVG 1.1 module definitions and DTD implementations.t 618
A.3.1 Modular Framework Module. e 618
A.3.2 Datatypes Module. 618
A.3.3 Qualified Name Module. i 620
A.3.4 Core Attribute Module. 623
A.3.5 Container Attribute Module 624
A.3.6 Viewport Attribute Module 625
A.3.7 Paint Attribute Module 625
A.3.8 Basic Paint Attribute Module. 627
A.3.9 Paint Opacity Attribute Module 629
A.3.10 Graphics Attribute Module 630
A.3.11 Basic Graphics Attribute Module 631
A.3.12 Document Events Attribute Module. 631
A.3.13 Graphical Element Events Attribute Module i il 632
A.3.14 Animation Events Attribute Module. 634
A.3.15 XLink Attribute Module. 635
A.3.16 External Resources Attribute Module. 636
A.3.17 Structure Module 637
A.3.18 Basic Structure Module. 641
A.3.19 Conditional Processing Module. i 646
A3.20Image Moduleo 648
A321Style Moduleo 649
A3.22 Shape Moduleo 650
A3.23Text Module.o 654
A.3.24 Basic Text ModUle.t 659
A.3.25 Marker ModULeot 661
A.3.26 Color Profile Module 663
A.3.27 Gradient Module. 664
A3.28 Pattern Module 667
A329 CHp ModULE. . . vve e 669
A.3.30 Basic Clip Module. 670
A331 Mask Module. oo 672

A332Filter Module. . ..o 674

o
o
(@]
g
=7
S
S
)
oM
S

A.3.33 Basic Filter Module. 685
A334Cursor Moduleo 692
A.3.35 Hyperlinking Module 694
A336 View Module. 695
A.3.37 Scripting Module. 697
A.3.38 Animation Module e 698
A339Font Module 702
A3.40 Basic Font Module 707
A.3.41 Extensibility Module. 710
A.4 SVG 1.1 Document Type Definition.......... ... i 712
AdT1SVG LADTD DIiVEr. . o oottt e e e e e e 712
A.42SVG 1.1 Document Model 716
A.4.3 SVG 1.1 Attribute Collection 719

Appendix B: SVG Document Object Model (DOM)

B.1SVG DOM OVEIVIEWo 722
B.1.1 SVG DOM object initializationooiiiiiiiiiii i, 723
B.2 Elements in the SVG DOMo e 724
B.3 Naming conventions. i 724
B.4 Exception SVGEXCEPHION o 725
B.5 Feature strings for the hasFeature method call. 725
B.6 Relationship with DOM Level 2Events 726
B.7 Relationship with DOM Level 2 CSS 728
B.7.1 Introductiono ot 728
B.7.2 User agents that do not support styling with CSS i i 728
B.7.3 User agents that support styling with CSS i 728
B.7.4 Extended interfaces. 729
B.8 Read only nodes in the DOM 732
B Invalid valuest 732

Appendix C: IDL Definitions

Appendix D: Java Language Binding
D.1 The Java language binding 753
D.2 Using SVG with the Java language 753

Appendix E: ECMAScript Language Binding

E 1 EXCEPLIONSo 755
E.2 Constants. 756
BB Ty PeS 756

B ODJECES . 756

o
o
(@]
g
=7
S
S
)
oM
S

Appendix F: Implementation Requirements

FlINtroduCtion e 758
F.2 EITOr ProCessingt e 758
F.3 Version control 759
F.4 Clamping values which are restricted to a particular range 760
F.5 ‘path’ element implementation NOtES.ttt 760
F.6 Elliptical arc implementation NOES.ttt 761
F.6.1 Elliptical arc SyNtaxottt 761
F.6.2 Out-of-range parameters.uttt ettt 762
F.6.3 Parameterization alternatives.ottt 762
F.6.4 Conversion from center to endpoint parameterizationo .. 763
F.6.5 Conversion from endpoint to center parameterization, 763
F.6.6 Correction of out-of-range radii............. 765
F.7 Text selection implementation notes. i 765
F.8 Printing implementation NOLES.t 766

Appendix G: Conformance Criteria

Gl INtroducCtiono 768
G.2 Conforming SVG Document Fragmentsouiiiiiiiiiiiiiiiiiiiin. .. 768
G.3 Conforming SVG Stand-Alone Files. 770
G.4 Conforming SVG GENeratorsuututtittttt it 770
G.5 Conforming SVG SEIVETS.ttt 770
G.6 Conforming SVG DOM Subtreeottt 770
G.7 Conforming SVG INterpreters.o e 771
G.8 Conforming SVG VIEWETS v v vttt e 771

Appendix H: Accessibility Support
H.1 WAI Accessibility GUIAENES 775
H.2 SVG Content Accessibility Guidelines. 775

Appendix I: Internationalization Support

L1Introduction e 777
1.2 Internationalization and SVG 777
1.3 SVG Internationalization Guidelinesttt 778

Appendix J: Minimizing SVG File Sizes
Appendix K: References
K.1 Normative references.ttt 781

K.2 Informative referencest 785

Appendix L: Element Index

Appendix M: Attribute Index
M.1 Regular attributes 791
M.2 Presentation attributes o 806

o
o
(@]
g
=7
S
S
)
oM
S

Appendix N: Property Index

Appendix O: Feature Strings

O.1INtroductiont 814
0.2 SVG 1.1 feature SrNgS.o vttt 814
0.3 SVG 1.0 feature SIS, vttt 821

Appendix P: Media Type Registration for image/svg+xml

PaIntroductiOnttt 823
P.2 Registration of media type image/svg+xml 823
Appendix Q: Changes
Q.1 StyliStiC ChANGES vttt 826
Q.2 Backports from SVG Tiny 1.2ottt 827
Q.3 Substantial changes 827
Q.3.1 Across the whole document. 827
Q.3.2 Introduction chapter. 827
Q.3.3 Basic Data Types and Interfaces chapter i i 827
Q.3.4 Document Structure chapter 827
Q.3.5 Coordinate Systems, Transformations and Units chapter............................... 827
Q.3.6 Basic Shapes chapter. 828
Q.37 Text chapter.ot 828
Q.3.8 Painting chapter 828
Q.3.9 Color chapter. 828
Q.3.10 Gradients and Patterns chapter 828
Q.3.11 Clipping, Masking and Compositing chapter.............. 828
Q.3.12 Filter Effects chapter. o 828
Q.3.13 Interactivity chapter i 829
Q.3.14 Linking chapter.o 829
Q.3.15 Animation chapter 829
Q.3.16 Conformance Criteria appendixXooiiiiiiininn 829
Q.3.17 References appendiXo ottt ittt 829
Q.3.18 Attribute Index appendixX i 830

Q.3.19 Media Type Registration appendix i 830

o
o
(@]
g
=7
S
S
)
oM
S

1 Introduction

Contents

1.1 About SVG

1.2 SVG MIME type, file name extension and Macintosh file type
1.3 SVG Namespace, Public Identifier and System Identifier

1.4 Compatibility with Other Standards Efforts

1.5 Terminology

1.6 Definitions

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).

SVG is a language for describing two-dimensional graphics in XML [XML10]. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and text. Graph-
ical objects can be grouped, styled, transformed and composited into previously rendered objects. The feature set
includes nested transformations, clipping paths, alpha masks, filter effects and template objects.

SVG drawings can be interactive and dynamic. Animations can be defined and triggered either declaratively
(i.e., by embedding SVG animation elements in SVG content) or via scripting.

Sophisticated applications of SVG are possible by use of a supplemental scripting language which accesses
SVG Document Object Model (DOM), which provides complete access to all elements, attributes and properties. A
rich set of event handlers such as ‘onmouseover’ and ‘onclick’ can be assigned to any SVG graphical object. Because
of its compatibility and leveraging of other Web standards, features like scripting can be done on XHTML and
SVG elements simultaneously within the same Web page.

SVG is a language for rich graphical content. For accessibility reasons, if there is an original source document
containing higher-level structure and semantics, it is recommended that the higher-level information be made
available somehow, either by making the original source document available, or making an alternative version
available in an alternative format which conveys the higher-level information, or by using SVG's facilities to in-
clude the higher-level information within the SVG content. For suggested techniques in achieving greater access-
ibility, see Accessibility.

SVG 1.1 is a modularization of SVG 1.0 [SVG10]. See the Document Type Definition appendix for details on
how the DTD is structured to allow profiling and composition with other XML languages.

1.2 SVG MIME type, file name extension and Macintosh file type

The MIME type for SVG is "image/svg+xml" (see XML Media Types [RFC3023]). The registration of this MIME
type is in progress at the W3C.

It is recommended that SVG files have the extension ".svg" (all lowercase) on all platforms. It is recommen-
ded that gzip-compressed [RFC1952] SVG files have the extension ".svgz" (all lowercase) on all platforms.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc1952.txt

o
o
(@]
g
=7
S
S
)
oM
S

It is recommended that SVG files stored on Macintosh HFS file systems be given a file type of "svg " (all
lowercase, with a space character as the fourth letter). It is recommended that gzip-compressed SVG files stored
on Macintosh HFS file systems be given a file type of "svgz" (all lowercase).

1.3 SVG Namespace, Public Identifier and System Identifier

The following are the SVG 1.1 namespace, public identifier and system identifier:

SVG Namespace:
http://www.w3.0rg/2000/svg

Public Identifier for SVG 1.1:
PUBLIC "-//W3C//DTD SVG 1.1//EN"

System Identifier for the SVG 1.1 Recommendation:
http://www.w3.0rg/Graphics/SVG/1.1/DTD/svg11.dtd

The following is an example document type declaration for an SVG document:

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">

Note that DTD listed in the System Identifier is a modularized DTD (i.e. its contents are spread over multiple
files), which means that a validator may have to fetch the multiple modules in order to validate. For that reason,
there is a single flattened DTD available that corresponds to the SVG 1.1 modularized DTD. It can be found at
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd.

While a DTD is provided in this specification, the use of DTDs for validating XML documents is known to
be problematic. In particular, DTDs do not handle namespaces gracefully. It is not recommended that a DOCTYPE
declaration be included in SVG documents.

1.4 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts. By leveraging and conforming
to other standards, SVG becomes more powerful and makes it easier for users to learn how to incorporate SVG
into their Web sites.

The following describes some of the ways in which SVG maintains compatibility with, leverages and integ-
rates with other W3C efforts:

e SVG is an application of XML and is compatible with the Extensible Markup Language (XML) 1.0 Recom-
mendation [XML10]

o SVG is compatible with the Namespaces in XML Recommendation [XML-NS]

o SVG utilizes XML Linking Language (XLink) [XLINK] for IRI referencing and requires support for base IRI
specifications defined in XML Base [XML-BASE].

o SVG content can be styled by either CSS (see Cascading Style Sheets (CSS) level 2 [CSS2]) or XSLT (see XSL

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-prolog-dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/1999/REC-xslt-19991116

o
o
(@]
g
=7
S
S
)
oM
S

Transformations (XSLT) Version 1.0 [XSLT] and XSL Transformations (XSLT) Version 2.0 [XSLT2]). See Styl-
ing with CSS and Styling with XSL for details.

o SVG supports relevant properties and approaches common to CSS and XSL, plus selected semantics and fea-
tures of CSS (see SVG's styling properties and SVG's Use of Cascading Style Sheets).

« External style sheets are referenced using the mechanism documented in Associating Style Sheets with XML
documents Version 1.0 [XML-SS].

e SVG includes a complete Document Object Model (DOM) and conforms to the Document Object Model
(DOM) Level 1 Recommendation [DOM1]. The SVG DOM has a high level of compatibility and consistency
with the HTML DOM that is defined in the DOM Level 1 specification. Additionally, the SVG DOM supports
and incorporates many of the facilities described in DOM Level 2, including the CSS object model and event
handling [DOM2] [DOM2STYLE] [DOM2EVENTS].

e SVG incorporates some features and approaches that are part of the Synchronized Multimedia Integration
Language (SMIL) 3.0 Specification [SMIL], including the ‘switch’ element and the ‘systemLanguage’ attribute.

o SVG's animation features (see Animation) were developed in collaboration with the W3C Synchronized Mul-
timedia (SYMM) Working Group, developers of the Synchronized Multimedia Integration Language (SMIL)
3.0 Specification [SMIL]. SVG's animation features incorporate and extend the general-purpose XML anima-
tion capabilities described in the SMIL Animation specification [SMILANIM].

o SVG has been designed to allow SMIL to use animated or static SVG content as media components.

o SVG attempts to achieve maximum compatibility with both HTML 4 [HTML4] and XHTML™ 1.0 [XHTML].
Many of SVG's facilities are modeled directly after HTML, including its use of CSS [CSS2], its approach to
event handling, and its approach to its Document Object Model [DOM2].

e SVG is compatible with W3C work on internationalization. References (W3C and otherwise) include:
[UNICODE] and [CHARMOD]. Also, see Internationalization Support.

« SVG is compatible with W3C work on Web Accessibility. Also, see Accessibility Support.

In environments which support DOM 2 Core [DOM2] for other XML grammars (e.g., XHTML [XHTML]) and
which also support SVG and the SVG DOM, a single scripting approach can be used simultaneously for both XML
documents and SVG graphics, in which case interactive and dynamic effects will be possible on multiple XML
namespaces using the same set of scripts.

1.5 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described in
Key words for use in RFCs to Indicate Requirement Levels [RFC2119]. However, for readability, these words do not
appear in all uppercase letters in this specification.

At times, this specification recommends good practice for authors and user agents. These recommendations
are not normative and conformance with this specification does not depend on their realization. These recom-
mendations contain the expression "We recommend ...", "This specification recommends ...", or some similar word-
ing.

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/2002/REC-xhtml1-20020801/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/WAI/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.ietf.org/rfc/rfc2119.txt

o
o
(@]
g
=7
S
S
)
oM
S

1.6 Definitions

animation element - An animation element is an element that can be used to animate the attribute or property
value of another element. The following elements are animation elements: ‘animateColor’, ‘animateMotion’, ‘anim-

ateTransform’, ‘animate’ and ‘set’.

animation event attribute - An animation event attribute is an event attribute that specifies script to run for a
particular animation-related event. See Animation event attributes. The animation event attributes are ‘onbegin’,

‘onend’, ‘onload’ and ‘onrepeat’.

basic shape - Standard shapes which are predefined in SVG as a convenience for common graphical operations.
Specifically: ‘circle’, ‘ellipse’, ‘line’, ‘polygon’, ‘polyline’ and ‘rect’.

canvas - A surface onto which graphics elements are drawn, which can be real physical media such as a display or
paper or an abstract surface such as a allocated region of computer memory. See the discussion of the SVG canvas
in the chapter on Coordinate Systems, Transformations and Units.

clipping path - A combination of ‘path’, ‘text’ and basic shapes which serve as the outline of a (in the absence
of anti-aliasing) 1-bit mask, where everything on the "inside" of the outline is allowed to show through but
everything on the outside is masked out. See Clipping paths.

container element - An element which can have graphics elements and other container elements as child ele-
ments. Specifically: ‘a’, ‘defs’, ‘glyph’, ‘g’, ‘marker’, ‘mask’, ‘missing-glyph’, ‘pattern’, ‘svg’, ‘switch’ and ‘symbol’.

conditional processing attribute - A conditional processing attribute is one that controls whether or not the ele-
ment on which it appears is processed. Most elements, but not all, may have conditional processing attributes
specified on them. See Conditional processing for details. The conditional processing attributes defined in SVG 1.1

are ‘requiredExtensions’, ‘requiredFeatures’ and ‘systemLanguage’.

core attributes - The core attributes are those attributes that can be specified on any SVG element. See Common
attributes. The core attributes are ‘id’, ‘xml:base’, ‘xml:lang’ and ‘xml:space’.

current innermost SVG document fragment - The XML document sub-tree which starts with the most immedi-
ate ancestor ‘svg’ element of a given SVG element.

current SVG document fragment - The XML document sub-tree which starts with the outermost ancestor ‘svg’
element of a given SVG element, with the requirement that all container elements between the outermost ‘svg’
and this element are all elements in the SVG language.

current transformation matrix (CTM) - Transformation matrices define the mathematical mapping from one
coordinate system into another using a 3x3 matrix using the equation [x'y' 1] = [x y 1] * matrix. The current trans-

o
o
(@]
g
=7
S
S
)
oM
S

formation matrix (CTM) defines the mapping from the user coordinate system into the viewport coordinate sys-
tem. See Coordinate system transformations.

descriptive element - An element which provides supplementary descriptive information about its parent. Spe-
cifically, the following elements are descriptive elements: ‘desc’, ‘metadata’ and ‘title’.

document event attribute - A document event attribute is an event attribute that specifies script to run for a par-
ticular document-wide event. See Document-level event attributes. The document event attributes are ‘onabort’,

‘onerror’, ‘onresize’, ‘onscroll’, ‘onunload’ and ‘onzoom’.

event attribute - An event attribute is one that specifies some script to run when an event of a certain type is
dispatched to the element on which the attribute is specified. See Event attributes.

fill - The operation of painting the interior of a shape or the interior of the character glyphs in a text string.

filter primitive attributes - The filter primitive attributes is the set of attributes that are common to all filter prim-

3 6

itive elements. They are ‘height’, ‘result’, ‘width’, ‘x’ and ‘y’.

filter primitive element - A filter primitive element is one that can be used as a child of a ‘filter’ element
to specify a node in the filter graph. The following elements are the filter primitive elements defined in SVG
1.1: ‘feBlend’, ‘feColorMatrix’, ‘feComponentTransfer’, ‘feComposite’, ‘feConvolveMatrix’, ‘feDiffuseLighting’, ‘feDis-
placementMap’, ‘feFlood’, ‘feGaussianBlur’, ‘felmage’, ‘feMerge’, ‘feMorphology’, ‘feOffset’, ‘feSpecularLighting’,
‘feTile” and ‘feTurbulence’.

font - A font represents an organized collection of glyphs in which the various glyph representations will share
a common look or styling such that, when a string of characters is rendered together, the result is highly legible,
conveys a particular artistic style and provides consistent inter-character alignment and spacing.

glyph - A glyph represents a unit of rendered content within a font. Often, there is a one-to-one correspondence
between characters to be drawn and corresponding glyphs (e.g., often, the character "A" is rendered using a single
glyph), but other times multiple glyphs are used to render a single character (e.g., use of accents) or a single glyph
can be used to render multiple characters (e.g., ligatures). Typically, a glyph is defined by one or more shapes such
as a path, possibly with additional information such as rendering hints that help a font engine to produce legible
text in small sizes.

gradient element - A gradient element is one that defines a gradient paint server. SVG 1.1 defines the following
gradient elements: ‘linearGradient” and ‘radialGradient’.

graphical event attribute - A graphical event attribute is an event attribute that specifies script to run for a par-
ticular user interaction event. See Event attributes on graphics and container elements. The graphical event at-
tributes are ‘onactivate’, ‘onclick’, ‘onfocusin’, ‘onfocusout’, ‘onload’, ‘onmousedown’, ‘onmousemove’, ‘onmouseout’,

‘onmouseover’ and ‘onmouseup’.

o
o
(@]
g
=7
S
S
)
oM
S

graphics element - One of the element types that can cause graphics to be drawn onto the target canvas. Specific-
ally: ‘circle’, ‘ellipse’, ‘image’, ‘line’, ‘path’, ‘polygon’, ‘polyline’, ‘rect’, ‘text’ and ‘use’.

graphics referencing element - A graphics element which uses a reference to a different document or element as
the source of its graphical content. Specifically: ‘image’ and ‘use’.

hit-testing - The process of determining whether a pointer intersects a given graphics element. Hit-testing is used
in determining which element to dispatch a mouse event to, which might be done in response to the user moving
the pointing device, or by changes in the position, shape and other attributes of elements in the document. Hit-
testing is also known as hit detection or picking. See hit-testing and processing order for user interface events and
the definition of the ‘pointer-events’ property.

IRI reference - An IRI reference is an Internationalized Resource Identifier with an optional fragment identifier,
as defined in Internationalized Resource Identifiers [RFC3987]. An IRI reference serves as a reference to a resource
or (with a fragment identifier) to a secondary resource. See References and the ‘defs’ element.

light source element - A light source element is one that can specify light source information for an ‘feDif-
fuseLighting’ or ‘feSpecularLighting’ element. The following light source elements are defined in SVG 1.1:
‘feDistantLight’, ‘fePointLight’ and ‘feSpotLight’.

local IRI reference - An Internationalized Resource Identifier [RFC3987] that does not include an <absoluteIRI> or
<relativelRI> and thus represents a reference to an element within the current document. See References and the
‘defs’ element.

mask - A container element which can contain graphics elements or other container elements which define a set
of graphics that is to be used as a semi-transparent mask for compositing foreground objects into the current back-
ground. See Masks.

non-local IRI reference - An Internationalized Resource Identifier [RFC3987] that includes an <absoluteIRI> or
<relativelRI> and thus (usually) represents a reference to a different document or an element within a different
document. See References and the ‘defs’ element.

outermost svg element - The furthest ‘svg’ ancestor element that remains in the current SVG document fragment.

paint - A paint represents a way of putting color values onto the canvas. A paint might consist of both color values
and associated alpha values which control the blending of colors against already existing color values on the can-
vas. SVG supports three types of built-in paint: color, gradients and patterns.

presentation attribute - An XML attribute on an SVG element which specifies a value for a given property for
that element. See Styling. Note that although any property may be specified on any element, not all properties will
apply to (affect the rendering of) a given element. The definition of each property states to what set of elements it
applies.

http://www.ietf.org/rfc/rfc3987.txt

o
o
(@]
g
=7
S
S
)
oM
S

property - A parameter that helps specify how a document should be rendered. A complete list of SVG's properties
can be found in Property Index. Properties are assigned to elements in the SVG language either by presentation
attributes on elements in the SVG language or by using a styling language such as CSS [CSS2]. See Styling.

rootmost ‘svg’ element - The rootmost ‘svg’ element is the furthest ‘svg’ ancestor element that does not exit an
SVG context. See also SVG document fragment.

shape - A graphics element that is defined by some combination of straight lines and curves. Specifically: ‘path’,

‘rect’, ‘circle’, ‘ellipse’, ‘line’, ‘polyline’ and ‘polygon’.
stroke - The operation of painting the outline of a shape or the outline of character glyphs in a text string.

structural element - The structural elements are those which define the primary structure of an SVG document.
Specifically, the following elements are structural elements: ‘defs’, ‘g’, ‘svg’, ‘symbol’ and ‘use’.

SVG canvas - The canvas onto which the SVG content is rendered. See the discussion of the SVG canvas in the
chapter on Coordinate Systems, Transformations and Units.

SVG context - An SVG context is a document fragment where all elements within the fragment must be subject
to processing by an SVG user agent according to the rules in this specification.

If SVG content is embedded inline within parent XML (such as XHTML), the SVG context does not include
the ancestors above the rootmost ‘svg’ element. If the SVG content contains any ‘foreignObject’ elements which in
turn contain non-SVG content, the SVG context does not include the contents of the ‘foreignObject’ elements.

SVG document fragment - The XML document sub-tree which starts with an ‘svg’ element. An SVG document
fragment can consist of a stand-alone SVG document, or a fragment of a parent XML document enclosed by an
‘svg’ element. When an ‘svg’ element is a descendant of another ‘svg’ element, there are two SVG document frag-
ments, one for each ‘svg’ element. (One SVG document fragment is contained within another SVG document frag-
ment.)

SVG user agent - An SVG user agent is a user agent that is able to retrieve and render SVG content.

SVG viewport - The viewport within the SVG canvas which defines the rectangular region into which SVG content
is rendered. See the discussion of the SVG viewport in the chapter on Coordinate Systems, Transformations and
Units.

text content element - A text content element is an SVG element that causes a text string to be rendered onto the
canvas. The SVG 1.1 text content elements are the following: ‘altGlyph’, ‘textPath’, ‘text’, ‘tref” and ‘tspan’

text content child element - A text content child element is a text content element that is allowed as a descendant
of another text content element. In SVG 1.1, the text content child elements are the following: ‘altGlyph’, ‘textPath’,
‘tref” and ‘tspan’

http://www.w3.org/TR/2008/REC-CSS2-20080411/

o
o
(@]
g
=7
S
S
)
oM
S

text content block element - A text content block element is a text content element that serves as a standalone
element for a unit of text, and which may optionally contain certain child text content elements (e.g. ‘tspan’). .

transformation - A modification of the current transformation matrix (CTM) by providing a supplemental trans-
formation in the form of a set of simple transformations specifications (such as scaling, rotation or translation)
and/or one or more transformation matrices. See Coordinate system transformations.

transformation matrix - Transformation matrices define the mathematical mapping from one coordinate system
into another using a 3x3 matrix using the equation [x' y' 1] = [x y 1] * matrix. See current transformation matrix
(CTM) and Coordinate system transformations.

user agent - The general definition of a user agent is an application that retrieves and renders Web content, in-
cluding text, graphics, sounds, video, images, and other content types. A user agent may require additional user
agents that handle some types of content. For instance, a browser may run a separate program or plug-in to
render sound or video. User agents include graphical desktop browsers, multimedia players, text browsers, voice
browsers, and assistive technologies such as screen readers, screen magnifiers, speech synthesizers, onscreen key-
boards, and voice input software.

A "user agent" may or may not have the ability to retrieve and render SVG content; however, an "SVG user
agent" retrieves and renders SVG content.

user coordinate system - In general, a coordinate system defines locations and distances on the current canvas.
The current user coordinate system is the coordinate system that is currently active and which is used to define
how coordinates and lengths are located and computed, respectively, on the current canvas. See initial user co-
ordinate system and Coordinate system transformations.

user space - A synonym for user coordinate system.

user units - A coordinate value or length expressed in user units represents a coordinate value or length in the
current user coordinate system. Thus, 10 user units represents a length of 10 units in the current user coordinate
system.

viewport - A rectangular region within the current canvas onto which graphics elements are to be rendered. See
the discussion of the SVG viewport in the chapter on Coordinate Systems, Transformations and Units.

viewport coordinate system - In general, a coordinate system defines locations and distances on the current can-
vas. The viewport coordinate system is the coordinate system that is active at the start of processing of an ‘svg’
element, before processing the optional ‘viewBox’ attribute. In the case of an SVG document fragment that is em-
bedded within a parent document which uses CSS to manage its layout, then the viewport coordinate system will
have the same orientation and lengths as in CSS, with the origin at the top-left on the viewport. See The initial
viewport and Establishing a new viewport.

viewport space - A synonym for viewport coordinate system.

o
o
(@]
g
=7
S
S
)
oM
S

viewport units - A coordinate value or length expressed in viewport units represents a coordinate value or length
in the viewport coordinate system. Thus, 10 viewport units represents a length of 10 units in the viewport coordin-
ate system.

XLink attributes - The XLink attributes are the seven attributes defined in the XML Linking Language specific-
ation [XLINK], which are used on various SVG elements that can reference resources. The most import XLink
attribute is “xlink:href’, whose definition can be found on each element that allows it. The remaining XLink attrib-

utes are ‘xlink:type’, ‘xlink:role’, ‘xlink:arcrole’, ‘xlink:title’, ‘xlink:show’ and ‘xlink:actuate’.

http://www.w3.org/TR/2001/REC-xlink-20010627/

o
o
(@]
g
=7
S
S
)
oM
S

2 Concepts

Contents

2.1 Explaining the name: SVG
2.2 Important SVG concepts
2.3 Options for using SVG in Web pages

2.1 Explaining the name: SVG
SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, usable as an XML namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not being limited to
a single, fixed, pixel size. On the Web, scalable means that a particular technology can grow to a large number
of files, a large number of users, a wide variety of applications. SVG, being a graphics technology for the Web, is
scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example printed output uses the full
resolution of the printer and can be displayed at the same size on screens of different resolutions. The same SVG
graphic can be placed at different sizes on the same Web page, and re-used at different sizes on different pages.
SVG graphics can be magnified to see fine detail, or to aid those with low vision.

SVG graphics are scalable because the same SVG content can be a stand-alone graphic or can be referenced
or included inside other SVG graphics, thereby allowing a complex illustration to be built up in parts, perhaps by
several people. The symbol, marker and font capabilities promote re-use of graphical components, maximize the
advantages of HTTP caching and avoid the need for a centralized registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility compared to
raster-only formats (such as PNG and JPEG) which have to store information for every pixel of the graphic. Typ-
ically, vector formats can also integrate raster images and can combine them with vector information such as clip-
ping paths to produce a complete illustration; SVG is no exception.

Since all modern displays are raster-oriented, the difference between raster-only and vector graphics comes
down to where they are rasterized; client side in the case of vector graphics, as opposed to already rasterized on
the server. SVG gives control over the rasterization process, for example to allow anti-aliased artwork without the
ugly aliasing typical of low quality vector implementations. SVG also provides client-side raster filter effects, so
that moving to a vector format does not mean the loss of popular effects such as soft drop shadows.

o
o
(@]
g
=7
S
S
)
oM
S

Graphics

Most existing XML grammars represent either textual information, or represent raw data such as financial in-
formation. They typically provide only rudimentary graphical capabilities, often less capable than the HTML 'img’
element. SVG fills a gap in the market by providing a rich, structured description of vector and mixed vector/raster
graphics; it can be used stand-alone, or as an XML namespace with other grammars.

XML

XML, a for structured information exchange, has become extremely popular and is both widely and reliably im-
plemented. By being written in XML, SVG builds on this strong foundation and gains many advantages such as a
sound basis for internationalization, powerful structuring capability, an object model, and so on. By building on
existing, cleanly-implemented specifications, XML-based grammars are open to implementation without a huge
reverse engineering effort.

Namespace

It is certainly useful to have a stand-alone, SVG-only viewer. But SVG is also intended to be used as one component
in a multi-namespace XML application. This multiplies the power of each of the namespaces used, to allow in-
novative new content to be created. For example, SVG graphics may be included in a document which uses any
text-oriented XML namespace - including XHTML. A scientific document, for example, might also use MathML
for mathematics in the document. The combination of SVG and SMIL leads to interesting, time based, graphically
rich presentations.

SVG is a good, general-purpose component for any multi-namespace grammar that needs to use graphics.

Stylable

The advantages of style sheets in terms of presentational control, flexibility, faster download and improved main-
tenance are now generally accepted, certainly for use with text. SVG extends this control to the realm of graphics.

The combination of scripting, DOM and CSS is often termed "Dynamic HTML" and is widely used for an-
imation, interactivity and presentational effects. SVG allows the same script-based manipulation of the document
tree and the style sheet.

2.2 Important SVG concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For textual formats,
modelling is typically at the level of paragraphs and phrases, rather than individual nouns, adverbs, or phonemes.
Similarly, SVG models graphics at the level of graphical objects rather than individual points.

SVG provides a general path element, which can be used to create a huge variety of graphical objects, and

http://www.w3.org/TR/2001/REC-MathML2-20010221/

o
o
(@]
g
=7
S
S
)
oM
S

also provides common basic shapes such as rectangles and ellipses. These are convenient for hand coding and may
be used in the same ways as the more general path element. SVG provides fine control over the coordinate system
in which graphical objects are defined and the transformations that will be applied during rendering.

Symbols

It would have been possible to define some standard symbols that SVG would provide. But which ones? There
would always be additional symbols for electronics, cartography, flowcharts, etc., that people would need that
were not provided until the "next version". SVG allows users to create, re-use and share their own symbols without
requiring a centralized registry. Communities of users can create and refine the symbols that they need, without
having to ask a committee. Designers can be sure exactly of the graphical appearance of the symbols they use and
not have to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit in with the rest of the
graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to create blurs, shadows, lighting
effects and so on. With the client-side rasterization used with vector formats, such effects might be thought im-
possible. SVG allows the declarative specification of filters, either singly or in combination, which can be applied
on the client side when the SVG is rendered. These are specified in such a way that the graphics are still scalable
and displayable at different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and the exact spacing of the glyphs.
In many cases, designers convert text to outlines to avoid any font substitution problems. This means that the
original text is not present and thus searchability and accessibility suffer. In response to feedback from designers,
SVG includes font elements so that both text and graphical appearance are preserved.

Animation

Animation can be produced via script-based manipulation of the document, but scripts are difficult to edit and
interchange between authoring tools is harder. Again in response to feedback from the design community, SVG
includes declarative animation elements which were designed collaboratively by the SVG and SYMM Working
Groups. This allows the animated effects common in existing Web graphics to be expressed in SVG.

2.3 Options for using SVG in Web pages

There are a variety of ways in which SVG content can be included within a Web page. Here are some of the op-
tions:

o
o
(@]
g
=7
S
S
)
oM
S

A stand-alone SVG Web page
In this case, an SVG document (i.e., a Web resource whose MIME type is "image/svg+xml") is loaded directly
into a user agent such as a Web browser. The SVG document is the Web page that is presented to the user.
Embedding by reference
In this case, a parent Web page references a separately stored SVG document and specifies that the given
SVG document should be embedded as a component of the parent Web page. For HTML or XHTML, here
are three options:

o The HTML/XHTML ‘img’ element is the most common method for using graphics in HTML pages.
For faster display, the width and height of the image can be given as attributes. One attribute that is
required is ‘alt’, used to give an alternate textual string for people browsing with images off, or who
cannot see the images. The string cannot contain any markup. A ‘longdesc’ attribute lets you point to a
longer description - often in HTML - which can have markup and richer formatting.

o The HTML/XHTML ‘object’ element can contain other elements nested within it, unlike ‘img’, which is
empty. This means that several different formats can be offered, using nested ‘object’ elements, with a
final textual alternative (including markup, links, etc). The outermost element which can be displayed
will be used.

o The HTML/XHTML ‘applet’ element which can invoke a Java applet to view SVG content within the
given Web page. These applets can do many things, but a common task is to use them to display images,
particularly ones in unusual formats or which need to be presented under the control of a program for
some other reason.

Embedding inline
In this case, SVG content is embedded inline directly within the parent Web page. An example is an XHTML
Web page with an SVG document fragment textually included within the XHTML.

External link, using the HTML ‘a’ element
This allows any stand-alone SVG viewer to be used, which can (but need not) be a different program to that
used to display HTML. This option typically is used for unusual image formats.

Referenced from a CSS or XSL property
When a user agent supports CSS-styled XML content [CSS2] or XSL [XSL] and the user agent is a Conform-
ing SVG Viewer, then that user agent must support the ability to reference SVG resources wherever CSS or
XSL properties allow for the referencing of raster images, including the ability to tile SVG graphics wherever
necessary and the ability to composite the SVG into the background if it has transparent portions. Examples
include the ‘background-image’ and ‘list-style-image’ properties ([CSS2], sections 14.2.1 and 12.6.2) that are
included in both CSS and XSL.

http://www.w3.org/TR/2008/REC-CSS2-20080411/colors.html#propdef-background-image
http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html#propdef-list-style-image

o
o
(@]
g
=7
S
S
)
oM
S

3 Rendering Model

Contents

3.1 Introduction

3.2 The painters model

3.3 Rendering Order

3.4 How groups are rendered

3.5 How elements are rendered

3.6 Types of graphics elements
3.6.1 Painting shapes and text
3.6.2 Painting raster images

3.7 Filtering painted regions

3.8 Clipping, masking and object opacity

3.9 Parent Compositing

3.1 Introduction

Implementations of SVG are expected to behave as though they implement a rendering (or imaging) model cor-
responding to the one described in this chapter. A real implementation is not required to implement the model in
this way, but the result on any device supported by the implementation shall match that described by this model.

The appendix on conformance requirements describes the extent to which an actual implementation may de-
viate from this description. In practice an actual implementation will deviate slightly because of limitations of the
output device (e.g. only a limited range of colors might be supported) and because of practical limitations in im-
plementing a precise mathematical model (e.g. for realistic performance curves are approximated by straight lines,
the approximation need only be sufficiently precise to match the conformance requirements).

3.2 The painters model

SVG uses a "painters model" of rendering. Paint is applied in successive operations to the output device such that
each operation paints over some area of the output device. When the area overlaps a previously painted area the
new paint partially or completely obscures the old. When the paint is not completely opaque the result on the
output device is defined by the (mathematical) rules for compositing described under Alpha Blending.

3.3 Rendering Order

Elements in an SVG document fragment have an implicit drawing order, with the first elements in the SVG docu-
ment fragment getting "painted" first. Subsequent elements are painted on top of previously painted elements.

o
o
(@]
g
=7
S
S
)
oM
S

3.4 How groups are rendered

Grouping elements such as the ‘g’ element (see container elements) have the effect of producing a temporary sep-
arate canvas initialized to transparent black onto which child elements are painted. Upon the completion of the
group, any filter effects specified for the group are applied to create a modified temporary canvas. The modified
temporary canvas is composited into the background, taking into account any group-level masking and opacity
settings on the group.

3.5 How elements are rendered

Individual graphics elements are rendered as if each graphics element represented its own group; thus, the effect
is as if a temporary separate canvas is created for each graphics element. The element is first painted onto the
temporary canvas (see Painting shapes and text and Painting raster images below). Then any filter effects specified
for the graphics element are applied to create a modified temporary canvas. The modified temporary canvas is
then composited into the background, taking into account any clipping, masking and object opacity settings on
the graphics element.

3.6 Types of graphics elements

SVG supports three fundamental types of graphics elements that can be rendered onto the canvas:

o Shapes, which represent some combination of straight line and curves

o Text, which represents some combination of character glyphs

« Raster images, which represent an array of values that specify the paint color and opacity (often termed al-
pha) at a series of points on a rectangular grid. (SVG requires support for specified raster image formats under
conformance requirements.)

3.6.1 Painting shapes and text

Shapes and text can be filled (i.e., apply paint to the interior of the shape) and stroked (i.e., apply paint along the
outline of the shape). A stroke operation is centered on the outline of the object; thus, in effect, half of the paint
falls on the interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any combination of shapes,
text and images) can be drawn at selected vertices. Each marker symbol is painted as if its graphical content were
expanded into the SVG document tree just after the shape object which is using the given marker symbol. The
graphical contents of a marker symbol are rendered using the same methods as graphics elements. Marker sym-
bols are not applicable to text.

The fill is painted first, then the stroke, and then the marker symbols. The marker symbols are rendered in
order along the outline of the shape, from the start of the shape to the end of the shape.

o
o
(@]
g
=7
S
S
)
oM
S

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a shape with a
semi-transparently drawn solid color, with different opacity values for the fill and stroke operations.

The fill and stroke operations are entirely independent painting operations; thus, if you both fill and stroke a
shape, half of the stroke will be painted on top of part of the fill.

SVG supports the following built-in types of paint which can be used in fill and stroke operations:

« Solid color
o Gradients (linear and radial)
o Patterns

3.6.2 Painting raster images

When a raster image is rendered, the original samples are "resampled" using standard algorithms to produce
samples at the positions required on the output device. Resampling requirements are discussed under conformance
requirements.

3.7 Filtering painted regions

SVG allows any painting operation to be filtered. (See Filter Effects.)

In this case the result must be as though the paint operations had been applied to an intermediate canvas ini-
tialized to transparent black, of a size determined by the rules given in Filter Effects then filtered by the processes
defined in Filter Effects.

3.8 Clipping, masking and object opacity

SVG allows any painting operation to be limited to a subregion of the output device by clipping and masking. This
is described in Clipping, Masking and Compositing.

Clipping uses a path to define a region of the output device to which paint can be applied. Any painting op-
eration executed within the scope of the clipping must be rendered such that only those parts of the device that
fall within the clipping region are affected by the painting operation. A clipping path can be thought of as a mask
wherein those pixels outside the clipping path are black with an alpha value of zero and those pixels inside the
clipping path are white with an alpha value of one. "Within" is defined by the same rules used to determine the
interior of a path for painting. The clipping path is typically anti-aliased on low-resolution devices (see ‘shape-ren-
dering’. Clipping is described in Clipping paths.

Masking uses the luminance of the color channels and alpha channel in a referenced SVG element to define a
supplemental set of alpha values which are multiplied to the alpha values already present in the graphics to which
the mask is applied. Masking is described in Masking.

A supplemental masking operation may also be specified by applying a "global" opacity to a set of rendering
operations. In this case the mask is infinite, with a color of white and an alpha channel of the given opacity value.
(See the ‘opacity’ property.)

In all cases the SVG implementation must behave as though all painting and filtering is first performed to

o
o
(@]
g
=7
S
S
)
oM
S

an intermediate canvas which has been initialized to transparent black. Then, alpha values on the intermediate
canvas are multiplied by the implicit alpha values from the clipping path, the alpha values from the mask, and
the alpha values from the ‘opacity’ property. The resulting canvas is composited into the background using simple
alpha blending. Thus if an area of the output device is painted with a group opacity of 50% using opaque red paint
followed by opaque green paint the result is as though it had been painted with just 50% opaque green paint. This
is because the opaque green paint completely obscures the red paint on the intermediate canvas before the inter-
mediate as a whole is rendered onto the output device.

3.9 Parent Compositing

SVG document fragments can be semi-opaque. In many environments (e.g., Web browsers), the SVG document
fragment has a final compositing step where the document as a whole is blended translucently into the background
canvas.

5 Document Structure

<+
e
(o)
g
<
S
S
O
Q)
2

Contents

5.1 Defining an SVG document fragment: the ‘svg’ element
5.1.1 Overview
5.1.2 The ‘svg’ element
5.2 Grouping: the ‘g’ element
5.2.1 Overview
5.2.2 The ‘g’ element
5.3 Defining content for reuse, and the ‘defs’ element

5.3.1 Overview
5.3.2 The “defs’ element
5.4 The ‘desc’ and ‘title’ elements
5.5 The ‘symbol’ element
5.6 The ‘use’ element
5.7 The ‘image’ element
5.8 Conditional processing
5.8.1 Conditional processing overview
5.8.2 The ‘switch’ element
5.8.3 The ‘requiredFeatures’ attribute
5.8.4 The ‘requiredExtensions’ attribute
5.8.5 The ‘systemLanguage’ attribute
5.8.6 Applicability of test attributes
5.9 Specifying whether external resources are required for proper rendering
5.10 Common attributes
5.10.1 Attributes common to all elements: ‘id” and ‘xml:base’
5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes
5.11 DOM interfaces
5.11.1 Interface SVGDocument
5.11.2 Interface SVGSVGElement
5.11.3 Interface SVGGElement
5.11.4 Interface SVGDefsElement
5.11.5 Interface SVGDescElement
5.11.6 Interface SVGTitleElement
5.11.7 Interface SVGSymbolElement
5.11.8 Interface SVGUseElement
5.11.9 Interface SVGElementInstance
5.11.10 Interface SVGElementInstanceList
5.11.11 Interface SVGImageElement

o
o
(@]
g
=7
S
S
)
oM
S

5.11.12 Interface SVGSwitchElement
5.11.13 Interface GetSVGDocument

5.1 Defining an SVG document fragment: the ‘svg’ element

5.1.1 Overview

An SVG document fragment consists of any number of SVG elements contained within an ‘svg’ element.

An SVG document fragment can range from an empty fragment (i.e., no content inside of the ‘svg’ element),
to a very simple SVG document fragment containing a single SVG graphics element such as a ‘rect’, to a complex,
deeply nested collection of container elements and graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG
document fragment is an SVG document, or it can be embedded inline as a fragment within a parent XML docu-
ment.

The following example shows simple SVG content embedded inline as a fragment within a parent XML
document. Note the use of XML namespaces to indicate that the ‘svg’ and ‘ellipse’ elements belong to the SVG

namespace:

<?xml version="1.0" standalone="yes"?>
<parent xmlns="http://example.org"
xmlns:svg="http://www.w3.0rg/2000/svg">
<!-- parent contents here -->
<svg:svg width="4cm" height="8cm" version="1.1">
<svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="lcm" />
</svg:svg>
<l-- ... -->
</parent>

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG
document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="5cm" height="4cm" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Four separate rectangles
</desc>
<rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>
<rect x="0.5cm" y="2cm" width="1lcm" height="1.5cm"/>
<rect x="3cm" y="0.5cm" width="1.5cm" height="2cm"/>
<rect x="3.5cm" y="3cm" width="1lcm" height="0.5cm"/>

<!-- Show outline of canvas using 'rect' element -->
<rect x=".01lcm" y=".01lcm" width="4.98cm" height="3.98cm"
fill="none" stroke="blue" stroke-width=".02cm" />

</svg>

‘svg’ elements can appear in the middle of SVG content. This is the mechanism by which SVG document fragments
can be embedded within other SVG document fragments.

Another use for ‘svg’ elements within the middle of SVG content is to establish a new viewport. (See Estab-
lishing a new viewport.)

In all cases, for compliance with the Namespaces in XML Recommendation [XML-NS], an SVG namespace

http://www.w3.org/TR/2006/REC-xml-names-20060816/

o
o
(@]
g
=7
S
S
)
oM
S

declaration must be provided so that all SVG elements are identified as belonging to the SVG namespace. The fol-
lowing are possible ways to provide a namespace declaration. An ‘xmlns’ attribute without a namespace prefix
could be specified on an ‘svg’ element, which means that SVG is the default namespace for all elements within the
scope of the element with the ‘xmlns’ attribute:

<svg xmlns="http://www.w3.0rg/2000/svg" ..>
<rect ../>
</svg>

If a namespace prefix is specified on the ‘xmlns’ attribute (e.g., xmlns:svg="http://www.w3.0rg/2000/svg"),
then the corresponding namespace is not the default namespace, so an explicit namespace prefix must be assigned
to the elements:

<svg:svg xmlns:svg="http://www.w3.0rg/2000/svg" .>
<svg:rect ../>
</svg:svg>

Namespace prefixes can be specified on ancestor elements (illustrated in the above example). For more informa-
tion, refer to the Namespaces in XML Recommendation [XML-NS].

5.1.2 The ‘svg’ element

Categories: ‘svg’

Container element, structural element
Content model:
Any number of the following elements, in any order:
animation elements
descriptive elements
shape elements
structural elements
gradient elements
o
‘altGlyphDef’
‘clipPath’
‘color-profile’
‘cursor’
‘filter’
‘font’
‘font-face’
‘foreignObject’
‘image’
‘marker’

‘mask’

http://www.w3.org/TR/2006/REC-xml-names-20060816/

‘pattern’

‘script’

o
o
(@]
g
=7
S
S
)
oM
S

‘style’

‘switch’

‘text’

‘view’

Attributes:

conditional processing attributes
core attributes
document event attributes
graphical event attributes
presentation attributes
‘class’

‘style’
‘externalResourcesRequired’

€

X

s

y

‘width’

‘height’
‘viewBox’
‘preserveAspectRatio’
‘zoomAndPan’
‘version’
‘baseProfile’
‘contentScriptType’
‘contentStyleType’

€

X

s

y
‘width’
‘height’
‘version’
‘baseProfile’

DOM Interfaces:
SVGSVGElement

Attribute definitions:

version = "<number>"

Indicates the SVG language version to which this document fragment conforms.

In SVG 1.0 [SVG10], this attribute was fixed to the value '1.0". For SVG 1.1, the attribute should have the
value '1.1".
Animatable: no.

o
o
(@]
g
=7
S
S
)
oM
S

baseProfile = profile-name
Describes the minimum SVG language profile that the author believes is necessary to correctly render the
content. The attribute does not specify any processing restrictions; It can be considered metadata. For ex-
ample, the value of the attribute could be used by an authoring tool to warn the user when they are modify-
ing the document beyond the scope of the specified base profile. Each SVG profile should define the text that
is appropriate for this attribute.
If the attribute is not specified, the effect is as if a value of 'none’ were specified.
Animatable: no.

X = "<coordinate>"
(Has no meaning or effect on outermost svg elements.)
The x-axis coordinate of one corner of the rectangular region into which an embedded ‘svg’ element is
placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

y = "<coordinate>"
(Has no meaning or effect on outermost svg elements.)
The y-axis coordinate of one corner of the rectangular region into which an embedded ‘svg’ element is
placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

width = "<length>"
For outermost svg elements, the intrinsic width of the SVG document fragment. For embedded ‘svg’ ele-
ments, the width of the rectangular region into which the ‘svg’ element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of '100%' were specified.
Animatable: yes.

height = "<length>"
For outermost svg elements, the intrinsic height of the SVG document fragment. For embedded ‘svg’ ele-
ments, the height of the rectangular region into which the ‘svg’ element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of '100%' were specified.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"

See ‘preserveAspectRatio’.

http://www.w3.org/TR/2001/REC-SVG-20010904/

o
o
(@]
g
=7
S
S
)
oM
S

If the attribute is not specified, then the effect is as if a value of 'xMidYMid meet' were specified.
Animatable: yes.

contentScriptType = "content-type"
See 'contentScriptType'.

contentStyleType = "content-type"
See 'contentStyleType'.

zoomAndPan = "disable | magnify"
See 'zoomAndPan'.

If an SVG document is likely to be referenced as a component of another document, the author will often want to
include a ‘viewBox” attribute on the outermost svg element of the referenced document. This attribute provides a
convenient way to design SVG documents to scale-to-fit into an arbitrary viewport.

5.2 Grouping: the ‘g’ element

5.2.1 Overview

The ‘g’ element is a container element for grouping together related graphics elements.

Grouping constructs, when used in conjunction with the ‘desc’ and ‘title’ elements, provide information about
document structure and semantics. Documents that are rich in structure may be rendered graphically, as speech,
or as braille, and thus promote accessibility.

A group of elements, as well as individual objects, can be given a name using the ‘id’ attribute. Named groups
are needed for several purposes such as animation and re-usable objects.

An example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg"
version="1.1" width="5cm" height="5cm">
<desc>Two groups, each of two rectangles</desc>
<g id="groupl" fill="red">
<rect x="lcm" y="1lcm" width="1cm" height="1cm"/>
<rect x="3cm" y="1lcm" width="1cm" height="1cm"/>
</g>
<g id="group2" fill="blue">
<rect x="lcm" y="3cm" width="1cm" height="1cm"/>
<rect x="3cm" y="3cm" width="1lcm" height="1cm"/>
</g>

<!-- Show outline of canvas using 'rect' element -->
<rect x=".0lcm" y=".01lcm" width="4.98cm" height="4.98cm"
fill="none" stroke="blue" stroke-width=".02cm"/>
</svg>

A ‘g’ element can contain other ‘g’ elements nested within it, to an arbitrary depth. Thus, the following is possible:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg xmlns="http://www.w3.0rg/2000/svg"
version="1.1" width="4in" height="3in">
<desc>Groups can nest</desc>
<g>
<g>
<g>
</g>
</g>
</g>
</svg>

o
o
(@]
g
=7
S
S
)
oM
S

Any element that is not contained within a ‘g’ is treated (at least conceptually) as if it were in its own group.

5.2.2 The ‘g’ element

Categories:

Container element, structural element

Content model:

Any number of the following elements, in any order:
animation elements
descriptive elements
shape elements
structural elements
gradient elements
o
‘altGlyphDef”
‘clipPath’
‘color-profile’
‘cursor’

‘filter’

‘font’

‘font-face’

‘foreignObject’

‘image’

‘marker’

‘mask’

‘pattern’

‘script’

‘style’

‘switch’

‘text’

‘view’
Attributes:

conditional processing attributes

o
o
(@]
g
=7
S
S
)
oM
S

core attributes

graphical event attributes
presentation attributes
‘class’

‘style’
‘externalResourcesRequired’

‘transform’

DOM Interfaces:
SVGGElement

5.3 Defining content for reuse, and the ‘defs’ element

5.3.1 Overview

SVG allows graphical objects to be defined for later reuse. To do this, it makes extensive use of IRI references
[RFC3987] to these other objects. For example, to fill a rectangle with a linear gradient, you first define a ‘lin-
earGradient’ element and give it an ID, as in:

<linearGradient id="MyGradient">...</linearGradient>

You then reference the linear gradient as the value of the ‘fill’ property for the rectangle, as in:

<rect style="fill:url(#MyGradient)"/>

Some types of element, such as gradients, will not by themselves produce a graphical result. They can therefore
be placed anywhere convenient. However, sometimes it is desired to define a graphical object and prevent it from
being directly rendered. it is only there to be referenced elsewhere. To do this, and to allow convenient grouping
defined content, SVG provides the ‘defs’ element.

It is recommended that, wherever possible, referenced elements be defined inside of a ‘defs’ element. Among
the elements that are always referenced: ‘altGlyphDef’, ‘clipPath’, ‘cursor’, ‘filter’, ‘linearGradient’, ‘marker’, ‘mask’,
‘pattern’, ‘radialGradient” and ‘symbol’. Defining these elements inside of a ‘defs’ element promotes understandab-
ility of the SVG content and thus promotes accessibility.

5.3.2 The ‘defs’ element

Categories: ‘defs’
Container element, structural element

Content model:
Any number of the following elements, in any order:

animation elements
descriptive elements

o
o
(@]
g
=7
S
S
)
oM
S

shape elements
structural elements
gradient elements
o’

‘altGlyphDef”
‘clipPath’
‘color-profile’
‘cursor’

‘filter’

‘font’

‘font-face’

‘foreignObject’

‘image’

‘marker’

‘mask’

‘pattern’

‘script’

‘style’

‘switch’

‘text’

‘view’

Attributes:

conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’

‘transform’

DOM Interfaces:
SVGDefsElement

The ‘defs’ element is a container element for referenced elements. For understandability and accessibility reasons,
it is recommended that, whenever possible, referenced elements be defined inside of a ‘defs’.

The content model for ‘defs’ is the same as for the ‘g’ element; thus, any element that can be a child of a ‘g’
can also be a child of a ‘defs’, and vice versa.

o
o
(@]
g
=7
S
S
)
oM
S

Elements that are descendants of a ‘defs’ are not rendered directly; they are prevented from becoming part of
the rendering tree just as if the ‘defs” element were a ‘g’ element and the ‘display’ property were set to none. Note,
however, that the descendants of a ‘defs’ are always present in the source tree and thus can always be referenced
by other elements; thus, the value of the ‘display’ property on the ‘defs’ element or any of its descendants does not
prevent those elements from being referenced by other elements.

To provide some SVG user agents with an opportunity to implement efficient implementations in streaming
environments, creators of SVG content are encouraged to place all elements which are targets of local IRI referen-
ces within a ‘defs’ element which is a direct child of one of the ancestors of the referencing element. For example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="8cm" height="3cm"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Local URI references within ancestor's ‘'defs' element.</desc>
<defs>
<linearGradient id="Gradient01l">
<stop offset="20%" stop-color="#39F" />
<stop offset="90%" stop-color="#F3F" />
</linearGradient>
</defs>
<rect x="1lcm" y="1lcm" width="6cm" height="1cm"
fill="url(#Gradient0l)" />
<!-- Show outline of canvas using 'rect' element -->
<rect x=".0lcm" y=".01lcm" width="7.98cm" height="2.98cm"
fill="none" stroke="blue" stroke-width=".02cm" />

</svg>

In the document above, the linear gradient is defined within a ‘defs’ element which is the direct child of the ‘svg’
element, which in turn is an ancestor of the ‘rect’ element which references the linear gradient. Thus, the above

document conforms to the guideline.

5.4 The ‘desc’ and ‘title’ elements

Categories: ‘desc’
Descriptive element

Content model:
Any elements or character data.

Attributes:
core attributes
‘class’

‘style’

DOM Interfaces:
SVGDescElement

o
o
(@]
g
=7
S
S
)
oM
S

Categories: ‘title’
Descriptive element

Content model:
Any elements or character data.

Attributes:
core attributes
‘class’

‘style’

DOM Interfaces:
SVGTitleElement

Each container element or graphics element in an SVG drawing can supply a ‘desc’ and/or a ‘title’ description
string where the description is text-only. When the current SVG document fragment is rendered as SVG on visual
media, ‘desc’ and ‘title” elements are not rendered as part of the graphics. User agents may, however, for example,
display the ‘title’ element as a tooltip, as the pointing device moves over particular elements. Alternate present-
ations are possible, both visual and aural, which display the ‘desc’ and ‘title’ elements but do not display ‘path’
elements or other graphics elements. This is readily achieved by using a different (perhaps user) style sheet. For
deep hierarchies, and for following ‘use’ element references, it is sometimes desirable to allow the user to control
how deep they drill down into descriptive text.

In conforming SVG document fragments, any ‘title’ element should be the first child element of its parent.
Note that those implementations that do use ‘title’ to display a tooltip often will only do so if the ‘title’ is indeed
the first child element of its parent.

The following is an example. In typical operation, the SVG user agent would not render the ‘desc’ and ‘title’
elements but would render the remaining contents of the ‘g’ element.

<?xml version="1.0" standalone="no"?>
<!IDOCTYPE svg SYSTEM "http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg"
version="1.1" width="4in" height="3in">
<g>
<title>Company sales by region</title>
<desc>
This is a bar chart which shows
company sales by region.

</desc>
<!-- Bar chart defined as vector data -->
</g>
</svg>

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xml version="1.0" standalone="yes"?>
<svg xmlns="http://www.w3.0rg/2000/svg"
version="1.1" width="4in" height="3in">
<desc xmlns:mydoc="http://example.org/mydoc">

o
o
(@]
g
=7
S
S
)
oM
S

<mydoc:title>This is an example SVG file</mydoc:title>
<mydoc:para>The global description uses markup from the
<mydoc:emph>mydoc</mydoc:emph> namespace.</mydoc:para>
</desc>
<g>
<!-- the picture goes here -->
</g>
</svg>

Authors should always provide a ‘title’ child element to the outermost svg element within a stand-alone SVG doc-
ument. The ‘title’ child element to an ‘svg’ element serves the purposes of identifying the content of the given
SVG document fragment. Since users often consult documents out of context, authors should provide context-rich
titles. Thus, instead of a title such as "Introduction”, which doesn't provide much contextual background, authors
should supply a title such as "Introduction to Medieval Bee-Keeping" instead. For reasons of accessibility, user
agents should always make the content of the ‘title’ child element to the outermost svg element available to users.
The mechanism for doing so depends on the user agent (e.g., as a caption, spoken).

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restric-
tion on the placement or number of the ‘desc’ and ‘title’ sub-elements. This flexibility is only present so that there
will be a consistent content model for container elements, because some container elements in SVG allow for
mixed content, and because the mixed content rules for XML ([XML10], section 3.2.2) do not permit the desired
restrictions. Representations of future versions of the SVG language might use more expressive representations
than DTDs which allow for more restrictive mixed content rules. It is strongly recommended that at most one
‘desc’ and at most one ‘title’ element appear as a child of any particular element, and that these elements appear
before any other child elements (except possibly ‘metadata’ elements) or character data content. If user agents need
to choose among multiple ‘desc’ or ‘title’ elements for processing (e.g., to decide which string to use for a tooltip),
the user agent shall choose the first one.

5.5 The ‘symbol’ element

Categories: ‘symbol’
Container element, structural element

Content model:
Any number of the following elements, in any order:
animation elements
descriptive elements
shape elements
structural elements
gradient elements
o’
‘altGlyphDef”
‘clipPath’

‘color-profile’

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-mixed-content

. g
cursor
“filter’
‘font’

‘font-face’

o
o
(@]
g
=7
S
S
)
oM
S

‘foreignObject’
‘image’
‘marker’
‘mask’
‘pattern’
‘script’

‘style’

‘switch’

‘text’
‘view’
Attributes:

core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘preserveAspectRatio’

‘viewBox’

DOM Interfaces:
SVGSymbolElement

The ‘symbol’ element is used to define graphical template objects which can be instantiated by a ‘use’ element.
The use of ‘symbol” elements for graphics that are used multiple times in the same document adds structure
and semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille, and thus
promote accessibility.
The key distinctions between a ‘symbol’ and a ‘g’ are:

o A ‘symbol’ element itself is not rendered. Only instances of a ‘symbol’ element (i.e., a reference to a ‘symbol’
by a ‘use’ element) are rendered.

o A ‘symbol’ element has attributes ‘viewBox’ and ‘preserveAspectRatio’ which allow a ‘symbol’ to scale-to-fit
within a rectangular viewport defined by the referencing ‘use’ element.

Closely related to the ‘symbol’ element are the ‘marker’ and ‘pattern’ elements.
‘symbol’ elements are never rendered directly; their only usage is as something that can be referenced using

o
o
(@]
g
=7
S
S
)
oM
S

the ‘use’ element. The ‘display’ property does not apply to the ‘symbol’ element; thus, ‘symbol’ elements are not
directly rendered even if the ‘display’ property is set to a value other than none, and ‘symbol’ elements are avail-
able for referencing even when the ‘display’ property on the ‘symbol” element or any of its ancestors is set to none.

5.6 The ‘use’ element

Categories: ‘use’
Graphics element, graphics referencing element, structural element

Content model:
Any number of the following elements, in any order:
animation elements
descriptive elements

Attributes:
core attributes
conditional processing attributes
graphical event attributes
presentation attributes
xlink attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’

s

X

y

‘width’
‘height’
‘xlink:href’

DOM Interfaces:
SVGUseElement

Any ‘svg’, ‘symbol’, ‘g’, graphics element or other ‘use’ is potentially a template object that can be re-used (i.e.,
"instanced") in the SVG document via a ‘use’ element. The ‘use’ element references another element and indicates
that the graphical contents of that element is included/drawn at that given point in the document.

Unlike ‘image’, the ‘use’ element cannot reference entire files.

The ‘use’ element has optional attributes ‘x’, ‘y’, ‘width” and ‘height” which are used to map the graphical con-
tents of the referenced element onto a rectangular region within the current coordinate system.

The effect of a ‘use’ element is as if the contents of the referenced element were deeply cloned into a separate
non-exposed DOM tree which had the ‘use’ element as its parent and all of the ‘use’ element's ancestors as its

higher-level ancestors. Because the cloned DOM tree is non-exposed, the SVG Document Object Model (DOM)

o
o
(@]
g
=7
S
S
)
oM
S

only contains the ‘use’ element and its attributes. The SVG DOM does not show the referenced element's contents
as children of ‘use’ element.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced element into
a non-exposed DOM tree also copies any property values resulting from the CSS cascade ([CSS2], chapter 6) on
the referenced element and its contents. CSS2 selectors can be applied to the original (i.e., referenced) elements
because they are part of the formal document structure. CSS2 selectors cannot be applied to the (conceptually)
cloned DOM tree because its contents are not part of the formal document structure.

Property inheritance, however, works as if the referenced element had been textually included as a deeply
cloned child of the ‘use’ element. The referenced element inherits properties from the ‘use’ element and the ‘use’
element's ancestors. An instance of a referenced element does not inherit properties from the referenced element's
original parents.

If event attributes are assigned to referenced elements, then the actual target for the event will be the SVGEle-
mentInstance object within the "instance tree" corresponding to the given referenced element.

The event handling for the non-exposed tree works as if the referenced element had been textually included
as a deeply cloned child of the ‘use’ element, except that events are dispatched to the SVGElementInstance objects.
The event's target and currentTarget attributes are set to the SVGElementInstance that corresponds to the target
and current target elements in the referenced subtree. An event propagates through the exposed and non-exposed
portions of the tree in the same manner as it would in the regular document tree: first going from the root ele-
ment to the ‘use’ element and then through non-exposed tree elements in the capture phase, followed by the target
phase at the target of the event, then bubbling back through non-exposed tree to the use element and then back
through regular tree to the root element in bubbling phase.

An element and all its corresponding SVGElementInstance objects share an event listener list. The currentTar-
get attribute of the event can be used to determine through which object an event listener was invoked.

The behavior of the ‘visibility’ property conforms to this model of property inheritance. Thus, specifying 'vis-
ibility:hidden' on a ‘use’ element does not guarantee that the referenced content will not be rendered. If the ‘use’
element specifies 'visibility:hidden' and the element it references specifies 'visibility:hidden' or 'visibility:inherit',
then that one element will be hidden. However, if the referenced element instead specifies 'visibility:visible', then
that element will be visible even if the ‘use’ element specifies 'visibility:-hidden'.

Animations on a referenced element will cause the instances to also be animated.

A ‘use’ element has the same visual effect as if the ‘use’ element were replaced by the following generated
content:

o If the ‘use’ element references a ‘symbol’ element:

In the generated content, the ‘use’ will be replaced by ‘g’, where all attributes from the ‘use’ element except
for ‘x’, 'y’, ‘width’, ‘height’ and ‘xlink:href” are transferred to the generated ‘g’ element. An additional trans-
formation translate(x,y) is appended to the end (i.e., right-side) of the ‘transform’ attribute on the generated
‘e’, where x and y represent the values of the ‘x” and 'y’ attributes on the ‘use’ element. The referenced ‘sym-
bol’ and its contents are deep-cloned into the generated tree, with the exception that the ‘symbol’ is replaced
by an ‘svg’. This generated ‘svg’ will always have explicit values for attributes ‘width’ and ‘height’. If attrib-
utes ‘width’ and/or ‘height’ are provided on the ‘use’ element, then these attributes will be transferred to the

generated ‘svg’. If attributes ‘width’ and/or ‘height’ are not specified, the generated ‘svg’ element will use val-

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html

ues of '100%' for these attributes.

o If the ‘use’ element references an ‘svg’ element:

o
o
(@]
g
=7
S
S
)
oM
S

In the generated content, the ‘use’ will be replaced by ‘g’, where all attributes from the ‘use’ element except
for ‘x’, ‘y’, ‘width’, ‘height’ and ‘xlink:href’ are transferred to the generated ‘g’ element. An additional trans-
formation translate(x,y) is appended to the end (i.e., right-side) of the ‘transform’ attribute on the generated
‘g’, where x and y represent the values of the ‘x’ and ‘y’ attributes on the ‘use’ element. The referenced ‘svg’
and its contents are deep-cloned into the generated tree. If attributes ‘width’ and/or ‘height’ are provided on
the ‘use’ element, then these values will override the corresponding attributes on the ‘svg’ in the generated
tree.

o Otherwise:

In the generated content, the ‘use’ will be replaced by ‘g’, where all attributes from the ‘use’ element except

€3 3

for ‘x’, ‘y’, ‘width’, ‘height’ and ‘xlink:href” are transferred to the generated ‘g’ element. An additional trans-
formation translate(x,y) is appended to the end (i.e., right-side) of the ‘transform’ attribute on the generated
‘g’, where x and y represent the values of the x” and ‘y’ attributes on the ‘use’ element. The referenced object
and its contents are deep-cloned into the generated tree.

For user agents that support Styling with CSS, the generated ‘g’ element carries along with it the "cascaded" prop-
erty values on the ‘use’ element which result from the CSS cascade ([CSS2], chapter 6). Additionally, the copy
(deep clone) of the referenced resource carries along with it the "cascaded" property values resulting from the CSS
cascade on the original (i.e., referenced) elements. Thus, the result of various CSS selectors in combination with
the ‘class’ and ‘style’ attributes are, in effect, replaced by the functional equivalent of a ‘style’ attribute in the gen-
erated content which conveys the "cascaded" property values.

Example Use01 below has a simple ‘use’ on a ‘rect’.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink">
<desc>Example Use@l - Simple case of 'use' on a 'rect'</desc>
<defs>
<rect id="MyRect" width="60" height="10"/>
</defs>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />
<use x="20" y="10" xlink:href="#MyRect" />
</svg>

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html

Example Use01

o
o
(@]
g
=7
S
S
)
oM
S

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Example Use0l-GeneratedContent - Simple case of 'use' on a 'rect'</desc>
<!-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<!-- Start of generated content. Replaces 'use' -->
<g transform="translate(20,10)">
<rect width="60" height="10"/>
</g>
<!-- End of generated content -->

</svg>

Example Use02 below has a ‘use’ on a ‘symbol’.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink">
<desc>Example Use@2 - 'use' on a 'symbol'</desc>
<defs>
<symbol id="MySymbol" viewBox="0 0 20 20">
<desc>MySymbol - four rectangles in a grid</desc>
<rect x="1" y="1" width="8" height="8"/>
<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" width="8" height="8"/>
</symbol>
</defs>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />
<use x="45" y="10" width="10" height="10"
xlink:href="#MySymbol" />

</svg>

Example Use02

o
o
(@]
g
=7
S
S
)
oM
S

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Example Use02-GeneratedContent - 'use' on a 'symbol'</desc>

<l-- 'defs' section left out -->

<rect x=".1" y=",1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<l-- Start of generated content. Replaces -->
<g transform="translate(45, 10)" >
<!-- Start of referenced 'symbol'. 'symbol' replaced by
with x,y,width,height=0,0,100%,100% -->
<svg width="10" height="10"
viewBox="0 0 20 20">
<rect x="1" y="1" width="8" height="8"/>
<rect x="11" y="1" width="8" height="8"/>
<rect x="1" y="11" width="8" height="8"/>
<rect x="11" y="11" width="8" height="8"/>
</svg>
<!-- End of referenced symbol -->
</g>
<!-- End of generated content -->

use

svg',

</svg>

Example Use03 illustrates what happens when a ‘use’ has a ‘transform’ attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink">

<desc>Example Use0@3 - 'use' with a 'transform' attribute</desc>
<defs>

<rect id="MyRect" x="0" y="0" width="60" height="10"/>
</defs>

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />
<use xlink:href="#MyRect"
transform="translate(20,2.5) rotate(10)" />
</svg>

Example Use03

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Example Use03-GeneratedContent - 'use' with a 'transform' attribute</desc>

<!-- 'defs' section left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-width=".2" />

<!-- Start of generated content. Replaces 'use' -->
<g transform="translate(20,2.5) rotate(10)">
<rect x="0" y="0" width="60" height="10"/>
</g>
<!-- End of generated content -->

<+
e
(o)
g
<
S
S
O
Q)
2

</svg>

Example Use04 illustrates a ‘use’ element with various methods of applying CSS styling.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="12cm" height="3cm" viewBox="0 0 1200 300" version="1.1"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink">
<desc>Example Use04 - 'use' with CSS styling</desc>
<defs style=" /* rule 9 */ stroke-miterlimit: 10" >
<path id="MyPath" d="M300 50 L9060 50 L9060 250 L300 250"
class="MyPathClass"
style=" /* rule 10 */ stroke-dasharray:300,100" />

</defs>
<style type="text/css">
<! [CDATA[
/* rule 1 */ #MyUse { fill: blue }
/* rule 2 */ #MyPath { stroke: red }
/* rule 3 */ use { fill-opacity: .5 }
/* rule 4 */ path { stroke-opacity: .5 }
/* rule 5 */ .MyUseClass { stroke-linecap: round }
/* rule 6 */ .MyPathClass { stroke-linejoin: bevel }
/* rule 7 */ use > path { shape-rendering: optimizeQuality }
/* rule 8 */ g > path { visibility: hidden }
11>
</style>

<rect x="0" y="0" width="1200" height="300"
style="fill:none; stroke:blue; stroke-width:3"/>

<g style=" /* rule 11 */ stroke-width:40">

<use id="MyUse" xlink:href="#MyPath"

class="MyUseClass"
style="/* rule 12 */ stroke-dashoffset:50" />

</g>

</svg>

Example Use04

The visual effect would be equivalent to the following document. Observe that some of the style rules above apply
to the generated content (i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules which do not affect
the generated content are:

o Rules 7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus, these
selectors will not yield a match.

o Rule 9: The generated tree only inherits from the ancestors of the ‘use’ element and does not inherit from the
ancestors of the referenced element; thus, this rule does not affect the generated content.

o
o
(@]
g
=7
S
S
)
oM
S

In the generated content below, the selectors that yield a match have been transferred into inline ‘style’ attributes
for illustrative purposes.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="12cm" height="3cm" viewBox="0 0 1200 300"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Example Use04-GeneratedContent - 'use' with a 'transform' attribute</desc>

<!-- 'style' and 'defs' sections left out -->
<rect x="0" y="0" width="1200" height="300"

style="fill:none; stroke:blue; stroke-width:3"/>
<g style="/* rule 11 */ stroke-width:40">

<!-- Start of generated content. Replaces 'use' -->
<g style="/* rule 1 */ fill:blue;
/* rule 3 */ fill-opacity:.5;
/* rule 5 */ stroke-linecap:round;
/* rule 12 */ stroke-dashoffset:50" >
<path d="M300 50 L9006 50 L9600 250 L300 250"
style="/* rule 2 */ stroke:red;
/* rule 4 */ stroke-opacity:.5;
/* rule 6 */ stroke-linejoin: bevel;
/* rule 10 */ stroke-dasharray:300,100" />
</g>
<!-- End of generated content -->

</g9>
</svg>
When a ‘use’ references another element which is another ‘use’ or whose content contains a ‘use’ element, then

the deep cloning approach described above is recursive. However, a set of references that directly or indirectly
reference a element to create a circular dependency is an error, as described in References and the ‘defs’ element.

Attribute definitions:

X = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced element is placed. A negative value is an error
(see Error processing). A value of zero disables rendering of this element.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the referenced element is placed. A negative value is an error
(see Error processing). A value of zero disables rendering of this element.
Animatable: yes.

o
o
(@]
g
=7
S
S
)
oM
S

xlink:href = "<iri>"
A IRl reference to an element/fragment within an SVG document.
Animatable: yes.

5.7 The ‘image’ element

Categories: ‘image’

Graphics element, graphics referencing element

Content model:
Any number of the following elements, in any order:
animation elements
descriptive elements

Attributes:
core attributes
conditional processing attributes
graphical event attributes
xlink attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘preserveAspectRatio’
‘transform’

€

X

()

y
‘width’
‘height’
‘xlink:href’
DOM Interfaces:
SVGImageElement

The ‘image’ element indicates that the contents of a complete file are to be rendered into a given rectangle within
the current user coordinate system. The ‘image’ element can refer to raster image files such as PNG or JPEG or to

o
o
(@]
g
=7
S
S
)
oM
S

files with MIME type of "image/svg+xml". Conforming SVG viewers need to support at least PNG, JPEG and SVG
format files.

The result of processing an ‘image’ is always a four-channel RGBA result. When an ‘image’ element references
a raster image file such as PNG or JPEG files which only has three channels (RGB), then the effect is as if the object
were converted into a 4-channel RGBA image with the alpha channel uniformly set to 1. For a single-channel
raster image, the effect is as if the object were converted into a 4-channel RGBA image, where the single channel
from the referenced object is used to compute the three color channels and the alpha channel is uniformly set to 1.

An ‘image’ element establishes a new viewport for the referenced file as described in Establishing a new
viewport. The bounds for the new viewport are defined by attributes ‘x’, ‘y’, ‘width’ and ‘height’. The placement
and scaling of the referenced image are controlled by the ‘preserveAspectRatio’ attribute on the ‘image’ element.

When an ‘image’ element references an SVG image, the ‘clip’ and ‘overflow’ properties on the root element
in the referenced SVG image are ignored (in the same manner as the ‘x’, ‘y’, ‘width” and ‘height’ attributes are ig-
nored). Unless the value of ‘preserveAspectRatio’ on the ‘image’ element starts with 'defer’, the ‘preserveAspectRa-
tio” attribute on the root element in the referenced SVG image is also ignored (see ‘preserveAspectRatio’ for details).
Instead, the ‘preserveAspectRatio’ attribute on the referencing ‘image’ element defines how the SVG image content
is fitted into the viewport and the ‘clip’ and ‘overflow’ properties on the ‘image’ element define how the SVG image
content is clipped (or not) relative to the viewport.

The value of the ‘viewBox’ attribute to use when evaluating the ‘preserveAspectRatio” attribute is defined by
the referenced content. For content that clearly identifies a viewBox (e.g. an SVG file with the ‘viewBox” attribute
on the outermost svg element) that value should be used. For most raster content (PNG, JPEG) the bounds of the
image should be used (i.e. the ‘image’ element has an implicit ‘viewBox’ of '0 0 raster-image-width raster-image-
height'). Where no value is readily available (e.g. an SVG file with no ‘viewBox’ attribute on the outermost svg
element) the ‘preserveAspectRatio’ attribute is ignored, and only the translation due to the x’ & ‘y’ attributes of
the viewport is used to display the content.

For example, if the image element referenced a PNG or JPEG and preserveAspectRatio="xMinYMin meet",
then the aspect ratio of the raster would be preserved (which means that the scale factor from image's coordinates
to current user space coordinates would be the same for both X and Y), the raster would be sized as large as pos-
sible while ensuring that the entire raster fits within the viewport, and the top/left of the raster would be aligned
with the top/left of the viewport as defined by the attributes x’, ‘y’, ‘width’ and ‘height’ on the ‘image’ element.
If the value of ‘preserveAspectRatio’ was 'mone' then aspect ratio of the image would not be preserved. The image
would be fitted such that the top/left corner of the raster exactly aligns with coordinate (‘x’, ‘y’) and the bottom/
right corner of the raster exactly aligns with coordinate (‘x’+‘width’, ‘y’+‘height’).

The resource referenced by the ‘image’ element represents a separate document which generates its own parse
tree and document object model (if the resource is XML). Thus, there is no inheritance of properties into the image.

Unlike ‘use’, the ‘image’ element cannot reference elements within an SVG file.

Attribute definitions:

X = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

o
o
(@]
g
=7
S
S
)
oM
S

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of '0' were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

xlink:href = "<iri>"
A IRI reference.
Animatable: yes.

preserveAspectRatio = "[defer] <align> [<meetOrSlice>]"
See ‘preserveAspectRatio’.
If attribute ‘preserveAspectRatio’ is not specified, then the effect is as if a value of xMidYMid meet were
specified.
Animatable: yes.

An example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="4in" height="3in" version="1.1"
xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/xlink">
<desc>This graphic links to an external image
</desc>
<image x="200" y="200" width="100px" height="100px"
xlink:href="myimage.png">
<title>My image</title>
</image>
</svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SVG contains a ‘switch’ element along with attributes ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLan-

guage’ to provide an ability to specify alternate viewing depending on the capabilities of a given user agent or the
user's language.

Attributes ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ act as tests and return either true or
false results. The ‘switch’ renders the first of its children for which all of these attributes test true. If the given at-
tribute is not specified, then a true value is assumed.

Similar to the ‘display’ property, conditional processing attributes only affect the direct rendering of elements
and do not prevent elements from being successfully referenced by other elements (such as via a ‘use’).

In consequence:

o
o
(@]
g
=7
S
S
)
oM
S

o ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes affect “a’, “altGlyph’, ‘foreignObject’,
‘textPath’, ‘tref’, and ‘tspan’ elements.

o ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes will have no effect on ‘mask’,
‘clipPath’, and ‘pattern’ elements.

o ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes do not apply to the ‘defs’, and ‘cursor’
elements because they are not part of the rendering tree.

o ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes affect ‘animate’, ‘animateColor’, ‘an-
imateMotion’, ‘animateTransform’, and ‘set’ elements. If the conditional statement on these animation ele-
ments fails, the animation will never be triggered.

5.8.2 The ‘switch’ element

Categories: ‘switch’

Container element
Content model:
Any number of the following elements, in any order:
animation elements
descriptive elements
shape elements

a

‘foreignObject’

()

g
image
Svp
‘switch’

‘text’

3 >

use

Attributes:
conditional processing attributes
core attributes

o
o
(@]
g
=7
S
S
)
oM
S

graphical event attributes
presentation attributes
‘class’

‘style’
‘externalResourcesRequired’

‘transform’

DOM Interfaces:
SVGSwitchElement

The ‘switch’ element evaluates the ‘requiredFeatures’, ‘requiredExtensions’ and ‘systemLanguage’ attributes on its
direct child elements in order, and then processes and renders the first child for which these attributes evaluate to
true. All others will be bypassed and therefore not rendered. If the child element is a container element such as a
‘g’, then the entire subtree is either processed/rendered or bypassed/not rendered.

Note that the values of properties ‘display’ and ‘visibility’ have no effect on ‘switch’ element processing. In
particular, setting ‘display’ to none on a child of a ‘switch’ element has no effect on true/false testing associated
with ‘switch’ element processing.

For more information and an example, see Embedding foreign object types.

5.8.3 The ‘requiredFeatures’ attribute
Definition of requiredFeatures:

requiredFeatures = list-of-features
The value is a list of feature strings, with the individual values separated by white space. Determines whether
all of the named features are supported by the user agent. Only feature strings defined in the Feature String
appendix are allowed. If all of the given features are supported, then the attribute evaluates to true; other-
wise, the current element and its children are skipped and thus will not be rendered.
Animatable: no.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is given
to attribute ‘requiredFeatures’, the attribute returns "false".

‘requiredFeatures’ is often used in conjunction with the ‘switch’ element. If the ‘requiredFeatures’ is used in
other situations, then it represents a simple switch on the given element whether to render the element or not.

5.8.4 The ‘requiredExtensions’ attribute

The ‘requiredExtensions’ attribute defines a list of required language extensions. Language extensions are capabil-
ities within a user agent that go beyond the feature set defined in this specification. Each extension is identified by
an IRI reference.

o
o
(@]
g
=7
S
S
)
oM
S

Definition of requiredExtensions:

requiredExtensions = list-of-extensions
The value is a list of IRI references which identify the required extensions, with the individual values sep-
arated by white space. Determines whether all of the named extensions are supported by the user agent. If
all of the given extensions are supported, then the attribute evaluates to true; otherwise, the current element
and its children are skipped and thus will not be rendered.
Animatable: no.

If a given IRI reference contains white space within itself, that white space must be escaped.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is
given to attribute ‘requiredExtensions’, the attribute returns "false".

‘requiredExtensions’ is often used in conjunction with the ‘switch’ element. If the ‘requiredExtensions’ is used
in other situations, then it represents a simple switch on the given element whether to render the element or not.

The IRI names for the extension should include versioning information, such as "http://example.org/SVGEx-
tensionXYZ/1.0", so that script writers can distinguish between different versions of a given extension.

5.8.5 The ‘systemLanguage’ attribute

The attribute value is a comma-separated list of language names as defined in BCP 47 [BCP47].

Evaluates to "true" if one of the languages indicated by user preferences exactly equals one of the languages
given in the value of this parameter, or if one of the languages indicated by user preferences exactly equals a prefix
of one of the languages given in the value of this parameter such that the first tag character following the prefix is

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in such
a way that it is always true that if a user understands a language with a certain tag, then this user will also under-
stand all languages with tags for which this tag is a prefix.

The prefix rule simply allows the use of prefix tags if this is the case.

Implementation note: When making the choice of linguistic preference available to the user, implementers
should take into account the fact that users are not familiar with the details of language matching as described
above, and should provide appropriate guidance. As an example, users may assume that on selecting "en-gb", they
will be served any kind of English document if British English is not available. The user interface for setting user
preferences should guide the user to add "en" to get the best matching behavior.

Multiple languages MAY be listed for content that is intended for multiple audiences. For example, content
that is presented simultaneously in the original Maori and English versions, would call for:

<text systemLanguage="mi, en"><!-- content goes here --></text>
However, just because multiple languages are present within the object on which the ‘systemLanguage’ test at-
tribute is placed, this does not mean that it is intended for multiple linguistic audiences. An example would be a
beginner's language primer, such as "A First Lesson in Latin," which is clearly intended to be used by an English-
literate audience. In this case, the ‘systemLanguage’ test attribute should only include "en".

Authoring note: Authors should realize that if several alternative language objects are enclosed in a ‘switch’,

http://www.ietf.org/rfc/bcp/bcp47.txt

o
o
(@]
g
=7
S
S
)
oM
S

and none of them matches, this may lead to situations where no content is displayed. It is thus recommended to
include a "catch-all" choice at the end of such a ‘switch” which is acceptable in all cases.

For the ‘systemLanguage’ attribute: Animatable: no.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is
given to attribute ‘systemLanguage’, the attribute returns "false".

‘systemLanguage’ is often used in conjunction with the ‘switch’ element. If the ‘systemLanguage’ is used in
other situations, then it represents a simple switch on the given element whether to render the element or not.

5.8.6 Applicability of test attributes

The following list describes the applicability of the test attributes to the elements that do not directly produce ren-
dering.

o the test attributes do not effect the ‘mask’, ‘clipPath’, ‘linearGradient’, ‘radialGradient’ and ‘pattern’ elements.
The test attributes on a referenced element do not affect the rendering of the referencing element.

« the test attributes do not effect the ‘defs’, and ‘cursor’ elements as they are not part of the rendering tree.

o an animation element (‘animate’, ‘animateMotion’, ‘animateTransform’, ‘animateColor’ and ‘set’) will never be
triggered if it has a test attribute that evaluates to false.

5.9 Specifying whether external resources are required for proper ren-
dering

Documents often reference and use the contents of other files (and other Web resources) as part of their rendering.
In some cases, authors want to specify that particular resources are required for a document to be considered cor-
rect.

Attribute ‘externalResourcesRequired’ is available on all container elements and to all elements which poten-
tially can reference external resources. It specifies whether referenced resources that are not part of the current
document are required for proper rendering of the given container element or graphics element.

Attribute definition:

externalResourcesRequired = "false | true"

false
(The default value.) Indicates that resources external to the current document are optional. Document
rendering can proceed even if external resources are unavailable to the current element and its des-
cendants.

true
Indicates that resources external to the current document are required. If an external resource is not
available, progressive rendering is suspended, the document's SVGLoad event is not fired and the an-

o
o
(@]
g
=7
S
S
)
oM
S

imation timeline does not begin until that resource and all other required resources become available,
have been parsed and are ready to be rendered. If a timeout event occurs on a required resource, then
the document goes into an error state (see Error processing). The document remains in an error state
until all required resources become available.

This attribute applies to all types of resource references, including style sheets, color profiles (see Color profile de-
scriptions) and fonts specified by an IRI reference using a ‘font-face’ element or a CSS @font-face specification.
In particular, if an element sets externalResourcesRequired="true", then all style sheets must be available since any
style sheet might affect the rendering of that element.

Attribute ‘externalResourcesRequired’ is not inheritable (from a sense of attribute value inheritance), but if set
on a container element, its value will apply to all elements within the container.

Because setting externalResourcesRequired="true" on a container element will have the effect of disabling pro-
gressive display of the contents of that container, if that container includes elements that reference external re-
sources, tools that generate SVG content are cautioned against simply setting externalResourcesRequired="true" on
the outermost svg element on a universal basis. Instead, it is better to specify externalResourcesRequired="true"
on those particular graphics elements or container elements which specifically need the availability of external
resources in order to render properly.

For ‘externalResourcesRequired’: Animatable: no.

5.10 Common attributes

5.10.1 Attributes common to all elements: ‘id’ and ‘xml:base’
The ‘id’ and ‘xml:base’ attributes are available on all SVG elements:
Attribute definitions:

id = "name"
Standard XML attribute for assigning a unique name to an element. Refer to the Extensible Markup Lan-
guage (XML) 1.0 Recommendation [XML10].
Animatable: no.

xml:base = "<iri>"
Specifies a base IRI other than the base IRI of the document or external entity. Refer to the XML Base spe-
cification [XML-BASE].
Animatable: no.

5.10.2 The ‘xml:lang’ and ‘xml:space’ attributes

Elements that might contain character data content have attributes ‘xml:lang’ and ‘xml:space’.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2009/REC-xmlbase-20090128/

o
o
(@]
g
=7
S
S
)
oM
S

Attribute definitions:

xml:lang = "languageID"
Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of
particular elements. Refer to the Extensible Markup Language (XML) 1.0 Recommendation [XML10].
Animatable: no.

xml:space = "{default | preserve}"
Standard XML attribute to specify whether white space is preserved in character data. The only possible
values are 'default’ and 'preserve'’. Refer to the Extensible Markup Language (XML) 1.0 Recommendation
[XML10] and to the discussion white space handling in SVG.
Animatable: no.

5.11 DOM interfaces

5.11.1 Interface SVGDocument

When an ‘svg’ element is embedded inline as a component of a document from another namespace, such as when
an ‘svg’ element is embedded inline within an XHTML document [XHTML], then an SVGDocument object will
not exist; instead, the root object in the document object hierarchy will be a Document object of a different type,
such as an HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy
is an ‘svg’ element, such as when viewing a stand-alone SVG file (i.e., a file with MIME type "image/svg+xml"). In
this case, the SVGDocument object will be the root object of the document object model hierarchy.

In the case where an SVG document is embedded by reference, such as when an XHTML document has an
‘object’” element whose ‘href” attribute references an SVG document (i.e., a document whose MIME type is "image/
svg+xml" and whose root element is thus an ‘svg’ element), there will exist two distinct DOM hierarchies. The first
DOM hierarchy will be for the referencing document (e.g., an XHTML document). The second DOM hierarchy
will be for the referenced SVG document. In this second DOM hierarchy, the root object of the document object
model hierarchy is an SVGDocument object.

The SVGDocument interface contains a similar list of attributes and methods to the HTMLDocument inter-
face described in the Document Object Model (HTML) Level 1 chapter of the [DOM1] specification.

interface SVGDocument : Document,
DocumentEvent {
readonly attribute DOMString title;
readonly attribute DOMString referrer;
readonly attribute DOMString domain;
readonly attribute DOMString URL;
readonly attribute SVGSVGElement rootElement;

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent

Attributes:

« title (readonly DOMString)

o
o
(@]
g
=7
S
S
)
oM
S

The title of a document as specified by the ‘title’ sub-element of the ‘svg’ root element (i.e., <svg><title>Here
is the title</title>...</svg>)

« referrer (readonly DOMString)

Returns the URI of the page that linked to this page. The value is an empty string if the user navigated to the
page directly (not through a link, but, for example, via a bookmark).

o domain (readonly DOMString)

The domain name of the server that served the document, or a null string if the server cannot be identified
by a domain name.

o URL (readonly DOMString)

The complete URI of the document.

« rootElement (readonly SVGSVGElement)

The root ‘svg’ in the document hierarchy.

5.11.2 Interface SVGSVGElement

A key interface definition is the SVGSVGElement interface, which is the interface that corresponds to the ‘svg’
element. This interface contains various miscellaneous commonly-used utility methods, such as matrix operations
and the ability to control the time of redraw on visual rendering devices.

SVGSVGElement extends ViewCSS and DocumentCSS to provide access to the computed values of properties
and the override style sheet as described in DOM Level 2 Style [DOM2STYLE].

interface SVGSVGElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGLocatable,
SVGFitToViewBox,
SVGZoomAndPan,
DocumentEvent,
ViewCSS,
DocumentCSS {

readonly attribute SVGAnimatedLength x;

readonly attribute SVGAnimatedLength y;

readonly attribute SVGAnimatedLength width;

readonly attribute SVGAnimatedlLength height;
attribute DOMString contentScriptType setraises(DOMException);
attribute DOMString contentStyleType setraises(DOMException);

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-ViewCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-DocumentCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-DocumentEvent
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-ViewCSS
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-DocumentCSS
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

readonly attribute SVGRect viewport;

readonly attribute float pixelUnitToMillimeterX;

readonly attribute float pixelUnitToMillimeterY;

readonly attribute float screenPixelToMillimeterX;

readonly attribute float screenPixelToMillimeterY;

readonly attribute boolean useCurrentView;

readonly attribute SVGViewSpec currentView;
attribute float currentScale;

readonly attribute SVGPoint currentTranslate;

o
o
(@]
g
=7
S
S
)
oM
S

unsigned long suspendRedraw(in unsigned long maxWaitMilliseconds);
void unsuspendRedraw(in unsigned long suspendHandleID);

void unsuspendRedrawAll();

void forceRedraw();

void pauseAnimations();

void unpauseAnimations();

boolean animationsPaused();

float getCurrentTime();

void setCurrentTime(in float seconds);

NodeList getIntersectionList(in SVGRect rect, in SVGElement referenceElement);
NodeList getEnclosureList(in SVGRect rect, in SVGElement referenceElement);
boolean checkIntersection(in SVGElement element, in SVGRect rect);
boolean checkEnclosure(in SVGElement element, in SVGRect rect);
void deselectAll();

SVGNumber createSVGNumber();

SVGLength createSVGLength();

SVGAngle createSVGAngle();

SVGPoint createSVGPoint();

SVGMatrix createSVGMatrix();

SVGRect createSVGRect();

SVGTransform createSVGTransform();

SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix);
Element getElementById(in DOMString elementId);

Attributes:
» X (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘svg’ element.

« y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘svg’ element.

o width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘svg’ element.

« height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘svg’ element.

« contentScriptType (DOMString)

Corresponds to attribute ‘contentScriptType’ on the given ‘svg’ element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

contentStyleType (DOMString)

Corresponds to attribute ‘contentStyleType’ on the given ‘svg’ element.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

viewport (readonly SVGRect)

The position and size of the viewport (implicit or explicit) that corresponds to this ‘svg’ element. When the
user agent is actually rendering the content, then the position and size values represent the actual values
when rendering. The position and size values are unitless values in the coordinate system of the parent ele-
ment. If no parent element exists (i.e., ‘svg’ element represents the root of the document tree), if this SVG
document is embedded as part of another document (e.g., via the HTML ‘object’ element), then the position
and size are unitless values in the coordinate system of the parent document. (If the parent uses CSS or XSL
layout, then unitless values represent pixel units for the current CSS or XSL viewport, as described in the
CSS2 specification.) If the parent element does not have a coordinate system, then the user agent should
provide reasonable default values for this attribute.
The SVGRect object is read only.

pixelUnitToMillimeterX (readonly float)

Size of a pixel units (as defined by CSS2) along the x-axis of the viewport, which represents a unit somewhere
in the range of 70dpi to 120dpi, and, on systems that support this, might actually match the characteristics of
the target medium. On systems where it is impossible to know the size of a pixel, a suitable default pixel size
is provided.

pixelUnitToMillimeterY (readonly float)

Corresponding size of a pixel unit along the y-axis of the viewport.

screenPixelToMillimeterX (readonly float)

User interface (UI) events in DOM Level 2 indicate the screen positions at which the given Ul event occurred.
When the user agent actually knows the physical size of a "screen unit", this attribute will express that in-
formation; otherwise, user agents will provide a suitable default value such as .28mm.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

« screenPixelToMillimeterY (readonly float)

Corresponding size of a screen pixel along the y-axis of the viewport.

o
o
(@]
g
=7
S
S
)
oM
S

o useCurrentView (readonly boolean)

The initial view (i.e., before magnification and panning) of the current innermost SVG document fragment
can be either the "standard" view (i.e., based on attributes on the ‘svg’ element such as ‘viewBox’) or to a
"custom" view (i.e., a hyperlink into a particular ‘view’ or other element - see Linking into SVG content: IRI
fragments and SVG views). If the initial view is the "standard" view, then this attribute is false. If the initial
view is a "custom" view, then this attribute is true.

o currentView (readonly SVGViewSpec)

The definition of the initial view (i.e., before magnification and panning) of the current innermost SVG doc-
ument fragment. The meaning depends on the situation:

If the initial view was a "standard" view, then:
o the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will match the
values for the corresponding DOM attributes that are on SVGSVGElement directly
o the values for transform and viewTarget within currentView will be null

o If the initial view was a link into a ‘view’ element, then:

o the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will corres-
pond to the corresponding attributes for the given ‘view’ element

o the values for transform and viewTarget within currentView will be null

o If the initial view was a link into another element (i.e., other than a ‘view’), then:

o the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will match the
values for the corresponding DOM attributes that are on SVGSVGElement directly for the closest
ancestor ‘svg’ element

o the values for transform within currentView will be null

o the viewTarget within currentView will represent the target of the link

o Ifthe initial view was a link into the SVG document fragment using an SVG view specification fragment
identifier (i.e., #svgView(...)), then:

o the values for viewBox, preserveAspectRatio, zoomAndPan, transform and viewTarget within cur-
rentView will correspond to the values from the SVG view specification fragment identifier

The object itself and its contents are both read only.

« currentScale (float)

On an outermost svg element, this attribute indicates the current scale factor relative to the initial view
to take into account user magnification and panning operations, as described under Magnification and
panning. DOM attributes currentScale and currentTranslate are equivalent to the 2x3 matrix [ab cd e f]

= [currentScale 0 0 currentScale currentTranslate.x currentTranslate.y]. If "magnification” is enabled (i.e.,
zoomAndPan="magnify"), then the effect is as if an extra transformation were placed at the outermost level
on the SVG document fragment (i.e., outside the outermost svg element).

When accessed on an ‘svg’ element that is not an outermost svg element, it is undefined what behavior this
attribute has.

o
o
(@]
g
=7
S
S
)
oM
S

« currentTranslate (readonly SVGPoint)

On an outermost svg element, the corresponding translation factor that takes into account user "magnifica-
tion".

When accessed on an ‘svg’ element that is not an outermost svg element, it is undefined what behavior this
attribute has.

Operations:

« unsigned long suspendRedraw(in unsigned long maxWaitMilliseconds)
Takes a time-out value which indicates that redraw shall not occur until:
1. the corresponding unsuspendRedraw() call has been made,

2. an unsuspendRedrawAll() call has been made, or
3. its timer has timed out.

In environments that do not support interactivity (e.g., print media), then redraw shall not be suspended.
Calls to suspendRedraw() and unsuspendRedraw() should, but need not be, made in balanced pairs.

To suspend redraw actions as a collection of SVG DOM changes occur, precede the changes to the SVG
DOM with a method call similar to:

suspendHandleID = suspendRedraw(maxWaitMilliseconds);

and follow the changes with a method call similar to:

unsuspendRedraw(suspendHandlelD) ;

Note that multiple suspendRedraw calls can be used at once and that each such method call is treated inde-
pendently of the other suspendRedraw method calls.

Parameters
« unsigned long maxWaitMilliseconds

The amount of time in milliseconds to hold off before redrawing the device. Values greater than 60
seconds will be truncated down to 60 seconds.

o
o
(@]
g
=7
S
S
)
oM
S

Returns
A number which acts as a unique identifier for the given suspendRedraw() call. This value must be
passed as the parameter to the corresponding unsuspendRedraw() method call.

void unsuspendRedraw(in unsigned long suspendHandleID)

Cancels a specified suspendRedraw() by providing a unique suspend handle ID that was returned by a pre-
vious suspendRedraw() call.

Parameters

o unsigned long suspendHandleID
A number which acts as a unique identifier for the desired suspendRedraw() call. The number supplied
must be a value returned from a previous call to suspendRedraw(). If an invalid handle ID value is
provided then the request to unsuspendRedraw() is silently ignored.

void unsuspendRedrawAll()

Cancels all currently active suspendRedraw() method calls. This method is most useful at the very end of a
set of SVG DOM calls to ensure that all pending suspendRedraw() method calls have been cancelled.

void forceRedraw()

In rendering environments supporting interactivity, forces the user agent to immediately redraw all regions
of the viewport that require updating.

void pauseAnimations()

Suspends (i.e., pauses) all currently running animations that are defined within the SVG document fragment
corresponding to this ‘svg’ element, causing the animation clock corresponding to this document fragment
to stand still until it is unpaused.

void unpauseAnimations()

Unsuspends (i.e., unpauses) currently running animations that are defined within the SVG document frag-
ment, causing the animation clock to continue from the time at which it was suspended.

boolean animationsPaused()
Returns true if this SVG document fragment is in a paused state.

Returns
Boolean indicating whether this SVG document fragment is in a paused state.

o
o
(@]
g
=7
S
S
)
oM
S

« float getCurrentTime()

Returns the current time in seconds relative to the start time for the current SVG document fragment. If
getCurrentTime is called before the document timeline has begun (for example, by script running in a ‘script’
element before the document's SVGLoad event is dispatched), then 0 is returned.

Returns
The current time in seconds, or 0 if the document timeline has not yet begun.

« void setCurrentTime(in float seconds)

Adjusts the clock for this SVG document fragment, establishing a new current time. If setCurrentTime is
called before the document timeline has begun (for example, by script running in a ‘script’ element before
the document's SVGLoad event is dispatched), then the value of seconds in the last invocation of the method
gives the time that the document will seek to once the document timeline has begun.

Parameters

« float seconds
The new current time in seconds relative to the start time for the current SVG document fragment.

» NodeList getIntersectionList(in SVGRect rect, in SVGElement referenceElement)

Returns the list of graphics elements whose rendered content intersects the supplied rectangle. Each candid-
ate graphics element is to be considered a match only if the same graphics element can be a target of pointer
events as defined in ‘pointer-events’ processing.

Parameters

» SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

o SVGElement referenceElement
If not null, then any intersected element that doesn't have the referenceElement as ancestor must not
be included in the returned NodeList.

Returns
A list of Elements whose content intersects the supplied rectangle. This NodeList must be implemented
identically to the NodeList interface as defined in DOM Level 2 Core ([DOM?2], section 1.2) with the
exception that the interface is not live.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#td-live

o
o
(@]
g
=7
S
S
)
oM
S

» NodeList getEnclosureList(in SVGRect rect, in SVGElement referenceElement)

Returns the list of graphics elements whose rendered content is entirely contained within the supplied rect-
angle. Each candidate graphics element is to be considered a match only if the same graphics element can be
a target of pointer events as defined in ‘pointer-events’ processing.

Parameters

o SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

o SVGElement referenceElement
If not null, then any intersected element that doesn't have the referenceElement as ancestor must not
be included in the returned NodeList.

Returns
A list of Elements whose content is enclosed by the supplied rectangle. This NodeList must be imple-
mented identically to the NodeList interface as defined in DOM Level 2 Core ([DOM2], section 1.2)
with the exception that the interface is not live.

« boolean checkIntersection(in SVGElement element, in SVGRect rect)

Returns true if the rendered content of the given element intersects the supplied rectangle. Each candidate
graphics element is to be considered a match only if the same graphics element can be a target of pointer
events as defined in ‘pointer-events’ processing.

Parameters

o SVGElement element
The element on which to perform the given test.

» SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

Returns
True or false, depending on whether the given element intersects the supplied rectangle.

« boolean checkEnclosure(in SVGElement element, in SVGRect rect)

Returns true if the rendered content of the given element is entirely contained within the supplied rectangle.
Each candidate graphics element is to be considered a match only if the same graphics element can be a tar-
get of pointer events as defined in ‘pointer-events’ processing.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-536297177
http://www.w3.org/TR/DOM-Level-2-Core/core.html#td-live

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

o SVGElement element
The element on which to perform the given test.

o SVGRect rect
The test rectangle. The values are in the initial coordinate system for the current ‘svg’ element.

Returns
True or false, depending on whether the given element is enclosed by the supplied rectangle.

void deselectAll()

Unselects any selected objects, including any selections of text strings and type-in bars.

SVGNumber createSVGNumber()

Creates an SVGNumber object outside of any document trees. The object is initialized to a value of zero.

Returns
An SVGNumber object.

SVGLength createSVGLength()
Creates an SVGLength object outside of any document trees. The object is initialized to the value of 0 user

units.

Returns
An SVGLength object.

SVGAngle createSVGAngle()
Creates an SVGAngle object outside of any document trees. The object is initialized to the value 0 degrees

(unitless).

Returns
An SVGAngle object.

SVGPoint createSVGPoint()

Creates an SVGPoint object outside of any document trees. The object is initialized to the point (0,0) in the
user coordinate system.

o
o
(@]
g
=7
S
S
)
oM
S

Returns
An SVGPoint object.

SVGMatrix createSVGMatrix()

Creates an SVGMatrix object outside of any document trees. The object is initialized to the identity matrix.

Returns
An SVGMatrix object.

SVGRect createSVGRect()

Creates an SVGRect object outside of any document trees. The object is initialized such that all values are set
to 0 user units.

Returns
An SVGRect object.

SVGTransform createSVGTransform()
Creates an SVGTransform object outside of any document trees. The object is initialized to an identity matrix

transform (SVG_TRANSFORM_MATRIX).

Returns
An SVGTransform object.

SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix)

Creates an SVGTransform object outside of any document trees. The object is initialized to the given matrix
transform (i.e., SVG_TRANSFORM_MATRIX). The values from the parameter matrix are copied, the matrix
parameter is not adopted as SVGTransform::matrix.

Parameters

e SVGMatrix matrix
The transform matrix.

Returns
An SVGTransform object.

Element getElementByld(in DOMString elementld)

Searches this SVG document fragment (i.e., the search is restricted to a subset of the document tree) for an

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614

Element whose id is given by elementId. If an Element is found, that Element is returned. If no such element
exists, returns null. Behavior is not defined if more than one element has this id.

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

o DOMString elementld
The unique id value for an element.

Returns
The matching element.

5.11.3 Interface SVGGElement

The SVGSVGElement interface corresponds to the ‘g’ element.

interface SVGGElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

5.11.4 Interface SVGDefsElement

The SVGDefsElement interface corresponds to the ‘defs’ element.

interface SVGDefsElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

5.11.5 Interface SVGDescElement

The SVGDescElement interface corresponds to the ‘desc’ element.

interface SVGDescElement : SVGElement,
SVGLangSpace,
SVGStylable {
b

5.11.6 Interface SVGTitleElement

The SVGTitleElement interface corresponds to the ‘title’ element.

interface SVGTitleElement : SVGElement,
SVGLangSpace,
SVGStylable {
i

o
o
(@]
g
=7
S
S
)
oM
S

5.11.7 Interface SVGSymbolElement

The SVGSymbolElement interface corresponds to the ‘symbol’ element.

interface SVGSymbolElement : SVGElement,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGFitToViewBox {

b

5.11.8 Interface SVGUseElement

The SVGUseElement interface corresponds to the ‘use’ element.

interface SVGUseElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength vy;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;
readonly attribute SVGElementInstance instanceRoot;
readonly attribute SVGElementInstance animatedInstanceRoot;
b

Attributes:
o X (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘use’ element.

e y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘use’ element.

o width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘use’ element.

« height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘use’ element.

« instanceRoot (readonly SVGElementInstance)

The root of the "instance tree". See description of SVGElementInstance for a discussion on the instance tree.

o
o
(@]
g
=7
S
S
)
oM
S

« animatedInstanceRoot (readonly SVGElementInstance)

If the ‘xlink:href” attribute is being animated, contains the current animated root of the "instance tree". If the
‘xlink:href” attribute is not currently being animated, contains the same value as instanceRoot. See descrip-
tion of SVGElementInstance for a discussion on the instance tree.

5.11.9 Interface SVGElementinstance

For each ‘use’ element, the SVG DOM maintains a shadow tree (the "instance tree") of objects of type SVGEle-

mentInstance. An SVGElementInstance represents a single node in the instance tree. The root object in the instance
tree is pointed to by the instanceRoot attribute on the SVGUseElement object for the corresponding ‘use’ element.

If the ‘use’ element references a simple graphics element such as a ‘rect’, then there is only a single
SVGElementInstance object, and the correspondingFElement attribute on this SVGElementInstance object is the
SVGRectElement that corresponds to the referenced ‘rect’ element.

If the ‘use’ element references a ‘g’ which contains two ‘rect’ elements, then the instance tree contains three
SVGElementInstance objects, a root SVGElementInstance object whose correspondingElement is the SVGGEle-
ment object for the ‘g’, and then two child SVGElementInstance objects, each of which has its correspondingEle-
ment that is an SVGRectElement object.

If the referenced object is itself a ‘use’, or if there are ‘use’ subelements within the referenced object, the in-
stance tree will contain recursive expansion of the indirect references to form a complete tree. For example, if a
‘use’ element references a ‘g’, and the ‘g’ itself contains a ‘use’, and that ‘use’ references a ‘rect’, then the instance
tree for the original (outermost) ‘use’ will consist of a hierarchy of SVGElementInstance objects, as follows:

SVGElementInstance #1 (parentNode=null, firstChild=#2, correspondingElement is the 'g')
SVGElementInstance #2 (parentNode=#1, firstChild=#3, correspondingElement is the other 'use')
SVGElementInstance #3 (parentNode=#2, firstChild=null, correspondingElement is the 'rect')

interface SVGElementInstance : EventTarget {
readonly attribute SVGElement correspondingElement;
readonly attribute SVGUseElement correspondingUseElement;
readonly attribute SVGElementInstance parentNode;
readonly attribute SVGElementInstanceList childNodes;
readonly attribute SVGElementInstance firstChild;
readonly attribute SVGElementInstance lastChild;
readonly attribute SVGElementInstance previousSibling;
readonly attribute SVGElementInstance nextSibling;

b

Attributes:

« correspondingElement (readonly SVGElement)

The corresponding element to which this object is an instance. For example, if a ‘use’ element references

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Event_target

o
o
(@]
g
=7
S
S
)
oM
S

a ‘rect’ element, then an SVGElementlnstance is created, with its correspondingElement being the
SVGRectElement object for the ‘rect’ element.

correspondingUseElement (readonly SVGUseElement)

The corresponding ‘use’ element to which this SVGElementInstance object belongs. When ‘use’ elements are
nested (e.g., a ‘use’ references another ‘use’ which references a graphics element such as a ‘rect’), then the
correspondingUseElement is the outermost ‘use’ (i.e., the one which indirectly references the ‘rect’, not the
one with the direct reference).

parentNode (readonly SVGElementInstance)

The parent of this SVGElementInstance within the instance tree. All SVGElementInstance objects have a par-
ent except the SVGElementInstance which corresponds to the element which was directly referenced by the
‘use’ element, in which case parentNode is null.

childNodes (readonly SVGElementInstanceList)

An SVGElementInstanceList that contains all children of this SVGElementInstance within the instance tree.
If there are no children, this is an SVGElementInstanceList containing no entries (i.e., an empty list).

firstChild (readonly SVGElementInstance)

The first child of this SVGElementInstance within the instance tree. If there is no such SVGElementInstance,
this returns null.

lastChild (readonly SVGElementInstance)

The last child of this SVGElementInstance within the instance tree. If there is no such SVGElementInstance,
this returns null.

previousSibling (readonly SVGElementInstance)

The SVGElementInstance immediately preceding this SVGElementInstance. If there is no such SVGEle-
mentInstance, this returns null.

nextSibling (readonly SVGElementInstance)

The SVGElementInstance immediately following this SVGElementInstance. If there is no such SVGEle-
mentInstance, this returns null.

o
o
(@]
g
=7
S
S
)
oM
S

5.11.10 Interface SVGElementinstanceList

The SVGElementInstanceList interface provides the abstraction of an ordered collection of SVGElementInstance
objects, without defining or constraining how this collection is implemented.

interface SVGElementInstanceList {
readonly attribute unsigned long length;

SVGElementInstance item(in unsigned long index);

;

Attributes:

« length (readonly unsigned long)

The number of SVGElementInstance objects in the list. The range of valid child indices is 0 to length-1 in-
clusive.

Operations:

« SVGElementInstance item(in unsigned long index)

Returns the indexth item in the collection. If index is greater than or equal to the number of nodes in the list,
this returns null.

Parameters

« unsigned long index
Index into the collection.

Returns
The SVGElementInstance object at the indexth position in the SVGElementInstanceList, or null if that
is not a valid index.

5.11.11 Interface SVGImageElement

The SVGImageFlement interface corresponds to the ‘image’ element.

interface SVGImageElement : SVGElement,
SVGURIReference,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {
readonly attribute SVGAnimatedLength x;
readonly attribute SVGAnimatedLength y;
readonly attribute SVGAnimatedLength width;
readonly attribute SVGAnimatedLength height;

readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:
* X (readonly SVGAnimatedLength)

Corresponds to attribute ‘x’ on the given ‘image’ element.

¢ y (readonly SVGAnimatedLength)

Corresponds to attribute ‘y’ on the given ‘image’ element.

o width (readonly SVGAnimatedLength)

Corresponds to attribute ‘width’ on the given ‘image’ element.

« height (readonly SVGAnimatedLength)

Corresponds to attribute ‘height’ on the given ‘image’ element.

« preserveAspectRatio (readonly SVGAnimatedPreserveAspectRatio)

Corresponds to attribute ‘preserveAspectRatio’ on the given ‘image’ element.

5.11.12 Interface SVGSwitchElement

The SVGSwitchElement interface corresponds to the ‘switch’ element.

interface SVGSwitchElement : SVGElement,
SVGTests,
SVGLangSpace,
SVGExternalResourcesRequired,
SVGStylable,
SVGTransformable {

b

5.11.13 Interface GetSVGDocument

This interface provides access to an SVG document embedded by reference in another DOM-based language. The
expectation is that the interface is implemented on DOM objects that allow such SVG document references, such
as the DOM Element object that corresponds to an HTML ‘object” element. Such DOM objects are often also re-
quired to implement the EmbeddingElement defined in the Window specification [WINDOW].

This interface is deprecated and may be dropped from future versions of the SVG specification. Authors are

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614

suggested to use the contentDocument attribute on the EmbeddingElement interface to obtain a referenced SVG
document, if that interface is available.

o
o
(@]
g
=7
S
S
)
oM
S

interface GetSVGDocument {
SVGDocument getSVGDocument();
b

Operations:

o SVGDocument getSVGDocument()

This method must return the Document object embedded content in an embedding element, or null if there
is no document.

Note that this is equivalent to fetching the value of the EmbeddingElement: : contentDocument attrib-
ute of the embedding element, if the EmbeddingElement interface is also implemented. The author is advised

to check that the document element of the returned Document is indeed an ‘svg’ element instead of assum-
ing that that will always be the case.

Returns
The Document object for the referenced document, or null if there is no document.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document

o
o
(@]
g
=7
S
S
)
oM
S

4 Basic Data Types and Interfaces

Contents

4.1 Syntax
4.2 Basic data types
4.3 Real number precision
4.4 Recognized color keyword names
4.5 Basic DOM interfaces
4.5.1 Interface SVGElement
4.5.2 Interface SVGAnimatedBoolean
4.5.3 Interface SVGAnimatedString
4.5.4 Interface SVGStringList
4.5.5 Interface SVGAnimatedEnumeration
4.5.6 Interface SVGAnimatedInteger
4.5.7 Interface SVGNumber
4.5.8 Interface SVGAnimatedNumber
4.5.9 Interface SVGNumberList
4.5.10 Interface SVGAnimatedNumberList
4.5.11 Interface SVGLength
4.5.12 Interface SVGAnimatedLength
4.5.13 Interface SVGLengthList
4.5.14 Interface SVGAnimatedLengthList
4.5.15 Interface SVGAngle
4.5.16 Interface SVGAnimatedAngle
4.5.17 Interface SVGColor
4.5.18 Interface SVGICCColor
4.5.19 Interface SVGRect
4.5.20 Interface SVGAnimatedRect
4.5.21 Interface SVGUnitTypes
4.5.22 Interface SVGStylable
4.5.23 Interface SVGLocatable
4.5.24 Interface SVGTransformable
4.5.25 Interface SVGTests
4.5.26 Interface SVGLangSpace
4.5.27 Interface SVGExternalResourcesRequired
4.5.28 Interface SVGFitToViewBox
4.5.29 Interface SVGZoomAndPan
4.5.30 Interface SVGViewSpec
4.5.31 Interface SVGURIReference
4.5.32 Interface SVGCSSRule

o
o
(@]
g
=7
S
S
)
oM
S

4.5.33 Interface SVGRenderingIntent

4.1 Syntax

The EBNF grammar is as used in the XML specification, with the addition of ~, a case-insensitive literal:
characters in the ASCII range (only) are declared to be case-insensitive. For example, ~"Hello" will match
(Hh)(e|e)(IL)(IL)(o]O). This makes the productions much easier to read.

? optional, zero or one
+ one or more
zero or more
[alternation
"string” literal

~"string" case-insensitive literal

0 a character range
" excluded character range
0 grouping

4.2 Basic data types

This section defines a number of common data types used in the definitions of SVG properties and attributes. Some
data types that are not referenced by multiple properties and attributes are defined inline in subsequent chapters.

Note that, as noted below, the specification of some types is different for CSS property values in style sheets
(in the ‘style’ attribute, ‘style’ element or an external style sheet) than it is for for XML attribute values (including
presentation attributes). This is due to restrictions in the CSS grammar. For example, scientific notation is allowed
in attributes, including presentation attributes, but not in style sheets.

<angle> - Angles are specified in one of two ways depending upon whether they are used in CSS property syntax
or SVG presentation attribute syntax:

o When an <angle> is used in a style sheet or with a property in a ‘style’ attribute, the syntax must match the
following pattern:

angle ::= number (~"deg" | ~"grad" | ~"rad")?

where deg indicates degrees, grad indicates grads and rad indicates radians. The unit identifier may be in
lower (recommended) or upper case.
For properties defined in CSS2 [CSS2], an angle unit identifier must be provided (for non-zero values).
For SVG-specific properties the angle unit identifier is optional. If a unit is not provided, the angle value is
assumed to be in degrees.
o When an <angle> is used in an SVG presentation attribute, the syntax must match the following pattern:

http://www.w3.org/TR/REC-xml/#sec-notation
http://www.w3.org/TR/2008/REC-CSS2-20080411/

o
o
(@]
g
=7
S
S
)
oM
S

angle ::= number ("deg" | "grad" | "rad")?
The unit identifier, if present, must be in lower case; if not present, the angle value is assumed to be in degrees.
In the SVG DOM, <angle> values are represented using SVGAngle or SVGAnimatedAngle objects.

<anything> - The basic type <anything> is a sequence of zero or more characters. Specifically:

anything ::= Char*
where Char is the production for a character, as defined in XML 1.0 ([XML10], section 2.2).

<color> - The basic type <color> is a CSS2 compatible specification for a color in the sSRGB color space [SRGB].
<color> applies to SVG's use of the ‘color’ property and is a component of the definitions of properties ‘fill’, ‘stroke’,
‘stop-color’, ‘flood-color’ and ‘lighting-color’, which also offer optional ICC-based color specifications.

SVG supports all of the syntax alternatives for <color> defined in CSS2 syntax and basic data types ([CSS2],
section 4.3.6), with the exception that SVG allows an expanded list of recognized color keywords names.

A <color> is either a keyword (see Recognized color keyword names) or a numerical RGB specification.

In addition to these color keywords, users may specify keywords that correspond to the colors used by objects
in the user's environment. The normative definition of these keywords is found in User preferences for colors
([CSS2], section 18.2).

The format of an RGB value in hexadecimal notation is a "#" immediately followed by either three or six
hexadecimal characters. The three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by replic-
ating digits, not by adding zeros. For example, #fbo expands to #ffbb0o. This ensures that white (#ffffff) can be spe-
cified with the short notation (#fff) and removes any dependencies on the color depth of the display. The format
of an RGB value in the functional notation is an RGB start-function followed by a comma-separated list of three
numerical values (either three integer values or three percentage values) followed by ")". An RGB start-function is
the case-insensitive string "rgb(", for example "RGB(" or "rGb(". For compatibility, the all-lowercase form "rgb(" is
preferred. The integer value 255 corresponds to 100%, and to F or FF in the hexadecimal notation: rgh(255,255,255)
= rgb(100%,100%,100%) = #FFF. White space characters are allowed around the numerical values. All RGB colors
are specified in the sSRGB color space [SRGB]. Using sRGB provides an unambiguous and objectively measurable
definition of the color, which can be related to international standards (see [COLORIMETRY]).

color 1= "#" hexdigit hexdigit hexdigit (hexdigit hexdigit hexdigit)?

| "rgb(" wsp* integer comma integer comma integer wsp* ")"

| "rgb(" wsp* integer "%" comma integer "%" comma integer "%" wsp* ")"
| color-keyword

[0-9A-Fa-f]

wsp* ", " wsp*

hexdigit ::
comma

where color-keyword matches (case insensitively) one of the color keywords listed in Recognized color keyword
names below, or one of the system color keywords listed in User preferences for colors ([CSS2], section 18.2).
The corresponding SVG DOM interface definitions for <color> are defined in Document Object Model CSS;

http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Char
http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Char
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#value-def-color
http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#system-colors
http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#system-colors
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html

o
o
(@]
g
=7
S
S
)
oM
S

in particular, see RGBColor ((DOM2STYLE], section 2.2). SVG's extension to color, including the ability to specify
ICC-based colors, are represented using DOM interface SVGColor.

<coordinate> - A <coordinate> is a length in the user coordinate system that is the given distance from the origin
of the user coordinate system along the relevant axis (the x-axis for X coordinates, the y-axis for Y coordinates).
Its syntax is the same as that for <length>.

coordinate ::= length
Within the SVG DOM, a <coordinate> is represented as an SVGLength or an SVGAnimatedLength.

<frequency> - Frequency values are used with aural properties. As defined in CSS2, a frequency value is a <num-
ber> immediately followed by a frequency unit identifier. The frequency unit identifiers are:

« Hz: Hertz
o kHz: kilo Hertz

Frequency values may not be negative.
In the SVG DOM, <frequency> values are represented using the CSSPrimitiveValue interface defined in Docu-
ment Object Model CSS ([DOM2STYLE], section 2.2).

<FuncIRI> - Functional notation for an IRI: "url(" <IRI> ")".

<icccolor> - An <icccolor> is an ICC color specification. In SVG 1.1, an ICC color specification is given by a name,
which references a ‘color-profile’ element, and one or more color component values. The grammar is as follows:

icccolor ::
name

"icc-color(" name (comma-wsp number)+ ")"
[~, ()#x20#x9#xD#xA] /* any char except ",", "(", ")" or wsp */

The corresponding SVG DOM interface for <icccolor> is SVGICCColor.
<integer> - An <integer> is specified as an optional sign character ("+" or "-") followed by one or more digits "0"
to "9":

integer ::= [+-]1? [0-9]+

If the sign character is not present, the number is non-negative.

Unless stated otherwise for a particular attribute or property, the range for an <integer> encompasses (at a
minimum) -2147483648 to 2147483647.

Within the SVG DOM, an <integer> is represented as a long or an SVGAnimatedInteger.

<IRI> - An Internationalized Resource Identifier (see IRI). For the specification of IRI references in SVG, see IRI
references.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSPrimitiveValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html

<length> - A length is a distance measurement, given as a number along with a unit which may be optional.
Lengths are specified in one of two ways depending upon whether they are used in CSS property syntax or SVG
presentation attribute syntax:

o
o
(@]
g
=7
S
S
)
oM
S

o When a <length> is used in a style sheet or with a property in a ‘style’ attribute, the syntax must match the
following pattern:

1ength sz number (~uemu | ~"ax" | ~upxu | ~"in" | ~"cm" | ~"mm" | ~uptu | ~"pC")?

See the CSS2 specification for the meanings of the unit identifiers. The unit identifier may be in lower (re-
commended) or upper case.

For properties defined in CSS2 [CSS2], a length unit identifier must be provided (for non-zero values).
For SVG-specific properties, the length unit identifier is optional. If a unit is not provided, the length value

represents a distance in the current user coordinate system.
o When a <length> is used in an SVG presentation attribute, the syntax must match the following pattern:

length se= number (uemu | nax" I upxu | uinu I “em" | "mm" | nptu | "pC" | u%u)?

The unit identifier, if present, must be in lower case; if not present, the length value represents a distance in
the current user coordinate system.

Note that the non-property <length> definition also allows a percentage unit identifier. The meaning of
a percentage length value depends on the attribute for which the percentage length value has been specified.
Two common cases are: (a) when a percentage length value represents a percentage of the viewport width or
height (refer to the section that discusses units in general), and (b) when a percentage length value represents
a percentage of the bounding box width or height on a given object (refer to the section that describes object
bounding box units).

In the SVG DOM, <length> values are represented using SVGLength or SVGAnimatedLength objects.

<list-of-family-names> - A <list-of-family-names> is a list of font family names using the same syntax as the
‘font-family” property, excluding the <generic-family> and 'inherit’ values.

<list-of-strings> + A <list-of-strings> consists of a separated sequence of <string>s. String lists are white space-
separated, where white space is defined as one or more of the following consecutive characters: "space" (U+0020),
"tab" (U+0009), "line feed" (U+000A) and "carriage return" (U+000D).

The following is an EBNF grammar describing the <list-of-strings> syntax:

list-of-strings ::= string

| string wsp list-of-strings
string = ["“#xO#XA#XD#X20]*
wsp = [#x9#XA#XD#x20]+

<list-of-Ts> - (Where T is a type other than <string> and <family-name>.) A list consists of a separated sequence
of values. Unless explicitly described differently, lists within SVG's XML attributes can be either comma-separated,
with optional white space before or after the comma, or white space-separated.

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/

o
o
(@]
g
=7
S
S
)
oM
S

White space in lists is defined as one or more of the following consecutive characters: "space” (U+0020), "tab"
(U+0009), "line feed" (U+000A), "carriage return" (U+000D) and "form-feed" (U+000C).
The following is a template for an EBNF grammar describing the <list-of-Ts> syntax:

list-of-Ts ::=T

| T comma-wsp list-of-Ts
comma-wsp = (wsp+ ","? wsp*) | ("," wsp*)
wsp = (#x20 | #x9 | #xD | #xA)

Within the SVG DOM, values of a <list-of-Ts> type are represented by an interface specific for the particular
type T. For example, a <list-of-lengths> is represented in the SVG DOM using an SVGLengthList or SVGAnim-
atedLengthList object.

<name> - A name, which is a string where a few characters of syntactic significance are disallowed.

name ::= [7, ()#x20#x9#xD#xA]l /* any char except ",", "(", ")" or wsp */

<number> - Real numbers are specified in one of two ways. When used in a style sheet, a <number> is defined as
follows:

number ::= integer
| [+-17 [0-9]% "." [0-9]+

This syntax is the same as the definition in CSS ([CSS2], section 4.3.1).
When used in an SVG attribute, a <number> is defined differently, to allow numbers with large magnitudes
to be specified more concisely:

number ::= integer ([Ee] integer)?
| [+-1? [0-9]* "." [0-9]+ ([Ee] integer)?

Within the SVG DOM, a <number> is represented as a float, SVGNumber or a SVGAnimatedNumber.

<number-optional-number> - A pair of <number>s, where the second <number> is optional.

number-optional-number ::= number
| number comma-wsp number

In the SVG DOM, a <number-optional-number> is represented using a pair of SVGAnimatedInteger or SVGAnim-
atedNumber objects.

<paint> - The values for properties ‘fill’ and ‘stroke’ are specifications of the type of paint to use when filling or
stroking a given graphics element. The available options and syntax for <paint> are described in Specifying paint.
Within the SVG DOM, <paint> values are represented using SVGPaint objects.

<percentage> - Percentages are specified as a number followed by a "%" character:

percentage ::= number "%"

o
o
(@]
g
=7
S
S
)
oM
S

Note that the definition of <number> depends on whether the percentage is specified in a style sheet or in an at-
tribute that is not also a presentation attribute.

Percentage values are always relative to another value, for example a length. Each attribute or property that
allows percentages also defines the reference distance measurement to which the percentage refers.

Within the SVG DOM, a <percentage> is represented using an SVGNumber or SVGAnimatedNumber object.

<time> - A time value is a <number> immediately followed by a time unit identifier. The time unit identifiers are:

« ms: milliseconds
o s:seconds

In the SVG DOM, <time> values are represented using the CSSPrimitiveValue interface defined in Document Ob-
ject Model CSS ([DOM2STYLE], section 2.2).

<transform-list> - A <transform-list> is used to specify a list of coordinate system transformations. A detailed
description of the possible values for a <transform-list> is given in Modifying the User Coordinate System: the
transform attribute.

Within the SVG DOM, a <transform-list> value is represented using an SVGTransformList or SVGAnim-
atedTransformList object.

<XML-Name> - An XML name, as defined by the Name production in Extensible Markup Language (XML) 1.0
([XML10], section 2.3).

4.3 Real number precision

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least a single-
precision floating point number and has a range (at a minimum) of -3.4e+38F to +3.4e+38F.
It is recommended that higher precision floating point storage and computation be performed on operations
such as coordinate system transformations to provide the best possible precision and to prevent round-off errors.
Conforming High-Quality SVG Viewers are required to use at least double-precision floating point for inter-
mediate calculations on certain numerical operations.

4.4 Recognized color keyword names

The following is the list of recognized color keywords that can be used as a keyword value for data type <color>:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSPrimitiveValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Name
http://www.w3.org/TR/2006/REC-xml-20060816/

o
o
(@]
g
=7
S
S
)
oM
S

|:| aliceblue

|:| antiquewhite
|:| aqua

|:| aquamarine
|:| azure

|:| beige

|:| bisque

[Iblack

|:| blanchedalmond
[Iblue

|:| blueviolet

|:| brown

|:| burlywood

|:| cadetblue

|:| chartreuse
|:| chocolate

|:| coral

|:| cornflowerblue
|:| cornsilk

|:| crimson

|:| cyan

[]darkblue

|:| darkcyan

|:| darkgoldenrod
|:| darkgray

|:| darkgreen

|:| darkgrey

[] darkkhaki

|:| darkmagenta
|:| darkolivegreen
|:| darkorange
|:| darkorchid
|:| darkred

|:| darksalmon
|:| darkseagreen
|:| darkslateblue

rgb(240, 248, 255)
rgb(250, 235, 215)
rgb(0, 255, 255)
rgb(127, 255, 212)
rgh(240, 255, 255)
rgb(245, 245, 220)
rgb(255, 228, 196)
rgb(0, 0, 0)
rgb(255, 235, 205)
rgb(0, 0, 255)
rgh(138, 43, 226)
rgb(165, 42, 42)
rgh(222, 184, 135)
rgb(95, 158, 160)
rgh(127, 255, 0)
rgb(210, 105, 30)
rgb(255, 127, 80)
rgb(100, 149, 237)
rgb(255, 248, 220)
rgb(220, 20, 60)
rgb(0, 255, 255)
rgb(0, 0, 139)
rgb(0, 139, 139)
rgb(184, 134, 11)
rgb(169, 169, 169)
rgb(0, 100, 0)
rgb(169, 169, 169)
rgb(189, 183, 107)
rgb(139, 0, 139)
rgb(85, 107, 47)
rgb(255, 140, 0)
rgh(153, 50, 204)
rgb(139, 0, 0)
rgb(233, 150, 122)
rgb(143, 188, 143)
rgh(72, 61, 139)

|:| lightpink

|:| lightsalmon
|:| lightseagreen
[]iightskyblue
|:| lightslategray
|:| lightslategrey
|:| lightsteelblue
[Jiightyellow

[Jiime

|:| limegreen
|:| linen

|:| magenta

|:| maroon

|:| mediumaquamarine

|:| mediumblue

|:| mediumorchid
|:| mediumpurple
|:| mediumseagreen
|:| mediumslateblue

rgb(255, 182, 193)
rgb(255, 160, 122)
rgb(32, 178, 170)
rgb(135, 206, 250)
rgb(119, 136, 153)
rgb(119, 136, 153)
rgb(176, 196, 222)
rgb(255, 255, 224)
rgb(0, 255, 0)
rgb(50, 205, 50)
rgb(250, 240, 230)
rgb(255, 0, 255)
rgb(128, 0, 0)
rgb(102, 205, 170)
rgb(0, 0, 205)
rgbh(186, 85, 211)
rgb(147, 112, 219)
rgb(60, 179, 113)
rgb(123, 104, 238)

Dmediumspringgreen rgb(0, 250, 154)
Dmediumturquoise rgb(72, 209, 204)

|:| mediumvioletred
[| midnightblue

|:| mintcream
|:| mistyrose
|:| moccasin
|:| navajowhite
|:| navy

|:| oldlace

|:| olive

|:| olivedrab
|:| orange

|:| orangered
|:| orchid

|:| palegoldenrod

|:| palegreen

rgb(199, 21, 133)
rgb(25, 25, 112)
rgb(245, 255, 250)
rgb(255, 228, 225)
rgb(255, 228, 181)
rgb(255, 222, 173)
rgh(0, 0, 128)
rgb(253, 245, 230)
rgb(128, 128, 0)
rgb(107, 142, 35)
rgb(255, 165, 0)
rgb(255, 69, 0)
rgh(218, 112, 214)
rgb(238, 232, 170)
rgb(152, 251, 152)

<+
e
(o)
g
<
S
S
O
Q)
2

|:| darkslategray
|:| darkslategrey
|:| darkturquoise

|:| darkviolet
|:| deeppink
|:| deepskyblue
|:| dimgray
|:| dimgrey
|:| dodgerblue
|:| firebrick
|:| floralwhite
|:| forestgreen
|:| fuchsia

|:| gainsboro
|:| ghostwhite
|:| gold

|:| goldenrod
I:l gray

|:| grey

|:| green

|:| greenyellow
|:| honeydew
|:| hotpink
|:| indianred
|:| indigo

|:| ivory

[Jkhaki

|:| lavender

Dlavenderblush

|:| lawngreen
|:| lemonchiffon
[Jiightblue

|:| lightcoral
|:| lightcyan

rgh(47, 79, 79)
rgb(47, 79, 79)
rgb(0, 206, 209)
rgb(148, 0, 211)
rgb(255, 20, 147)
rgb(0, 191, 255)
rgb(105, 105, 105)
rgb(105, 105, 105)
rgb(30, 144, 255)
rgb(178, 34, 34)
rgb(255, 250, 240)
rgb(34, 139, 34)
rgb(255, 0, 255)
rgb(220, 220, 220)
rgh(248, 248, 255)
rgb(255, 215, 0)
rgb(218, 165, 32)
rgb(128, 128, 128)
rgh(128, 128, 128)
rgb(0, 128, 0)
rgb(173, 255, 47)
rgh(240, 255, 240)
rgb(255, 105, 180)
rgb(205, 92, 92)
rgb(75, 0, 130)
rgb(255, 255, 240)
rgb(240, 230, 140)
rgb(230, 230, 250)
rgb(255, 240, 245)
rgh(124, 252, 0)
rgb(255, 250, 205)
rgb(173, 216, 230)
rgb(240, 128, 128)
rgb(224, 255, 255)

[]iightgoldenrodyellow rgh(250, 250, 210)

|:| lightgray

rgb(211, 211, 211)

|:| paleturquoise
|:| palevioletred
|:| papayawhip
|:| peachpuff
|:| peru

|:| pink

|:| plum

|:| powderblue
|:| purple

|:| red

|:| rosybrown

|:| royalblue

|:| saddlebrown

|:| salmon

|:| sandybrown
|:| seagreen
|:| seashell
|:| sienna

|:| silver

[]skyblue

|:| slateblue
|:| slategray
|:| slategrey
|:| snow

|:| springgreen
|:| steelblue
[Jran

|:| teal

|:| thistle

|:| tomato

|:| turquoise
|:| violet

|:| wheat

|:| white

|:| whitesmoke

|:|yellow

rgb(175, 238, 238)
rgb(219, 112, 147)
rgb(255, 239, 213)
rgh(255, 218, 185)
rgb(205, 133, 63)
rgb(255, 192, 203)
rgb(221, 160, 221)
rgb(176, 224, 230)
rgb(128, 0, 128)
rgh(255, 0, 0)
rgb(188, 143, 143)
rgb(65, 105, 225)
rgb(139, 69, 19)
rgb(250, 128, 114)
rgb(244, 164, 96)
rgb(46, 139, 87)
rgb(255, 245, 238)
rgb(160, 82, 45)
rgh(192, 192, 192)
rgb(135, 206, 235)
rgb(106, 90, 205)
rgh(112, 128, 144)
rgb(112, 128, 144)
rgb(255, 250, 250)
rgb(0, 255, 127)
rgb(70, 130, 180)
rgb(210, 180, 140)
rgb(0, 128, 128)
rgb(216, 191, 216)
rgb(255, 99, 71)
rgb(64, 224, 208)
rgb(238, 130, 238)
rgb(245, 222, 179)
rgb(255, 255, 255)
rgb(245, 245, 245)
rgb(255, 255, 0)

o
o
(@]
g
=7
S
S
)
oM
S

[Jiightgreen rgb(144, 238, 144) []yellowgreen rgb(154, 205, 50)
[Jiightgrey rgb(211, 211, 211)

4.5 Basic DOM interfaces

4.5.1 Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elements in the SVG language (such as the SVGPathEle-
ment interface for the ‘path’ element) derive from the SVGElement interface.

interface SVGElement : Element {
attribute DOMString id setraises(DOMException);
attribute DOMString xmlbase setraises(DOMException);
readonly attribute SVGSVGElement ownerSVGElement;
readonly attribute SVGElement viewportElement;

Attributes:

« id (DOMString)

The value of the ‘id’ attribute on the given element, or the empty string if ‘id’ is not present.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« xmlbase (DOMString)
Corresponds to attribute ‘xml:base’ on the given element.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« ownerSVGElement (readonly SVGSVGElement)

The nearest ancestor ‘svg’ element. Null if the given element is the outermost svg element.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-745549614
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

« viewportElement (readonly SVGElement)

The element which established the current viewport. Often, the nearest ancestor ‘svg’ element. Null if the
given element is the outermost svg element.

4.5.2 Interface SVGAnimatedBoolean

Used for attributes of type boolean which can be animated.

interface SVGAnimatedBoolean {
attribute boolean baseVal setraises(DOMException);
readonly attribute boolean animVal;

i

Attributes:

« baseVal (boolean)

The base value of the given attribute before applying any animations.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« animVal (readonly boolean)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.3 Interface SVGAnimatedString

Used for attributes of type DOMString which can be animated.

interface SVGAnimatedString {
attribute DOMString baseVal setraises(DOMException);
readonly attribute DOMString animVal;

Attributes:

« baseVal (DOMString)

The base value of the given attribute before applying any animations.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« animVal (readonly DOMString)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.4 Interface SVGStringList

This interface defines a list of DOMString values.
SVGStringList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-
sider using a single base class to implement the various SVGxxxList interfaces.

interface SVGStringlList {
readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);

DOMString initialize(in DOMString newItem) raises(DOMException);

DOMString getItem(in unsigned long index) raises(DOMException);

DOMString insertItemBefore(in DOMString newItem, in unsigned long index) raises(DOMException);
DOMString replaceltem(in DOMString newItem, in unsigned long index) raises(DOMException);
DOMString removeItem(in unsigned long index) raises(DOMException);

DOMString appendItem(in DOMString newItem) raises(DOMException);

Attributes:

« numberOfItems (readonly unsigned long)

The number of items in the list.
Operations:

« void clear()

Clears all existing current items from the list, with the result being an empty list.
Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o DOMString initialize(in DOMString newltem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter.

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

» DOMString newltem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

« DOMString getltem(in unsigned long index)
Returns the specified item from the list.
Parameters

« unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

« DOMString insertItemBefore(in DOMString newltem, in unsigned long index)
Inserts a new item into the list at the specified position. The first item is number 0.
Parameters

o DOMString newltem
The item which is to be inserted into the list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

« unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or

o
o
(@]
g
=7
S
S
)
oM
S

equal to numberOfltems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

« DOMString replaceltem(in DOMString newltem, in unsigned long index)

Replaces an existing item in the list with a new item.
Parameters

o DOMString newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

« DOMString removeltem(in unsigned long index)
Removes an existing item from the list.
Parameters

« unsigned long index
The index of the item which is to be removed. The first item is number 0.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Returns
The removed item.

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

« DOMString appendItem(in DOMString newltem)

Inserts a new item at the end of the list.
Parameters

o DOMString newltem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

4.5.5 Interface SVGAnimatedEnumeration

Used for attributes whose value must be a constant from a particular enumeration and which can be animated.

interface SVGAnimatedEnumeration {
attribute unsigned short baseVal setraises(DOMException);
readonly attribute unsigned short animVal;

Attributes:

« baseVal (unsigned short)

The base value of the given attribute before applying any animations.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« animVal (readonly unsigned short)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.6 Interface SVGAnimatedInteger

Used for attributes of basic type <integer> which can be animated.

interface SVGAnimatedInteger {
attribute long baseVal setraises(DOMException);
readonly attribute long animVal;

Attributes:

« baseVal (long)

The base value of the given attribute before applying any animations.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« animVal (readonly long)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.7 Interface SVGNumber

Used for attributes of basic type <number>.

interface SVGNumber {
attribute float value setraises(DOMException);
b

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:

« value (float)

The value of the given attribute.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

4.5.8 Interface SVGAnimatedNumber

Used for attributes of basic type <number> which can be animated.

interface SVGAnimatedNumber {

attribute float baseVal setraises(DOMException);
readonly attribute float animVal;
b

Attributes:

« baseVal (float)

The base value of the given attribute before applying any animations.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« animVal (readonly float)

If the given attribute or property is being animated, contains the current animated value of the attribute
or property. If the given attribute or property is not currently being animated, contains the same value as
baseVal.

4.5.9 Interface SVGNumberList

This interface defines a list of SVGNumber objects.

SVGNumberList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

An SVGNumberList object can be designated as read only, which means that attempts to modify the object
will result in an exception being thrown, as described below.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

interface SVGNumberList {
readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);

SVGNumber initialize(in SVGNumber newItem) raises(DOMException);

SVGNumber getItem(in unsigned long index) raises(DOMException);

SVGNumber insertItemBefore(in SVGNumber newItem, in unsigned long index) raises(DOMException);
SVGNumber replaceItem(in SVGNumber newItem, in unsigned long index) raises(DOMException);
SVGNumber removeItem(in unsigned long index) raises(DOMException);

SVGNumber appendItem(in SVGNumber newItem) raises(DOMException);

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:

« numberOfItems (readonly unsigned long)

The number of items in the list.

Operations:

« void clear()

Clears all existing current items from the list, with the result being an empty list.
Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o SVGNumber initialize(in SVGNumber newltem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

o SVGNumber newltem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o SVGNumber getltem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

« unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

o SVGNumber insertItemBefore(in SVGNumber newltem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newltem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

o SVGNumber newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfltems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o SVGNumber replaceltem(in SVGNumber newltem, in unsigned long index)

Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

o SVGNumber newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o DOMException, code INDEX_SIZE_ERR

Raised if the index number is greater than or equal to numberOfItems.

o SVGNumber removeltem(in unsigned long index)

Removes an existing item from the list.
Parameters

« unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

o SVGNumber appendItem(in SVGNumber newltem)

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

o SVGNumber newltem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

4.5.10 Interface SVGAnimatedNumberList

Used for attributes which take a list of numbers and which can be animated.

interface SVGAnimatedNumberList {
readonly attribute SVGNumberList baseVal;
readonly attribute SVGNumberList animVal;

Attributes:

« baseVal (readonly SVGNumberList)

The base value of the given attribute before applying any animations.

o animVal (readonly SVGNumberList)

A read only SVGNumberList representing the current animated value of the given attribute. If the given at-
tribute is not currently being animated, then the SVGNumberList will have the same contents as baseVal.
The object referenced by animVal will always be distinct from the one referenced by baseVal, even when the
attribute is not animated.

4.5.11 Interface SVGLength

The SVGLength interface corresponds to the <length> basic data type.
An SVGLength object can be designated as read only, which means that attempts to modify the object will
result in an exception being thrown, as described below.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

interface SVGLength {

// Length Unit Types
const unsigned short SVG_LENGTHTYPE_UNKNOWN = O;
const unsigned short SVG_LENGTHTYPE NUMBER = 1;
const unsigned short SVG_LENGTHTYPE_ PERCENTAGE = 2;
const unsigned short SVG_LENGTHTYPE EMS = 3;

const unsigned short SVG_LENGTHTYPE EXS = 4;

const unsigned short SVG_LENGTHTYPE_PX
const unsigned short SVG_LENGTHTYPE CM
const unsigned short SVG_LENGTHTYPE_ MM
const unsigned short SVG_LENGTHTYPE_ IN
const unsigned short SVG_LENGTHTYPE_ PT
const unsigned short SVG_LENGTHTYPE_ PC

o
o
(@]
g
=7
S
S
)
oM
S

5:
6:
7:
8:
9:
1

’

@ = s mnome

readonly attribute unsigned short unitType;
attribute float value setraises(DOMException);
attribute float valueInSpecifiedUnits setraises(DOMException);
attribute DOMString valueAsString setraises(DOMException);

void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits) raises(DOMException);
void convertToSpecifiedUnits(in unsigned short unitType) raises(DOMException);

’

Constants in group “Length Unit Types”:

¢« SVG_LENGTHTYPE_UNKNOWN (unsigned short)

The unit type is not one of predefined unit types. It is invalid to attempt to define a new value of this type or
to attempt to switch an existing value to this type.

« SVG_LENGTHTYPE_NUMBER (unsigned short)

No unit type was provided (i.e., a unitless value was specified), which indicates a value in user units.

¢« SVG_LENGTHTYPE_PERCENTAGE (unsigned short)

A percentage value was specified.

o« SVG_LENGTHTYPE_EMS (unsigned short)

A value was specified using the em units defined in CSS2.

o SVG_LENGTHTYPE_EXS (unsigned short)

A value was specified using the ex units defined in CSS2.

o SVG_LENGTHTYPE_PX (unsigned short)

A value was specified using the px units defined in CSS2.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o SVG_LENGTHTYPE_CM (unsigned short)

A value was specified using the cm units defined in CSS2.

o
o
(@]
g
=7
S
S
)
oM
S

¢« SVG_LENGTHTYPE_MM (unsigned short)

A value was specified using the mm units defined in CSS2.

e SVG_LENGTHTYPE_IN (unsigned short)

A value was specified using the in units defined in CSS2.

e« SVG_LENGTHTYPE_PT (unsigned short)

A value was specified using the pt units defined in CSS2.

e« SVG_LENGTHTYPE_PC (unsigned short)

A value was specified using the pc units defined in CSS2.
Attributes:

« unitType (readonly unsigned short)
The type of the value as specified by one of the SVG_LENGTHTYPE_* constants defined on this interface.

« value (float)

The value as a floating point value, in user units. Setting this attribute will cause valueInSpecifiedUnits and
valueAsString to be updated automatically to reflect this setting.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

« valuelnSpecifiedUnits (float)

The value as a floating point value, in the units expressed by unitType. Setting this attribute will cause value
and valueAsString to be updated automatically to reflect this setting.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

« valueAsString (DOMString)

The value as a string value, in the units expressed by unitType. Setting this attribute will cause value,
valuelnSpecifiedUnits and unitType to be updated automatically to reflect this setting.

Exceptions on setting

« DOMException, code SYNTAX_ERR
Raised if the assigned string cannot be parsed as a valid <length>.

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

Operations:

« void newValueSpecifiedUnits(in unsigned short unitType, in float valuelnSpecifiedUnits)

Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes
on the object.

Parameters

o unsigned short unitType
The unit type for the value (e.g., SVG_LENGTHTYPE_MM).

o float valuelnSpecifiedUnits
The new value.

Exceptions

o DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_LENGTHTYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_LENGTHTYPE_* constants defined on this interface).

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

« void convertToSpecifiedUnits(in unsigned short unitType)

Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType. Object
attributes unitType, valueInSpecifiedUnits and valueAsString might be modified as a result of this method.
For example, if the original value were "0.5cm" and the method was invoked to convert to millimeters, then
the unitType would be changed to SVG_LENGTHTYPE_MM, valuelnSpecifiedUnits would be changed to
the numeric value 5 and valueAsString would be changed to "5mm".

Parameters

« unsigned short unitType
The unit type to switch to (e.g., SVG_LENGTHTYPE_MM).

Exceptions

« DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_LENGTHTYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_LENGTHTYPE_* constants defined on this interface).

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the length corresponds to a read only attribute or when the object itself is read only.

4.5.12 Interface SVGAnimatedLength

Used for attributes of basic type <length> which can be animated.

interface SVGAnimatedLength {

readonly attribute SVGLength baseVal;
readonly attribute SVGLength animVal;
b

Attributes:

« baseVal (readonly SVGLength)

The base value of the given attribute before applying any animations.

« animVal (readonly SVGLength)

A read only SVGLength representing the current animated value of the given attribute. If the given attribute
is not currently being animated, then the SVGLength will have the same contents as baseVal. The object ref-
erenced by animVal will always be distinct from the one referenced by baseVal, even when the attribute is
not animated.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

4.5.13 Interface SVGLengthList

This interface defines a list of SVGLength objects.

SVGLengthList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-
sider using a single base class to implement the various SVGxxxList interfaces.

An SVGLengthList object can be designated as read only, which means that attempts to modify the object
will result in an exception being thrown, as described below.

interface SVGLengthList {
readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);
SVGLength initialize(in SVGLength newItem) raises(DOMException);
SVGLength getItem(in unsigned long index) raises(DOMException);
SVGLength insertItemBefore(in SVGLength newItem, in unsigned long index) raises(DOMException);
SVGLength replaceltem(in SVGLength newItem, in unsigned long index) raises(DOMException);
SVGLength removeItem(in unsigned long index) raises(DOMException);
SVGLength appendItem(in SVGLength newItem) raises(DOMException);
b

Attributes:

o numberOfItems (readonly unsigned long)

The number of items in the list.
Operations:

« void clear()

Clears all existing current items from the list, with the result being an empty list.
Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o SVGLength initialize(in SVGLength newltem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

« SVGLength newltem
The item which should become the only member of the list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Returns
The item being inserted into the list.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

SVGLength getltem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

« unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

SVGLength insertItemBefore(in SVGLength newltem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newltem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

o SVGLength newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfltems, then the new item is appended to the end of the list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

SVGLength replaceltem(in SVGLength newltem, in unsigned long index)

Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

» SVGLength newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfItems.

SVGLength removeltem(in unsigned long index)
Removes an existing item from the list.
Parameters

« unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o
o
(@]
g
=7
S
S
)
oM
S

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

o SVGLength appendItem(in SVGLength newltem)

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

o SVGLength newltem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

4.5.14 Interface SVGAnimatedLengthList

Used for attributes of type SVGLengthList which can be animated.

interface SVGAnimatedLengthList {
readonly attribute SVGLengthList baseVal;
readonly attribute SVGLengthList animVal;

Attributes:

« baseVal (readonly SVGLengthList)

The base value of the given attribute before applying any animations.

o animVal (readonly SVGLengthList)

A read only SVGLengthList representing the current animated value of the given attribute. If the given at-
tribute is not currently being animated, then the SVGLengthList will have the same contents as baseVal. The

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

object referenced by animVal will always be distinct from the one referenced by baseVal, even when the at-
tribute is not animated.

o
o
(@]
g
=7
S
S
)
oM
S

4.5.15 Interface SVGAngle

The SVGAngle interface corresponds to the <angle> basic data type.
An SVGAngle object can be designated as read only, which means that attempts to modify the object will
result in an exception being thrown, as described below.

interface SVGAngle {

// Angle Unit Types

const unsigned short SVG_ANGLETYPE_UNKNOWN = 0;
const unsigned short SVG_ANGLETYPE_UNSPECIFIED = 1;
const unsigned short SVG_ANGLETYPE_DEG = 2;

const unsigned short SVG_ANGLETYPE RAD = 3;
const unsigned short SVG_ANGLETYPE GRAD = 4;

readonly attribute unsigned short unitType;
attribute float value setraises(DOMException);
attribute float valueInSpecifiedUnits setraises(DOMException);
attribute DOMString valueAsString setraises(DOMException);

void newValueSpecifiedUnits(in unsigned short unitType, in float valueInSpecifiedUnits) raises(DOMException);
void convertToSpecifiedUnits(in unsigned short unitType) raises(DOMException);
b

Constants in group “Angle Unit Types”:

« SVG_ANGLETYPE_UNKNOWN (unsigned short)

The unit type is not one of predefined unit types. It is invalid to attempt to define a new value of this type or
to attempt to switch an existing value to this type.

e SVG_ANGLETYPE_UNSPECIFIED (unsigned short)

No unit type was provided (i.e., a unitless value was specified). For angles, a unitless value is treated the
same as if degrees were specified.

 SVG_ANGLETYPE_DEG (unsigned short)

The unit type was explicitly set to degrees.

e« SVG_ANGLETYPE_RAD (unsigned short)

The unit type is radians.

¢« SVG_ANGLETYPE_GRAD (unsigned short)

The unit type is radians.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Attributes:

« unitType (readonly unsigned short)

o
o
(@]
g
=7
S
S
)
oM
S

The type of the value as specified by one of the SVG_ANGLETYPE_* constants defined on this interface.

« value (float)

The angle value as a floating point value, in degrees. Setting this attribute will cause valueInSpecifiedUnits
and valueAsString to be updated automatically to reflect this setting.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

« valuelnSpecifiedUnits (float)

The angle value as a floating point value, in the units expressed by unitType. Setting this attribute will cause
value and valueAsString to be updated automatically to reflect this setting.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

« valueAsString (DOMString)

The angle value as a string value, in the units expressed by unitType. Setting this attribute will cause value,
valuelnSpecifiedUnits and unitType to be updated automatically to reflect this setting.

Exceptions on setting

o DOMException, code SYNTAX_ERR
Raised if the assigned string cannot be parsed as a valid <angle>.

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Operations:

« void newValueSpecifiedUnits(in unsigned short unitType, in float valuelnSpecifiedUnits)

o
o
(@]
g
=7
S
S
)
oM
S

Reset the value as a number with an associated unitType, thereby replacing the values for all of the attributes
on the object.

Parameters

« unsigned short unitType
The unit type for the value (e.g., SVG_ANGLETYPE_DEG).

« float valuelnSpecifiedUnits
The angle value.

Exceptions

o DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_ANGLETYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_ANGLETYPE_* constants defined on this interface).

« DOMException, code NO_MODIFICATION_ALLOWED_ERR

Raised when the angle corresponds to a read only attribute or when the object itself is read only.

« void convertToSpecifiedUnits(in unsigned short unitType)

Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType. Object
attributes unitType, valueInSpecifiedUnits and valueAsString might be modified as a result of this method.

Parameters

o unsigned short unitType
The unit type to switch to (e.g., SVG_ANGLETYPE_DEG).

Exceptions

« DOMException, code NOT_SUPPORTED_ERR
Raised if unitType is SVG_ANGLETYPE_UNKNOWN or not a valid unit type constant (one of the
other SVG_ANGLETYPE_* constants defined on this interface).

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the angle corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

4.5.16 Interface SVGAnimatedAngle

Used for attributes of basic data type <angle> that can be animated.

interface SVGAnimatedAngle {
readonly attribute SVGAngle baseVal;
readonly attribute SVGAngle animVal;

Attributes:

« baseVal (readonly SVGAngle)

The base value of the given attribute before applying any animations.

« animVal (readonly SVGAngle)

A read only SVGAngle representing the current animated value of the given attribute. If the given attribute
is not currently being animated, then the SVGAngle will have the same contents as baseVal. The object ref-
erenced by animVal will always be distinct from the one referenced by baseVal, even when the attribute is
not animated.

4.5.17 Interface SVGColor

The SVGColor interface corresponds to color value definition for properties ‘stop-color’, ‘flood-color’ and ‘lighting-
color’ and is a base class for interface SVGPaint. It incorporates SVG's extended notion of color, which incorporates
ICC-based color specifications.

Interface SVGColor does not correspond to the <color> basic data type. For the <color> basic data type,
the applicable DOM interfaces are defined in DOM Level 2 Style; in particular, see the RGBColor interface
([DOM2STYLE], section 2.2).

Note: The SVGColor interface is deprecated, and may be dropped from future versions of the SVG specifica-
tion.

interface SVGColor : CSSValue {

// Color Types

const unsigned short SVG_COLORTYPE_UNKNOWN = 0;

const unsigned short SVG_COLORTYPE_RGBCOLOR = 1;

const unsigned short SVG_COLORTYPE_RGBCOLOR_ICCCOLOR = 2;
const unsigned short SVG_COLORTYPE_ CURRENTCOLOR = 3;

readonly attribute unsigned short colorType;
readonly attribute RGBColor rgbColor;
readonly attribute SVGICCColor iccColor;

void setRGBColor(in DOMString rgbColor) raises(SVGException);

void setRGBColorICCColor(in DOMString rgbColor, in DOMString iccColor) raises(SVGException);

void setColor(in unsigned short colorType, in DOMString rgbColor, in DOMString iccColor) raises(SVGException);
b

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor

Constants in group “Color Types”:

¢ SVG_COLORTYPE_UNKNOWN (unsigned short)

o
o
(@]
g
=7
S
S
)
oM
S

The color type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

¢« SVG_COLORTYPE_RGBCOLOR (unsigned short)

An sRGB color has been specified without an alternative ICC color specification.

* SVG_COLORTYPE_RGBCOLOR_ICCCOLOR (unsigned short)

An sRGB color has been specified along with an alternative ICC color specification.

¢ SVG_COLORTYPE_CURRENTCOLOR (unsigned short)

Corresponds to when keyword currentColor has been specified.
Attributes:
« colorType (readonly unsigned short)

The type of the value as specified by one of the SVG_COLORTYPE_* constants defined on this interface.

« rgbColor (readonly RGBColor)

The color specified in the sRGB color space.
« iccColor (readonly SVGICCColor)
The alternate ICC color specification.
Operations:

« void setRGBColor(in DOMString rgbColor)

Modifies the color value to be the specified sSRGB color without an alternate ICC color specification.
Parameters

» DOMString rgbColor
A string that matches <color>, which specifies the new sRGB color value.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor

Exceptions

» SVGException, code SVG_INVALID_VALUE_ERR
Raised if rgbColor does not match <color>.

o
o
(@]
g
=7
S
S
)
oM
S

« void setRGBColorICCColor(in DOMString rgbColor, in DOMString iccColor)

Modifies the color value to be the specified sSRGB color with an alternate ICC color specification.
Parameters

o DOMString rgbColor
A string that matches <color>, which specifies the new sRGB color value.

o DOMString iccColor
A string that matches <icccolor>, which specifies the alternate ICC color specification.

Exceptions

o SVGException, code SVG_INVALID_VALUE_ERR
Raised if rgbColor does not match <color> or if iccColor does not match <icccolor>.

« void setColor(in unsigned short colorType, in DOMString rgbColor, in DOMString iccColor)

Sets the color value as specified by the parameters. If colorType requires an RGBColor, then rghColor must
be a string that matches <color>; otherwise, rgbColor. must be null. If colorType requires an SVGICCColor,
then iccColor must be a string that matches <icccolor>; otherwise, iccColor must be null.

Parameters

« unsigned short colorType
One of the defined constants for colorType.

« DOMString rgbColor
The specification of an sRGB color, or null.

« DOMString iccColor
The specification of an ICC color, or null.

Exceptions

o SVGException, code SVG_INVALID_VALUE_ERR
Raised if one of the parameters has an invalid value.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-RGBColor

o
o
(@]
g
=7
S
S
)
oM
S

4.5.18 Interface SVGICCColor

The SVGICCColor interface expresses an ICC-based color specification.
Note: The SVGICCColor interface is deprecated, and may be dropped from future versions of the SVG spe-
cification.

interface SVGICCColor {
attribute DOMString colorProfile setraises(DOMException);
readonly attribute SVGNumberList colors;

Attributes:

« colorProfile (DOMString)

The name of the color profile, which is the first parameter of an ICC color specification.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« colors (readonly SVGNumberList)

The list of color values that define this ICC color. Each color value is an arbitrary floating point number.

4.5.19 Interface SVGRect

Represents rectangular geometry. Rectangles are defined as consisting of a (x,y) coordinate pair identifying a min-
imum X value, a minimum Y value, and a width and height, which are usually constrained to be non-negative.

An SVGRect object can be designated as read only, which means that attempts to modify the object will result
in an exception being thrown, as described below.

interface SVGRect {

attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float width setraises(DOMException);
attribute float height setraises(DOMException);
X

Attributes:

o X (float)

The x coordinate of the rectangle, in user units.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

e y (float)

The y coordinate of the rectangle, in user units.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

o width (float)

The width coordinate of the rectangle, in user units.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

« height (float)

The height coordinate of the rectangle, in user units.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the rectangle corresponds to a read only attribute or when the object itself is read only.

4.5.20 Interface SVGAnimatedRect

Used for attributes of type SVGRect which can be animated.

interface SVGAnimatedRect {

readonly attribute SVGRect baseVal;
readonly attribute SVGRect animVal;
b

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:

« baseVal (readonly SVGRect)

The base value of the given attribute before applying any animations.

« animVal (readonly SVGRect)

A read only SVGRect representing the current animated value of the given attribute. If the given attribute is
not currently being animated, then the SVGRect will have the same contents as baseVal. The object referen-
ced by animVal will always be distinct from the one referenced by baseVal, even when the attribute is not
animated.

4.5.21 Interface SVGUnitTypes

The SVGUnitTypes interface defines a commonly used set of constants and is a base interface used by SVGGradi-
entElement, SVGPatternElement, SVGClipPathElement, SVGMaskElement and SVGFilterElement.

interface SVGUnitTypes {

// Unit Types

const unsigned short SVG_UNIT_TYPE UNKNOWN = 0;

const unsigned short SVG_UNIT TYPE_ USERSPACEONUSE = 1;
const unsigned short SVG_UNIT TYPE_ OBJECTBOUNDINGBOX = 2;
b

Constants in group “Unit Types”:

¢ SVG_UNIT_TYPE_UNKNOWN (unsigned short)

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

o SVG_UNIT_TYPE_USERSPACEONUSE (unsigned short)

Corresponds to value 'userSpaceOnUse'.

e SVG_UNIT_TYPE_OBJECTBOUNDINGBOX (unsigned short)

Corresponds to value 'objectBoundingBox'.

4.5.22 Interface SVGStylable

The SVGStylable interface is implemented on all objects corresponding to SVG elements that can have ‘style’,
‘class” and presentation attributes specified on them. It is thus an ancestor interface for many of the interfaces
defined in this specification.

interface SVGStylable {

readonly attribute SVGAnimatedString className;
readonly attribute CSSStyleDeclaration style;

o
o
(@]
g
=7
S
S
)
oM
S

CSSValue getPresentationAttribute(in DOMString name);

Attributes:

« className (readonly SVGAnimatedString)

Corresponds to attribute ‘class’ on the given element.

« style (readonly CSSStyleDeclaration)

Corresponds to attribute ‘style’ on the given element. If the user agent does not support styling with CSS,
then this attribute must always have the value of null.

Operations:

« CSSValue getPresentationAttribute(in DOMString name)

Returns the base (i.e., static) value of a given presentation attribute as an object of type CSSValue. The
returned object is live; changes to the objects represent immediate changes to the objects to which the
CSSValue is attached.
Note: The getPresentationAttribute method is deprecated, and may be dropped from future versions of
the SVG specification.

Parameters

o DOMString name
The name of the presentation attribute whose value is to be returned.

Returns
The static/base value of the given presentation attribute as a CSSValue, or null if the given attribute
does not have a specified value.

4.5.23 Interface SVGLocatable

Interface SVGLocatable is for all elements which either have a ‘transform’ attribute or don't have a ‘transform’ at-
tribute but whose content can have a bounding box in current user space.

interface SVGLocatable {

readonly attribute SVGElement nearestViewportElement;
readonly attribute SVGElement farthestViewportElement;

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSStyleDeclaration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSStyleDeclaration
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSValue

o
o
(@]
g
=7
S
S
)
oM
S

SVGRect getBBox();

SVGMatrix getCTM();

SVGMatrix getScreenCTM();

SVGMatrix getTransformToElement(in SVGElement element) raises(SVGException);

Attributes:

« nearestViewportElement (readonly SVGElement)

The element which established the current viewport. Often, the nearest ancestor ‘svg’ element. Null if the
current element is the outermost svg element.

« farthestViewportElement (readonly SVGElement)

The farthest ancestor ‘svg’ element. Null if the current element is the outermost svg element.
Operations:

o SVGRect getBBox()

Returns the tight bounding box in current user space (i.e., after application of the ‘transform’ attribute, if
any) on the geometry of all contained graphics elements, exclusive of stroking, clipping, masking and filter
effects). Note that getBBox must return the actual bounding box at the time the method was called, even in
case the element has not yet been rendered.

Returns
An SVGRect object that defines the bounding box.

o SVGMatrix getCTM()

Returns the transformation matrix from current user units (i.e., after application of the ‘transform’ attribute,
if any) to the viewport coordinate system for the nearestViewportElement.

Returns
An SVGMatrix object that defines the CTM.

» SVGMatrix getScreenCTM()

Returns the transformation matrix from current user units (i.e., after application of the ‘transform’ attribute,
if any) to the parent user agent's notice of a "pixel". For display devices, ideally this represents a physical
screen pixel. For other devices or environments where physical pixel sizes are not known, then an algorithm
similar to the CSS2 definition of a "pixel" can be used instead. Note that null is returned if this element is not

hooked into the document tree. This method would have been more aptly named as getClientCTM, but the
name getScreenCTM is kept for historical reasons.

o
o
(@]
g
=7
S
S
)
oM
S

Returns
An SVGMatrix object that defines the given transformation matrix.

« SVGMatrix getTransformToElement(in SVGElement element)

Returns the transformation matrix from the user coordinate system on the current element (after application
of the ‘transform’ attribute, if any) to the user coordinate system on parameter element (after application of
its ‘transform’ attribute, if any).

Parameters

o SVGElement element
The target element.

Returns
An SVGMatrix object that defines the transformation.

Exceptions

o SVGException, code SVG_MATRIX_NOT_INVERTABLE
Raised if the currently defined transformation matrices make it impossible to compute the given matrix
(e.g., because one of the transformations is singular).

4.5.24 Interface SVGTransformable

Interface SVGTransformable contains properties and methods that apply to all elements which have attribute
‘transform’.

interface SVGTransformable : SVGLocatable {
readonly attribute SVGAnimatedTransformList transform;

Attributes:

« transform (readonly SVGAnimatedTransformList)

Corresponds to attribute ‘transform’ on the given element.

4.5.25 Interface SVGTests

Interface SVGTests defines an interface which applies to all elements which have attributes ‘requiredFeatures’, ‘re-

o
o
(@]
g
=7
S
S
)
oM
S

quiredExtensions’ and ‘systemLanguage’.

interface SVGTests {
readonly attribute SVGStringList requiredFeatures;
readonly attribute SVGStringList requiredExtensions;
readonly attribute SVGStringlList systemlLanguage;

boolean hasExtension(in DOMString extension);
b

Attributes:

« requiredFeatures (readonly SVGStringList)

Corresponds to attribute ‘requiredFeatures’ on the given element.

« requiredExtensions (readonly SVGStringList)

Corresponds to attribute ‘requiredExtensions’ on the given element.
» systemLanguage (readonly SVGStringList)
Corresponds to attribute ‘systemLanguage’ on the given element.
Operations:

« boolean hasExtension(in DOMString extension)

Returns true if the user agent supports the given extension, specified by a URL
Parameters

» DOMString extension
The name of the extension, expressed as a URI.

Returns
True or false, depending on whether the given extension is supported.

4.5.26 Interface SVGLangSpace

Interface SVGLangSpace defines an interface which applies to all elements which have attributes ‘xml:lang’ and

‘ ,
xml:space’.

o
o
(@]
g
=7
S
S
)
oM
S

interface SVGLangSpace {
attribute DOMString xmllang setraises(DOMException);
attribute DOMString xmlspace setraises(DOMException);

i

Attributes:

« xmllang (DOMString)

Corresponds to attribute ‘xml:lang’ on the given element.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« xmlspace (DOMString)

Corresponds to attribute ‘xml:space’ on the given element.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

4.5.27 Interface SVGExternalResourcesRequired

Interface SVGExternalResourcesRequired defines an interface which applies to all elements where this element or
one of its descendants can reference an external resource.
interface SVGExternalResourcesRequired {

readonly attribute SVGAnimatedBoolean externalResourcesRequired;

b

Attributes:

« externalResourcesRequired (readonly SVGAnimatedBoolean)

Corresponds to attribute ‘externalResourcesRequired’ on the given element. Note that the SVG DOM defines
the attribute ‘externalResourcesRequired’ as being of type SVGAnimatedBoolean, whereas the SVG language
definition says that ‘externalResourcesRequired’ is not animated. Because the SVG language definition states
that ‘externalResourcesRequired’ cannot be animated, the animVal will always be the same as the baseVal.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

4.5.28 Interface SVGFitToViewBox

Interface SVGFitToViewBox defines DOM attributes that apply to elements which have XML attributes ‘viewBox’
and ‘preserveAspectRatio’.

o
o
(@]
g
=7
S
S
)
oM
S

interface SVGFitToViewBox {
readonly attribute SVGAnimatedRect viewBox;
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;

Attributes:

o viewBox (readonly SVGAnimatedRect)

Corresponds to attribute ‘viewBox” on the given element.

« preserveAspectRatio (readonly SVGAnimatedPreserveAspectRatio)

Corresponds to attribute ‘preserveAspectRatio’ on the given element.

4.5.29 Interface SVGZoomAndPan

The SVGZoomAndPan interface defines attribute zoomAndPan and associated constants.

interface SVGZoomAndPan {

// Zoom and Pan Types

const unsigned short SVG_ZOOMANDPAN_UNKNOWN
const unsigned short SVG_ZOOMANDPAN_DISABLE
const unsigned short SVG_ZOOMANDPAN_MAGNIFY

0;
1;
2.

attribute unsigned short zoomAndPan setraises(DOMException);

Constants in group “Zoom and Pan Types”:

« SVG_ZOOMANDPAN_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

« SVG_ZOOMANDPAN_DISABLE (unsigned short)

Corresponds to value 'disable’.

e SVG_ZOOMANDPAN_MAGNIFY (unsigned short)

Corresponds to value 'magnify".

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Attributes:

« zoomAndPan (unsigned short)

o
o
(@]
g
=7
S
S
)
oM
S

Corresponds to attribute ‘zoomAndPan’ on the given element. The value must be one of the
SVG_ZOOMANDPAN * constants defined on this interface.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

4.5.30 Interface SVGViewSpec

The interface corresponds to an SVG View Specification.

interface SVGViewSpec : SVGZoomAndPan,
SVGFitToViewBox {
readonly attribute SVGTransformList transform;
readonly attribute SVGElement viewTarget;
readonly attribute DOMString viewBoxString;
readonly attribute DOMString preserveAspectRatioString;
readonly attribute DOMString transformString;
readonly attribute DOMString viewTargetString;

Attributes:

o transform (readonly SVGTransformList)

Corresponds to the transform setting on the SVG View Specification.

« viewTarget (readonly SVGElement)

Corresponds to the viewTarget setting on the SVG View Specification.

» viewBoxString (readonly DOMString)

Corresponds to the viewBox setting on the SVG View Specification.

« preserveAspectRatioString (readonly DOMString)

Corresponds to the preserveAspectRatio setting on the SVG View Specification.

o transformString (readonly DOMString)

Corresponds to the transform setting on the SVG View Specification.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

» viewTargetString (readonly DOMString)

Corresponds to the viewTarget setting on the SVG View Specification.

4.5.31 Interface SVGURIReference

Interface SVGURIReference defines an interface which applies to all elements which have the collection of XLink
attributes, such as ‘xlink:href’, which define a URI reference.

interface SVGURIReference {
readonly attribute SVGAnimatedString href;
X

Attributes:

o href (readonly SVGAnimatedString)

Corresponds to attribute ‘xlink:href’ on the given element.

4.5.32 Interface SVGCSSRule

SVG extends interface CSSRule with interface SVGCSSRule by adding an SVGColorProfileRule rule to allow for
specification of ICC-based color.
It is likely that this extension will become part of a future version of CSS and DOM.

interface SVGCSSRule : CSSRule {
const unsigned short COLOR_PROFILE_RULE = 7;

Constants:

« COLOR_PROFILE_RULE (unsigned short)

The rule is an @color-profile.

4.5.33 Interface SVGRenderingIntent

The SVGRenderingIntent interface defines the enumerated list of possible values for ‘rendering-intent” attributes
or descriptors.

interface SVGRenderingIntent {
// Rendering Intent Types
const unsigned short RENDERING_INTENT_ UNKNOWN = 0;
const unsigned short RENDERING_INTENT AUTO = 1;
const unsigned short RENDERING_INTENT_ PERCEPTUAL = 2;

const unsigned short RENDERING_INTENT RELATIVE COLORIMETRIC = 3;
const unsigned short RENDERING_INTENT_ SATURATION = 4;
const unsigned short RENDERING_INTENT ABSOLUTE_COLORIMETRIC = 5;

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSRule
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-CSSRule
http://www.w3.org/TR/SVG/color.html#InterfaceSVGColorProfileRule

Constants in group “Rendering Intent Types”:

« RENDERING_INTENT _UNKNOWN (unsigned short)

o
o
(@]
g
=7
S
S
)
oM
S

The type is not one of predefined types. It is invalid to attempt to define a new value of this type or to attempt
to switch an existing value to this type.

« RENDERING_INTENT_AUTO (unsigned short)

Corresponds to a value of 'auto’.

« RENDERING_INTENT_PERCEPTUAL (unsigned short)

Corresponds to a value of 'perceptual'.

« RENDERING_INTENT_RELATIVE_COLORIMETRIC (unsigned short)

Corresponds to a value of 'relative-colorimetric'.

o RENDERING_INTENT_SATURATION (unsigned short)

Corresponds to a value of 'saturation'.

« RENDERING_INTENT_ABSOLUTE_COLORIMETRIC (unsigned short)

Corresponds to a value of 'absolute-colorimetric'.

6 Styling

o
o
(@]
g
=7
S
S
)
oM
S

Contents

6.1 SVG's styling properties

6.2 Usage scenarios for styling

6.3 Alternative ways to specify styling properties
6.4 Specifying properties using the presentation attributes
6.5 Styling with XSL

6.6 Styling with CSS

6.7 Case sensitivity of property names and values
6.8 Facilities from CSS and XSL used by SVG

6.9 Referencing external style sheets

6.10 The ‘style’ element

6.11 The ‘class’ attribute

6.12 The ‘style’ attribute

6.13 Specifying the default style sheet language
6.14 Property inheritance

6.15 The scope/range of styles
6.16 User agent style sheet
6.17 Aural style sheets
6.18 DOM interfaces
6.18.1 Interface SVGStyleElement

6.1 SVG's styling properties

SVG uses styling properties to describe many of its document parameters. Styling properties define how the
graphics elements in the SVG content are to be rendered. SVG uses styling properties for the following:

o Parameters which are clearly visual in nature and thus lend themselves to styling. Examples include all at-
tributes that define how an object is "painted," such as fill and stroke colors, linewidths and dash styles.

« Parameters having to do with text styling such as font family and size.

o Parameters which impact the way that graphical elements are rendered, such as specifying clipping paths,
masks, arrowheads, markers and filter effects.

SVG shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional SVG-specific
rules explicitly mentioned in this specification, the normative definition of properties that are shared with CSS
and XSL is the definition of the property from the CSS2 specification [CSS2].

The following properties are shared between CSS2 and SVG. Most of these properties are also defined in XSL:

http://www.w3.org/TR/2008/REC-CSS2-20080411/

o
o
(@]
g
=7
S
S
)
oM
S

« Font properties:

o ‘font’

o ‘font-family’

o ‘font-size’

o ‘font-size-adjust’

o ‘font-stretch’

o ‘font-style’

o ‘font-variant’

o ‘font-weight’

« Text properties:

o ‘direction’

o ‘letter-spacing’

o ‘text-decoration’

o ‘unicode-bidi’

o ‘word-spacing’

 Other properties for visual media:

o ‘clip’, only applicable to outermost svg element.

o ‘color’, used to provide a potential indirect value (currentColor) for the ‘fill’, ‘stroke’, ‘stop-color’, ‘flood-
color’ and ‘lighting-color’ properties. (The SVG properties which support color allow a color specification
which is extended from CSS2 to accommodate color definitions in arbitrary color spaces. See Color pro-
file descriptions.)

o ‘cursor’

o ‘display’

o ‘overflow’, only applicable to elements which establish a new viewport.

o ‘visibility’

The following SVG properties are not defined in CSS2. The complete normative definitions for these properties are

found in this specification:

« Clipping, Masking and Compositing properties:

o ‘clip-path’
o ‘clip-rule’
o ‘mask’

o ‘opacity’

« Filter Effects properties:
o ‘enable-background’
o ‘filter’
o ‘flood-color’
o ‘flood-opacity’
o ‘lighting-color’

o Gradient properties:

o ‘stop-color’

o ‘stop-opacity’
« Interactivity properties:

o .)
o pointer-events

o
o
(@]
g
=7
S
S
)
oM
S

« Color and Painting properties:
o ‘color-interpolation’
o ‘color-interpolation-filters’
o ‘color-profile’

o ‘color-rendering

o ‘il
o ‘fill-opacity’
o ‘fill-rule’

o ‘image-rendering’

o ‘marker’
o ‘marker-end’
o ‘marker-mid’
o ‘marker-start’
o ‘shape-rendering’
o ‘stroke’
o ‘stroke-dasharray’
o ‘stroke-dashoffset’
o ‘stroke-linecap’
o ‘stroke-linejoin’
o ‘stroke-miterlimit’
o ‘stroke-opacity’
o ‘stroke-width’
o ‘text-rendering’
» Text properties:
o ‘alignment-baseline’
o ‘baseline-shift’
o ‘dominant-baseline’
o ‘glyph-orientation-horizontal’
o ‘glyph-orientation-vertical’
o ‘kerning’
o ‘text-anchor’

o ‘writing-mode’
A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SVG has many usage scenarios, each with different needs. Here are three common usage scenarios:

1. SVG content used as an exchange format (style sheet language-independent):
In some usage scenarios, reliable interoperability of SVG content across software tools is the main goal.
Since support for a particular style sheet language is not guaranteed across all implementations, it is a re-

o
o
(@]
g
=7
S
S
)
oM
S

quirement that SVG content can be fully specified without the use of a style sheet language.
2. SVG content generated as the output from XSLT:

XSLT offers the ability to take a stream of arbitrary XML content as input, apply potentially complex
transformations, and then generate SVG content as output [XSLT]. XSLT can be used to transform XML data
extracted from databases into an SVG graphical representation of that data. It is a requirement that fully spe-
cified SVG content can be generated from XSLT.

3. SVG content styled with CSS:

CSS is a widely implemented declarative language for assigning styling properties to XML content, in-
cluding SVG [CSS2]. It represents a combination of features, simplicity and compactness that makes it very
suitable for many applications of SVG. It is a requirement that CSS styling can be applied to SVG content.

6.3 Alternative ways to specify styling properties

Styling properties can be assigned to SVG elements in the following two ways:

« Presentation attributes

Styling properties can be assigned using SVG's presentation attributes. For each styling property
defined in this specification, there is a corresponding XML presentation attribute available on all relevant
SVG elements. Detailed information on the presentation attributes can be found in Specifying properties us-
ing the presentation attributes.

The presentation attributes are style sheet language independent and thus are applicable to usage scen-
ario 1 above (i.e., tool interoperability). Because it is straightforward to assign values to XML attributes from
XSLT, the presentation attributes are well-suited to usage scenario 2 above (i.e., SVG generation from XSLT).
(See Styling with XSL below.)

Conforming SVG Interpreters and Conforming SVG Viewers are required to support SVG's presentation
attributes.

o CSS Stylesheets

To support usage scenario 3 above, SVG content can be styled with CSS. For more information, see Styl-
ing with CSS.

Conforming SVG Interpreters and Conforming SVG Viewers that support CSS styling of generic (i.e.,
text-based) XML content are required to also support CSS styling of SVG content.

6.4 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML attribute
(the presentation attribute) with the same name that is available on all relevant SVG elements. For example, SVG
has a “fill’ property that defines how to paint the interior of a shape. There is a corresponding presentation attrib-
ute with the same name (i.e., ‘fill’) that can be used to specify a value for the ‘fill’ property on a given element.

The following example shows how the ‘fill’ and ‘stroke’ properties can be specified on a ‘rect’ using the ‘fll’
and ‘stroke’ presentation attributes. The rectangle will be filled with red and outlined with blue:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="10cm" height="5cm" viewBox="0 0 1000 500">
<rect x="200" y="100" width="600" height="300"
fill="red" stroke="blue" stroke-width="3"/>

o
o
(@]
g
=7
S
S
)
oM
S

</svg>
The presentation attributes offer the following advantages:

« Broad support. All versions of Conforming SVG Interpreters and Conforming SVG Viewers are required to
support the presentation attributes.

« Simplicity. Styling properties can be attached to elements by simply providing a value for the presentation
attribute on the proper elements.

o Restyling. SVG content that uses the presentation attributes is highly compatible with downstream process-
ing using XSLT [XSLT] [XSLT2] or supplemental styling by adding CSS style rules to override some of the
presentation attributes.

o Convenient generation using XSLT. In some cases, XSLT can be used to generate fully styled SVG content.
The presentation attributes are compatible with convenient generation of SVG from XSLT.

In some situations, SVG content that uses the presentation attributes has potential limitations versus SVG content
that is styled with a style sheet language such as CSS (see Styling with CSS). In other situations, such as when
an XSLT style sheet generates SVG content from semantically rich XML source files, the limitations below may
not apply. Depending on the situation, some of the following potential limitations may or may not apply to the
presentation attributes:

« Styling attached to content. The presentation attributes are attached directly to particular elements, thereby
diminishing potential advantages that comes from abstracting styling from content, such as the ability to re-
style documents for different uses and environments.

« Flattened data model. In and of themselves, the presentation attributes do not offer the higher level abstrac-
tions that you get with a styling system, such as the ability to define named collections of properties which
are applied to particular categories of elements. The result is that, in many cases, important higher level se-
mantic information can be lost, potentially making document reuse and restyling more difficult.

« Potential increase in file size. Many types of graphics use similar styling properties across multiple ele-
ments. For example, a company organization chart might assign one collection of styling properties to the
boxes around temporary workers (e.g., dashed outlines, red fill), and a different collection of styling prop-
erties to permanent workers (e.g., solid outlines, blue fill). Styling systems such as CSS allow collections of
properties to be defined once in a file. With the styling attributes, it might be necessary to specify presenta-
tion attributes on each different element.

« Potential difficulty when embedded into a CSS-styled parent document. When SVG content is embedded
in other XML, and the desire is to style all aspects of the compound document with CSS, use of the present-

o
o
(@]
g
=7
S
S
)
oM
S

ation attributes might introduce complexity and difficulty. In this case, it is sometimes easier if the SVG con-
tent does not use the presentation attributes and instead is styled using CSS facilities.

For user agents that support CSS, the presentation attributes must be translated to corresponding CSS style rules
according to rules described in Precedence of non-CSS presentational hints ([CSS2], section 6.4.4), with the addi-
tional clarification that the presentation attributes are conceptually inserted into a new author style sheet which is
the first in the author style sheet collection. The presentation attributes thus will participate in the CSS2 cascade
as if they were replaced by corresponding CSS style rules placed at the start of the author style sheet with a speci-
ficity of zero. In general, this means that the presentation attributes have lower priority than other CSS style rules
specified in author style sheets or ‘style’ attributes.

User agents that do not support CSS must ignore any CSS style rules defined in CSS style sheets and ‘style’
attributes. In this case, the CSS cascade does not apply. (Inheritance of properties, however, does apply. See Prop-
erty inheritance.)

An limportant declaration ([CSS2], section 6.4.2) within a presentation attribute definition is an invalid value.

Animation of presentation attributes is equivalent to animating the corresponding property. Thus, the same
effect occurs from animating the presentation attribute with attributeType="XML" as occurs with animating the
corresponding property with attributeType="CSS" (see ‘attributeType’).

6.5 Styling with XSL

XSL style sheets [XSLT] [XSLT2] define how to transform XML content into something else, usually other XML.
When XSLT is used in conjunction with SVG, sometimes SVG content will serve as both input and output for XSL
style sheets. Other times, XSL style sheets will take non-SVG content as input and generate SVG content as output.

The following example uses an external XSL style sheet to transform SVG content into modified SVG content
(see Referencing external style sheets). The style sheet sets the ‘fill’ and ‘stroke’ properties on all rectangles to red
and blue, respectively:

mystyle.xsl
<?xml version="1.0" standalone="no"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:svg="http://www.w3.0rg/2000/svg">
<xsl:output
method="xml"
encoding="utf-8"
doctype-public="-//W3C//DTD SVG 1.1//EN"
doctype-system="http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd"/>

<!-- Add version to topmost 'svg' element -->
<xsl:template match="/svg:svg">
<xsl:copy>

<xsl:copy-of select="@*"/>
<xsl:attribute name="version">1l.1l</xsl:attribute>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
<!l-- Add styling to all 'rect' elements -->
<xsl:template match="svg:rect">

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#q12
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#important-rules

<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:attribute name="fill">red</xsl:attribute>
<xsl:attribute name="stroke">blue</xsl:attribute>
<xsl:attribute name="stroke-width">3</xsl:attribute>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

o
o
(@]
g
=7
S
S
)
oM
S

SVG file to be transformed by mystyle.xsl
<?xml version="1.0" standalone="no"?>
<?xml-stylesheet href="mystyle.xsl" type="application/xml"?>
<svg xmlns="http://www.w3.0rg/2000/svg"
width="10cm" height="5cm">
<rect x="2cm" y="1lcm" width="6cm" height="3cm"/>
</svg>

SVG content after applying mystyle.xsl
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg"
width="10cm" height="5cm" version="1.1">
<rect x="2cm" y="1lcm" width="6cm" height="3cm" fill="red" stroke="blue" stroke-width="3"/>
</svg>

6.6 Styling with CSS

SVG implementations that support CSS are required to support the following:

o External CSS style sheets referenced from the current document (see Referencing external style sheets)

« Internal CSS style sheets (i.e., style sheets embedded within the current document, such as within an SVG
‘style’ element)

o Inline style (i.e., CSS property declarations within a ‘style’ attribute on a particular SVG element)

The following example shows the use of an external CSS style sheet to set the ‘fill’ and ‘stroke’ properties on all

rectangles to red and blue, respectively:

mystyle.css

rect {
fill: red;
stroke: blue;
stroke-width: 3

}

SVG file referencing mystyle.css
<?xml version="1.0" standalone="no"?>
<?xml-stylesheet href="mystyle.css" type="text/css"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="10cm" height="5cm" viewBox="0 0 1000 500">

o
o
(@]
g
=7
S
S
)
oM
S

<rect x="200" y="100" width="600" height="300"/>
</svg>

CSS style sheets can be embedded within SVG content inside of a ‘style’ element. The following example uses an
internal CSS style sheet to achieve the same result as the previous example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="10cm" height="5cm" viewBox="0 0 1000 500">
<defs>
<style type="text/css"><![CDATA[
rect {
fill: red;
stroke: blue;
stroke-width: 3

}
1]1></style>
</defs>
<rect x="200" y="100" width="600" height="300"/>
</svg>

Note how the CSS style sheet is placed within a CDATA construct (i.e., <! [CDATA[... 11>). Placing internal CSS
style sheets within CDATA blocks is sometimes necessary since CSS style sheets can include characters, such as ">",
which conflict with XML parsers. Even if a given style sheet does not use characters that conflict with XML pars-
ing, it is highly recommended that internal style sheets be placed inside CDATA blocks.

Implementations that support CSS are also required to support CSS inline style. Similar to the ‘style’ attribute
in HTML, CSS inline style can be declared within a ‘style’ attribute in SVG by specifying a semicolon-separated
list of property declarations, where each property declaration has the form "name: value". Note that property de-
clarations inside the ‘style’ attribute must follow CSS style rules, see The 'style' attribute.

The following example shows how the ‘fill’ and ‘stroke’ properties can be specified on a ‘rect’ using the ‘style’

attribute. Just like the previous example, the rectangle will be filled with red and outlined with blue:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"

width="10cm" height="5cm" viewBox="0 0 1000 500">
<rect x="200" y="100" width="600" height="300"
style="fill: red; stroke: blue; stroke-width: 3"/>
</svg>

In an SVG user agent that supports CSS style sheets, the following facilities from CSS2 must be supported:

o (SS2 selectors within style sheets ([CSS2], chapter 5). Because SVG is intended to be used as one component
in a multiple namespace XML application and CSS2 is not namespace aware, type selectors will only match
against the local part of the element's qualified name.

o External CSS style sheets [XML-SS], CSS style sheets within ‘style’ elements and CSS declaration blocks
([CSS2], section 4.1.7) within ‘style’ attributes attached to specific SVG elements.

o (CSS2 rules for assigning property values, cascading and inheritance ([CSS2], chapter 6).

o (@font-face, @media, @import and @charset rules within style sheets ([CSS2], sections 15.3.1, 7.2.1, 6.3 and
4.4).

o (SS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes first-child, :visited, :link and

http://www.w3.org/TR/2008/REC-xml-20081126/#sec-cdata-sect
http://www.w3.org/TR/1999/REC-html401-19991224/present/styles.html#h-14.2.2
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#q8
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#at-media-rule
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#at-import
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#x66
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15

o
o
(@]
g
=7
S
S
)
oM
S

:lang ([CSS2], section 5.11). The remaining CSS2 pseudo-classes, including those having to do with generated
content ([CSS2], chapter 12), are not part of the SVG language definition. An SVG element gains focus when
it is selected. See Text selection.

« For the purposes of aural media, SVG represents a CSS-stylable XML grammar. In user agents that support
aural style sheets, CSS aural style properties can be applied as defined in CSS2 ([CSS2], chapter 19). (See
Aural style sheets.)

o CSS style sheets defined within a ‘style’ element can be immediate character data content of the ‘style’ ele-
ment or can be embedded within a CDATA section ([XML10], section 2.7).

SVG defines an @color-profile at-rule ([CSS2], section 4.1.6) for defining color profiles so that ICC color profiles
can be applied to CSS-styled SVG content.

Note the following about relative URIs and external CSS style sheets: The CSS2 specification says ([CSS2],
section 4.3.4) that relative URIs (as defined in Uniform Resource Identifiers (URI): Generic Syntax [RFC3986]) with-
in style sheets are resolved such that the base URI is that of the style sheet, not that of the referencing document.

6.7 Case sensitivity of property names and values

Property declarations via presentation attributes are expressed in XML [XML10], which is case-sensitive. CSS
property declarations specified either in CSS style sheets or in a ‘style’ attribute, on the other hand, are generally
case-insensitive with some exceptions ([CSS2], section 4.1.3).

Because presentation attributes are expressed as XML attributes, presentation attributes are case-sensitive
and must match the exact name as specified in the DTD (see the SVG.Presentation.attrib entity in the DTD,
which expands to all of the presentation attributes). When using a presentation attribute to specify a value for
the “fll’ property, the presentation attribute must be be specified as fill="..." and not fill="..." or Fill="...". Keyword
values, such as italic in font-style="italic", are also case-sensitive and must be specified using the exact case used in
the specification which defines the given keyword. For example, the keyword sRGB must have lowercase "s" and
uppercase "RGB".

Property declarations within CSS style sheets or in a ‘style’ attribute must only conform to CSS rules, which
are generally more lenient with regard to case sensitivity. However, to promote consistency across the different
ways for expressing styling properties, it is strongly recommended that authors use the exact property names (usu-
ally, lowercase letters and hyphens) as defined in the relevant specification and express all keywords using the
same case as is required by presentation attributes and not take advantage of CSS's ability to ignore case.

6.8 Facilities from CSS and XSL used by SVG

SVG shares various relevant properties and approaches common to CSS and XSL, plus the semantics of many of
the processing rules.
SVG shares the following facilities with CSS and XSL:

« Shared properties. Many of SVG's properties are shared between CSS2, XSL and SVG. (See list of shared prop-
erties).

http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html
http://www.w3.org/TR/2008/REC-xml-20081126/#sec-cdata-sect
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#at-rules
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#uri
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#q4
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#q4

o
o
(@]
g
=7
S
S
)
oM
S

o Syntax rules. (The normative references are CSS2 syntax and basic data types and The grammar of CSS2; in
[CSS2], chapter 4 and appendix D.)

o Allowable data types. (The normative reference is CSS2 syntax and basic data types ([CSS2], chapter 4), with
the exception that SVG length and angle values without a unit identifier. See Units.)

« Inheritance rules.

« The color keywords from CSS2 that correspond to the colors used by objects in the user's environment. (The
normative reference is CSS2 system colors; in [CSS2], section 18.2.)

« For implementations that support CSS styling of SVG content, then that styling must be compatible with
various other rules in CSS. (See Styling with CSS.)

6.9 Referencing external style sheets

External style sheets are referenced using the mechanism documented in Associating Style Sheets with XML doc-
uments Version 1.0 [XML-SS].

6.10 The ‘style’ element

The ‘style’ element allows style sheets to be embedded directly within SVG content. SVG's ‘style’ element has the
same attributes as the corresponding element in HTML (see HTML's ‘style’ element).

Categories: ‘style’
None

Content model:
Any elements or character data.

Attributes:
core attributes
‘type’
‘media’
‘title’

DOM Interfaces:
SVGStyleElement

Attribute definitions:

type = content-type
This attribute specifies the style sheet language of the element's contents. The style sheet language is specified
as a content type (e.g., "text/css"), as per MIME Part Two: Media Types [RFC2046]. If a ‘type’ is not provided,
the value of ‘contentStyleType’ on the ‘svg’ element shall be used, which in turn defaults to "text/css"
[RFC2046]. If a ‘style’ element falls outside of the outermost svg element and the ‘type’ is not provided, the

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/grammar.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/ui.html#system-colors
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/1999/REC-html401-19991224/present/styles.html#h-14.2.3
http://www.ietf.org/rfc/rfc2046.txt

o
o
(@]
g
=7
S
S
)
oM
S

‘type’ must default to "text/css" [RFC2046].
Animatable: no.

media = media-descriptors
This attribute specifies the intended destination medium for style information. It may be a single media
descriptor or a comma-separated list. The default value for this attribute is "all". The set of recognized media-
descriptors are the list of media types recognized by CSS2 ([CSS2], section 7.3).
Animatable: no.

title = advisory-title
(For compatibility with HTML 4 [HTML4].) This attribute specifies an advisory title for the ‘style’ element.
Animatable: no.

The syntax of style data depends on the style sheet language.
Some style sheet languages might allow a wider variety of rules in the ‘style’ element than in the ‘style’. For
example, with CSS, rules can be declared within a ‘style’ element that cannot be declared within a ‘style’ attribute.
An example showing the ‘style’ element is provided above (see example).

6.11 The “class’ attribute
Attribute definitions:

class = list
This attribute assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space characters.
Animatable: yes.

The ‘class’ attribute assigns one or more class names to an element. The element may be said to belong to these
classes. A class name may be shared by several element instances. The ‘class’ attribute has several roles:

o As a style sheet selector (when an author wishes to assign style information to a set of elements).
« For general purpose processing by user agents.

In the following example, the ‘text’ element is used in conjunction with the ‘class’ attribute to markup document
messages. Messages appear in both English and French versions.

<!-- English messages -->

<text class="info" lang="en">Variable declared twice</text>

<text class="warning" lang="en">Undeclared variable</text>

<text class="error" lang="en">Bad syntax for variable name</text>
<!-- French messages -->

<text class="info" lang="fr">Variable déclarée deux fois</text>
<text class="warning" lang="fr">Variable indéfinie</text>

<text class="error" lang="fr">Erreur de syntaxe pour variable</text>

http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#media-types

o
o
(@]
g
=7
S
S
)
oM
S

In an SVG user agent that supports CSS styling, the following CSS style rules would tell visual user agents to dis-
play informational messages in green, warning messages in yellow, and error messages in red:

text.info { color: green }
text.warning { color: yellow }
text.error { color: red }

6.12 The ‘style’ attribute

The ‘style’ attribute allows per-element style rules to be specified directly on a given element. When CSS styling
is used, CSS inline style is specified by including semicolon-separated property declarations of the form "name :
value" within the ‘style’ attribute. Property declarations must follow CSS style rules thus CSS defined properties
(e.g. 'font-size') when having a <length> value must include a unit (for non-zero values). See SVG's styling proper-
ties for a list of CSS defined properties.

Attribute definitions:

style = style
This attribute specifies style information for the current element. The style attribute specifies style inform-
ation for a single element. The style sheet language of inline style rules is given by the value of attribute
‘contentStyleType’ on the ‘svg’ element. The syntax of style data depends on the style sheet language.
Animatable: no.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will be reused
for several elements, authors should use the ‘style’ element to regroup that information. For optimal flexibility,
authors should define styles in external style sheets.

An example showing the ‘style’ attribute is provided above (see example).

6.13 Specifying the default style sheet language

The ‘contentStyleType’ attribute on the ‘svg’ element specifies the default style sheet language for the given docu-
ment fragment.

contentStyleType = "content-type"
Identifies the default style sheet language for the given document. That language must then be used for
all instances of style that do not specify their own style sheet language, such as the ‘style’ attributes that
are available on many elements. The value content-type specifies a media type, per MIME Part Two: Media
Types [RFC2046]. The default value is "text/css" [RFC2318].
Animatable: no.

Since the only widely deployed language used for inline styling (in style elements and style attributes) is CSS, and
since that is already the default language if contentStyleType is omitted, in practice contentStyleType is not well

http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt

o
o
(@]
g
=7
S
S
)
oM
S

supported in user agents. XSL style sheets are typically external. If a new style sheet language becomes popular,
it might not use style attributes and could easily declare which language is in use with the type attribute on the
style element.

The use of contentStyleType is therefore deprecated; new content should not use it. Future versions of the
SVG specification may remove contentStyleType.

6.14 Property inheritance

Whether or not the user agent supports CSS, property inheritance in SVG follows the property inheritance rules
defined in the CSS2 specification. The normative definition for property inheritance is the Inheritance section of
the CSS2 specification ([CSS2], section 6.2).

The definition of each property indicates whether the property can inherit the value of its parent.

In SVG, as in CSS2, most elements inherit computed values ([CSS2], section 6.1.2). For cases where something
other than computed values are inherited, the property definition will describe the inheritance rules. For specified
values ([CSS2], section 6.1.1) which are expressed in user units, in pixels (e.g., 20px) or in absolute values, the
computed value equals the specified value. For specified values which use certain relative units (i.e., em, ex and
percentages), the computed value will have the same units as the value to which it is relative. Thus, if the parent
element has a ‘font-size’ of 10pt and the current element has a ‘font-size’ of 120%, then the computed value for ‘font-
size’ on the current element will be 12pt. In cases where the referenced value for relative units is not expressed
in any of the standard SVG units (i.e., CSS units or user units), such as when a percentage is used relative to the
current viewport or an object bounding box, then the computed value will be in user units.

Note that SVG has some facilities wherein a property which is specified on an ancestor element might effect
its descendant element, even if the descendant element has a different assigned value for that property. For ex-
ample, if a ‘clip-path’ property is specified on an ancestor element, and the current element has a ‘clip-path’ of
none, the ancestor's clipping path still applies to the current element because the semantics of SVG state that the
clipping path used on a given element is the intersection of all clipping paths specified on itself and all ancestor
elements. The key concept is that property assignment (with possible property inheritance) happens first. After
properties values have been assigned to the various elements, then the user agent applies the semantics of each
assigned property, which might result in the property assignment of an ancestor element affecting the rendering
of its descendants.

6.15 The scope/range of styles
The following define the scope/range of style sheets:

Stand-alone SVG document
There is one parse tree. Style sheets defined anywhere within the SVG document (in style elements or style
attributes, or in external style sheets linked with the style sheet processing instruction) apply across the en-
tire SVG document.

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#inheritance
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#computed-value
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#specified-value
http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#specified-value

o
o
(@]
g
=7
S
S
)
oM
S

Stand-alone SVG document embedded in an HTML or XML document with the ‘img’, ‘object’ (HTML) or ‘im-

age’ (SVG) elements
There are two completely separate parse trees; one for the referencing document (perhaps HTML or
XHTML), and one for the SVG document. Style sheets defined anywhere within the referencing document
(in style elements or style attributes, or in external style sheets linked with the style sheet processing instruc-
tion) apply across the entire referencing document but have no effect on the referenced SVG document. Style
sheets defined anywhere within the referenced SVG document (in style elements or style attributes, or in ex-
ternal style sheets linked with the style sheet processing instruction) apply across the entire SVG document,
but do not affect the referencing document (perhaps HTML or XHTML). To get the same styling across both
the [X]JHTML document and the SVG document, link them both to the same style sheet.

Stand-alone SVG content textually included in an XML document
There is a single parse tree, using multiple namespaces; one or more subtrees are in the SVG namespace.
Style sheets defined anywhere within the XML document (in style elements or style attributes, or in external
style sheets linked with the style sheet processing instruction) apply across the entire document, including
those parts of it in the SVG namespace. To get different styling for the SVG part, use the ‘style’ attribute, or
put an ‘id’ on the ‘svg’ element and use contextual CSS selectors, or use XSL selectors.

6.16 User agent style sheet

The user agent shall maintain a user agent style sheet ([CSS2], section 6.4) for elements in the SVG namespace for
visual media ([CSS2], section 7.3.1). The user agent style sheet below is expressed using CSS syntax; however, user
agents are required to support the behavior that corresponds to this default style sheet even if CSS style sheets are
not supported in the user agent:

svg, symbol, image, marker, pattern, foreignObject { overflow: hidden }
svg { width:attr(width); height:attr(height) }

The first line of the above user agent style sheet will cause the initial clipping path to be established at the bounds
of the initial viewport. Furthermore, it will cause new clipping paths to be established at the bounds of the listed
elements, all of which are elements that establish a new viewport. (Refer to the description of SVG's use of the
‘overflow’ property for more information.)

The second line of the above user agent style sheet will cause the ‘width’ and ‘height’ attributes on the ‘svg’
element to be used as the default values for the 'width' and 'height' properties during layout ([CSS2], chapter 9).

6.17 Aural style sheets

For the purposes of aural media, SVG represents a stylable XML grammar. In user agents that support CSS aural
style sheets, aural style properties ([CSS2], chapter 19) can be applied as defined in CSS2.

Aural style properties can be applied to any SVG element that can contain character data content, including
‘desc’ ‘title” ‘tspan’, ‘tref’, ‘altGlyph’ and ‘textPath’. On user agents that support aural style sheets, the following
CSS2 properties can be applied:

http://www.w3.org/TR/2008/REC-CSS2-20080411/cascade.html#cascade
http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group
http://www.w3.org/TR/2008/REC-CSS2-20080411/visudet.html#propdef-width
http://www.w3.org/TR/2008/REC-CSS2-20080411/visudet.html#propdef-height
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html

Aural property Definition in [CSS2]

<+
e
(o)
g
<
S
S
O
Q)
2

‘azimuth’ Section 19.7
‘cue’ Section 19.5
‘cue-after’ Section 19.5
‘cue-before’ Section 19.5
‘elevation’ Section 19.7
‘pause’ Section 19.4
‘pause-after’ Section 19.4
‘pause-before’ Section 19.4
‘pitch’ Section 19.8
‘pitch-range’ Section 19.8
‘play-during’ Section 19.6
‘richness’ Section 19.8
‘speak’ Section 19.3
‘speak-header’ Section 17.7.1
‘speak-numeral’ Section 19.9

‘speak-punctuation’ Section 19.9

‘speech-rate’ Section 19.8
‘stress’ Section 19.8
‘voice-family’ Section 19.8
‘volume’ Section 19.2

For user agents that support aural style sheets and also support DOM Level 2 Core [DOM?2], the user agent is
required to support the DOM interfaces defined in Document Object Model CSS ([DOM2STYLE], chapter 2) that
correspond to aural properties. (See Relationship with DOM2 CSS object model.)

http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-azimuth
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-cue
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-cue-after
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-cue-before
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-elevation
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pause
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pause-after
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pause-before
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pitch
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-pitch-range
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-play-during
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-richness
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speak
http://www.w3.org/TR/2008/REC-CSS2-20080411/tables.html#propdef-speak-header
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speak-numeral
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-speech-rate
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-stress
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-voice-family
http://www.w3.org/TR/2008/REC-CSS2-20080411/aural.html#propdef-volume
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html

o
o
(@]
g
=7
S
S
)
oM
S

6.18 DOM interfaces

6.18.1 Interface SVGStyleElement

The SVGStyleElement interface corresponds to the ‘style’ element.

interface SVGStyleElement : SVGElement,

SVGLangSpace {
attribute DOMString type setraises(DOMException);
attribute DOMString media setraises(DOMException);
attribute DOMString title setraises(DOMException);
b

Attributes:

« type (DOMString)

Corresponds to attribute ‘type’ on the given element.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« media (DOMString)
Corresponds to attribute ‘media’ on the given element.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« title (DOMString)
Corresponds to attribute ‘title” on the given element.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

7 Coordinate Systems, Transformations and Units

o
o
(@]
g
=7
S
S
)
oM
S

Contents

7.1 Introduction

7.2 The initial viewport

7.3 The initial coordinate system

7.4 Coordinate system transformations
7.5 Nested transformations

7.6 The ‘transform’ attribute

7.7 The ‘viewBox’ attribute

7.8 The ‘preserveAspectRatio’ attribute

7.9 Establishing a new viewport
7.10 Units
7.11 Object bounding box units
7.12 Intrinsic sizing properties of the viewport of SVG content
7.13 Geographic coordinate systems
7.14 The ‘svg:transform’ attribute
7.15 DOM interfaces
7.15.1 Interface SVGPoint
7.15.2 Interface SVGPointList
7.15.3 Interface SVGMatrix
7.15.4 Interface SVGTransform
7.15.5 Interface SVGTransformList
7.15.6 Interface SVGAnimatedTransformList
7.15.7 Interface SVGPreserveAspectRatio
7.15.8 Interface SVGAnimatedPreserveAspectRatio

7.1 Introduction

For all media, the SVG canvas describes "the space where the SVG content is rendered." The canvas is infinite for
each dimension of the space, but rendering occurs relative to a finite rectangular region of the canvas. This finite
rectangular region is called the SVG viewport. For visual media ([CSS2], section 7.3.1) the SVG viewport is the
viewing area where the user sees the SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see Estab-
lishing the size of the initial viewport) between the SVG document fragment and its parent (real or implicit). Once
that negotiation process is completed, the SVG user agent is provided the following information:

o anumber (usually an integer) that represents the width in "pixels" of the viewport
o anumber (usually an integer) that represents the height in "pixels" of the viewport

http://www.w3.org/TR/2008/REC-CSS2-20080411/media.html#visual-media-group

o
o
(@]
g
=7
S
S
)
oM
S

o (highly desirable but not required) a real number value that indicates the size in real world units, such as
millimeters, of a "pixel” (i.e., a px unit as defined in CSS2 ([CSS2], section 4.3.2)

Using the above information, the SVG user agent determines the viewport, an initial viewport coordinate sys-
tem and an initial user coordinate system such that the two coordinates systems are identical. Both coordinates
systems are established such that the origin matches the origin of the viewport (for the root viewport, the viewport
origin is at the top/left corner), and one unit in the initial coordinate system equals one "pixel" in the viewport.
(See Initial coordinate system.) The viewport coordinate system is also called viewport space and the user co-
ordinate system is also called user space.

Lengths in SVG can be specified as:

« (if no unit identifier is provided) values in user space — for example, "15"
o (if a unit identifier is provided) a length expressed as an absolute or relative unit measure — for example,
"15mm" or "5em"

The supported length unit identifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., a new current coordinate system) can be established at any place within an SVG docu-
ment fragment by specifying transformations in the form of transformation matrices or simple transformation
operations such as rotation, skewing, scaling and translation. Establishing new user spaces via coordinate system
transformations are fundamental operations to 2D graphics and represent the usual method of controlling the size,
position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of
percentages units and provide a new reference rectangle for "fitting" a graphic into a particular rectangular area.
("Fit" means that a given graphic is transformed in such a way that its bounding box in user space aligns exactly
with the edges of a given viewport.)

7.2 The initial viewport

The SVG user agent negotiates with its parent user agent to determine the viewport into which the SVG user agent
can render the document. In some circumstances, SVG content will be embedded (by reference or inline) within a
containing document. This containing document might include attributes, properties and/or other parameters (ex-
plicit or implicit) which specify or provide hints about the dimensions of the viewport for the SVG content. SVG
content itself optionally can provide information about the appropriate viewport region for the content via the
‘width’ and ‘height’ XML attributes on the outermost svg element. The negotiation process uses any information
provided by the containing document and the SVG content itself to choose the viewport location and size.

The ‘width’ attribute on the outermost svg element establishes the viewport's width, unless the following con-
ditions are met:

« the SVG content is a separately stored resource that is embedded by reference (such as the ‘object’ element in
XHTML [XHTMLY]), or the SVG content is embedded inline within a containing document;

« and the referencing element or containing document is styled using CSS [CSS2] or XSL [XSL];

« and there are CSS-compatible positioning properties ([CSS2], section 9.3) specified on the referencing element

http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#positioning-scheme

o
o
(@]
g
=7
S
S
)
oM
S

(e.g., the ‘object’ element) or on the containing document's outermost svg element that are sufficient to estab-
lish the width of the viewport.

Under these conditions, the positioning properties establish the viewport's width.

Similarly, if there are positioning properties specified on the referencing element or on the outermost svg
element that are sufficient to establish the height of the viewport, then these positioning properties establish the
viewport's height; otherwise, the ‘height” attribute on the outermost svg element establishes the viewport's height.

If the ‘width’ or ‘height’ attributes on the outermost svg element are in user units (i.e., no unit identifier has
been provided), then the value is assumed to be equivalent to the same number of "px" units (see Units).

In the following example, an SVG graphic is embedded inline within a parent XML document which is
formatted using CSS layout rules. Since CSS positioning properties are not provided on the outermost svg element,
the width="100px" and height="200px" attributes determine the size of the initial viewport:

<?xml version="1.0" standalone="yes"?>
<parent xmlns="http://some.url">

<!l-- SVG graphic -->

<svg xmlns='http://www.w3.0rg/2000/svg"
width="100px" height="200px" version="1.1">
<path d="M100,100 Q200,400,300,100"/>
<!-- rest of SVG graphic would go here -->

</svg>

</parent>

The initial clipping path for the SVG document fragment is established according to the rules described in The
initial clipping path.

7.3 The initial coordinate system

For the outermost svg element, the SVG user agent determines an initial viewport coordinate system and an
initial user coordinate system such that the two coordinates systems are identical. The origin of both coordinate
systems is at the origin of the viewport, and one unit in the initial coordinate system equals one "pixel" (i.e., a px
unit as defined in CSS2 ([CSS2], section 4.3.2) in the viewport. In most cases, such as stand-alone SVG documents
or SVG document fragments embedded (by reference or inline) within XML parent documents where the parent's
layout is determined by CSS [CSS2] or XSL [XSL], the initial viewport coordinate system (and therefore the initial
user coordinate system) has its origin at the top/left of the viewport, with the positive x-axis pointing towards the
right, the positive y-axis pointing down, and text rendered with an "upright" orientation, which means glyphs are
oriented such that Roman characters and full-size ideographic characters for Asian scripts have the top edge of the
corresponding glyphs oriented upwards and the right edge of the corresponding glyphs oriented to the right.

If the SVG implementation is part of a user agent which supports styling XML documents using CSS2 com-
patible px units, then the SVG user agent should get its initial value for the size of a px unit in real world units to
match the value used for other XML styling operations; otherwise, if the user agent can determine the size of a px
unit from its environment, it should use that value; otherwise, it should choose an appropriate size for one px unit.
In all cases, the size of a px must be in conformance with the rules described in CSS2 ([CSS2], section 4.3.2).

http://www.w3.org/TR/2008/REC-CSS2-20080411/visuren.html#positioning-scheme
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units
http://www.w3.org/TR/2008/REC-CSS2-20080411/syndata.html#length-units

o
o
(@]
g
=7
S
S
)
oM
S

Example InitialCoords below shows that the initial coordinate system has the origin at the top/left with the
x-axis pointing to the right and the y-axis pointing down. The initial user coordinate system has one user unit
equal to the parent (implicit or explicit) user agent's "pixel".

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="300px" height="100px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example InitialCoords - SVG's initial coordinate system</desc>

<g fill="none" stroke="black" stroke-width="3" >
<line x1="0" yl1="1.5" x2="300" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="100" />

</g>

<g fill="red" stroke="none" >
<rect x="0" y="0" width="3" height="3" />
<rect x="297" y="0" widt " height="3" />
<rect x="0" y="97" width="3" height="3" />

</g>

<g font-size="14" font-family="Verdana" >
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0,100)</text>

</g>

</svg>

Example InitialCoords

(0,0) (300,0)

(0,100)

7.4 Coordinate system transformations

A new user space (i.e., a new current coordinate system) can be established by specifying transformations in the
form of a ‘transform’ attribute on a container element or graphics element or a ‘viewBox’ attribute on an ‘svg’,
‘symbol’, ‘marker’, ‘pattern’ and the ‘view’ element. The ‘transform’ and ‘viewBox’ attributes transform user space
coordinates and lengths on sibling attributes on the given element (see effect of the ‘transform’ attribute on sibling
attributes and effect of the ‘viewBox’ attribute on sibling attributes) and all of its descendants. Transformations
can be nested, in which case the effect of the transformations are cumulative.

Example OrigCoordSys below shows a document without transformations. The text string is specified in the
initial coordinate system.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="400px" height="150px"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Example OrigCoordSys - Simple transformations: original picture</desc>
<g fill="none" stroke="black" stroke-width="3" >
<!-- Draw the axes of the original coordinate system -->
<line x1="0" yl="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl="0" x2="1.5" y2="150" />
</g>

<g>

o
o
(@]
g
=7
S
S
)
oM
S

<text x="30" y="30" font-size="20" font-family="Verdana" >
ABC (orig coord system)
</text>
</g>
</svg>

Example OrigCoordSys

ABC (orig coord system)

Example NewCoordSys establishes a new user coordinate system by specifying transform="translate(50,50)" on the
third ‘g’ element below. The new user coordinate system has its origin at location (50,50) in the original coordin-
ate system. The result of this transformation is that the coordinate (30,30) in the new user coordinate system gets
mapped to coordinate (80,80) in the original coordinate system (i.e., the coordinates have been translated by 50
units in X and 50 units in Y).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="400px" height="150px"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<desc>Example NewCoordSys - New user coordinate system</desc>
<g fill="none" stroke="black" stroke-width="3" >
<!-- Draw the axes of the original coordinate system -->
<line x1="0" yl="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</g9>
<g>
<text x="30" y="30" font-size="20" font-family="Verdana" >
ABC (orig coord system)
</text>
</g9>
<!-- Establish a new coordinate system, which is
shifted (i.e., translated) from the initial coordinate
system by 50 user units along each axis. -->
<g transform="translate(50,50)">
<g fill="none" stroke="red" stroke-width="3" >
<!-- Draw lines of length 50 user units along
the axes of the new coordinate system -->
<line x1="0" yl="0" x2="50" y2="0" stroke="red" />
<line x1="0" yl="0" x2="0" y2="50" />
</g>
<text x="30" y="30" font-size="20" font-family="Verdana" >
ABC (translated coord system)
</text>
</g>
</svg>

Example NewCoordSys

ABC (orig coord system)

o
o
(@]
g
=7
S
S
)
oM
S

ABC (translated coord system)

Example RotateScale illustrates simple rotate and scale transformations. The example defines two new coordinate
systems:

« one which is the result of a translation by 50 units in X and 30 units in Y, followed by a rotation of 30 degrees
« another which is the result of a translation by 200 units in X and 40 units in Y, followed by a scale transform-
ation of 1.5.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="400px" height="120px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example RotateScale - Rotate and scale transforms</desc>
<g fill="none" stroke="black" stroke-width="3" >
<!-- Draw the axes of the original coordinate system -->
<line x1="0" yl="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl="0" x2="1.5" y2="120" />
</g>
<!-- Establish a new coordinate system whose origin is at (50,30)
in the initial coord. system and which is rotated by 30 degrees. -->
<g transform="translate(50,30)">
<g transform="rotate(30)">
<g fill="none" stroke="red" stroke-width="3" >
<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
ABC (rotate)

</text>
</g>
</g>
<!-- Establish a new coordinate system whose origin is at (200,40)
in the initial coord. system and which is scaled by 1.5. -->

<g transform="translate(200,40)">
<g transform="scale(1.5)">
<g fill="none" stroke="red" stroke-width="3" >
<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
ABC (scale)
</text>
</g>
</g>
</svg>

Example RotateScale

o
o
(@]
g
=7
S
S
)
oM
S

(scale)
(f"oecaf@)

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="400px" height="120px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example Skew - Show effects of skewX and skewY</desc>
<g fill="none" stroke="black" stroke-width="3" >
<!-- Draw the axes of the original coordinate system -->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl="0" x2="1.5" y2="120" />
</g>
<!-- Establish a new coordinate system whose origin is at (30,30)
in the initial coord. system and which is skewed in X by 30 degrees. -->
<g transform="translate(30,30)">
<g transform="skewX(30)">
<g fill="none" stroke="red" stroke-width="3" >
<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
ABC (skewX)

</text>
</g>
</g>
<!-- Establish a new coordinate system whose origin is at (200,30)
in the initial coord. system and which is skewed in Y by 30 degrees. -->

<g transform="translate(200,30)">
<g transform="skewY(30)">
<g fill="none" stroke="red" stroke-width="3" >
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
ABC (skewY)
</text>
</g>
</g>
</svg>

Example Skew

SEENTRY

(Sk%\ﬂry)

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:

o
o
(@]
g
=7
S
S
)
oM
S

oo
[=Naliel

e
f
1

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed as a vector:
[abcdef].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate sys-
tem:

X X

previoordSys d L E . newCoordsys
I:"'|:ur|1f|."C|:u:|r'|:|5'g,r5 — b d f ‘ﬁ"newCDurd'E-,.rs
1 0 0 1

Simple transformations are represented in matrix form as follows:

o Translation is equivalent to the matrix

1 0 tx
0 1 ty
0 0 1

or [100 1 tx ty], where tx and ty are the distances to translate coordinates in X and Y, respectively.

o Scaling is equivalent to the matrix

sx 0 0
0 sy O
0 01

or [sx 0 0 sy 0 0]. One unit in the X and Y directions in the new coordinate system equals sx and sy units in
the previous coordinate system, respectively.

« Rotation about the origin is equivalent to the matrix

cos(a) -sin(a) 0
sin(a) cos(a) 0
0 0 1

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by angle a.

o
o
(@]
g
=7
S
S
)
oM
S

o A skew transformation along the x-axis is equivalent to the matrix

1 tan(a) 0
0 1 0
o 0 1

or [1 0 tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.

o A skew transformation along the y-axis is equivalent to the matrix

1 0 o
tanfa) 1 0O
0 0 1

or [1 tan(a) 0 1 0 0], which has the effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e., concat-
enate) the subsequent transformation matrices onto previously defined transformations:

d1C1 & dxC2€; Xeurr
I:'IlpI’E'u' bl ':Il fl ¢ bzdz f2 ¢ ‘ll"curr
001 001 1

For each given element, the accumulation of all transformations that have been defined on the given element
and all of its ancestors up to and including the element that established the current viewport (usually, the ‘svg’
element which is the most immediate ancestor to the given element) is called the current transformation matrix
or CTM. The CTM thus represents the mapping of current user coordinates to viewport coordinates:

—_— a0 & 40 &
CTM = |oar || ean] -

001 001 “ee

I'ICI'I EI‘I

o O

ndafa
0 1

Kyiewport Auserspace
Yviewport ‘Fuﬁerﬁ pace
1

Example Nested illustrates nested transformations.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="400px" height="150px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example Nested - Nested transformations</desc>
<g fill="none" stroke="black" stroke-width="3" >
<!-- Draw the axes of the original coordinate system -->
<line x1="0" yl="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl="0" x2="1.5" y2="150" />
</g>
<!-- First, a translate -->
<g transform="translate(50,90)">
<g fill="none" stroke="red" stroke-width="3" >

o
o
(@]
g
=7
S
S
)
oM
S

<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />

</g>

<text x="0" y="0" font-size="16" font-family="Verdana" >
....Translate(1)

</text>

<!-- Second, a rotate -->

<g transform="rotate(-45)">
<g fill="none" stroke="green" stroke-width="3" >
<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />
</g>
<text x="0" y="0" font-size="16" font-family="Verdana" >
....Rotate(2)
</text>
<!-- Third, another translate -->
<g transform="translate(130,160)">
<g fill="none" stroke="blue" stroke-width="3" >
<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />

</g>
<text x="0" y="0" font-size="16" font-family="Verdana" >
....Translate(3)
</text>
</g>
</g>
</g>
</svg>
Example Nested
-\
Y <
—)
D"
&
slate(1)

In the example above, the CTM within the third nested transformation (i.e., the transform="translate(130,160)")

consists of the concatenation of the three transformations, as follows:

o
o
(@]
g
=7
S
S
)
oM
S

CTM — translate(50,90), rotate(-45), translate(130,160)

— 0 50 .707 .707 0O 0
u— 1 90 - ?D}' ?’D? Cl 1
01 0

.707 707 255.03
- 707 707 111.21
0 0 1

Xinitial — Xuserspace
Yinitial — * | Yuserspace
1 1

oo =

7.6 The ‘transform’ attribute

The value of the ‘transform’ attribute is a <transform-list>, which is defined as a list of transform definitions,
which are applied in the order provided. The individual transform definitions are separated by whitespace and/or
a comma. The available types of transform definitions include:

o matrix(<a> <c> <d> <e> <f>), which specifies a transformation in the form of a transformation matrix of
six values. matrix(a,b,c,d,e,f) is equivalent to applying the transformation matrix [ab c d e f].

o translate(<tx> [<ty>]), which specifies a translation by tx and ty. If <ty> is not provided, it is assumed to be

ZEro.

o scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> is not provided, it is assumed to be
equal to <sx>.

« rotate(<rotate-angle> [<cx> <cy>]), which specifies a rotation by <rotate-angle> degrees about a given point.
If optional parameters <cx> and <cy> are not supplied, the rotate is about the origin of the current user co-
ordinate system. The operation corresponds to the matrix [cos(a) sin(a) -sin(a) cos(a) 0 0].
If optional parameters <cx> and <cy> are supplied, the rotate is about the point (cx, cy). The operation repres-
ents the equivalent of the following specification: translate(<cx>, <cy>) rotate(<rotate-angle>) translate(-<cx>,

o
o
(@]
g
=7
S
S
)
oM
S

-<cy>).
o skewX(<skew-angle>), which specifies a skew transformation along the x-axis.

o skewY(<skew-angle>), which specifies a skew transformation along the y-axis.

All numeric values are <number>s.
If a list of transforms is provided, then the net effect is as if each transform had been specified separately in
the order provided. For example,

<g transform="translate(-10,-20) scale(2) rotate(45) translate(5,10)">
<!-- graphics elements go here -->
</g>

is functionally equivalent to:

<g transform="translate(-10,-20)">
<g transform="scale(2)">
<g transform="rotate(45)">
<g transform="translate(5,10)">
<!-- graphics elements go here -->
</g9>
</g>
</g>
</g>

The ‘transform’ attribute is applied to an element before processing any other coordinate or length values supplied
for that element. In the element

<rect x="10" y="10" width="20" height="20" transform="scale(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled uniformly by
a factor of 2 by the ‘transform’ attribute. Attributes x, y, width and height (and any other attributes or properties)
are treated as values in the new user coordinate system, not the previous user coordinate system. Thus, the above
‘rect’ element is functionally equivalent to:

<g transform="scale(2)">
<rect x="10" y="10" width="20" height="20"/>
</g>

The following is the Backus-Naur Form (BNF) for values for the ‘transform’ attribute. The following notation is
used:

e *:0 or more
e +:1o0r more
¢« 2200r1

e (): grouping

« |: separates alternatives
« double quotes surround literals

transform-list:

wsp* transforms? wsp*

transforms:

transform

| transform comma-wsp+ transforms

transform:

matrix

| translate

| scale

| rotate

| skewX

| skewY

matrix:

"matrix" wsp* "(" wsp*
number comma-wsp
number comma-wsp
number comma-wsp
number comma-wsp
number comma-wsp
number wsp* ")"

o
o
(@]
g
=7
S
S
)
oM
S

translate:

"translate" wsp* "(" wsp* number (comma-wsp number)? wsp* ")"
scale:

"scale" wsp* "(" wsp* number (comma-wsp number)? wsp* ")"
rotate:

"rotate" wsp* "(" wsp* number (comma-wsp number comma-wsp number)? wsp* ")"
skewX:

"skewX" wsp* "(" wsp* number wsp* ")"
skewY:

"skewY" wsp* "(" wsp* number wsp* ")"
number:

sign? integer-constant

| sign? floating-point-constant
comma-wsp:

(wsp+ comma? wsp*) | (comma wsp*)
comma:
integer-constant:

digit-sequence
floating-point-constant:

fractional-constant exponent?

| digit-sequence exponent
fractional-constant:

digit-sequence? "." digit-sequence
| digit-sequence "."
exponent:
("e" | "E") sign? digit-sequence
sign:
II+II | II_II
digit-sequence:
digit
| digit digit-sequence
digit:

“0" | wqm | nyu I ||3|| | ngn | ngn | "6" | g I ||8|| | ||9||

wsp:
(#x20 | #x9 | #xD | #xA)

o
o
(@]
g
=7
S
S
)
oM
S

For the ‘transform’ attribute:
Animatable: yes.
See the ‘animateTransform’ element for information on animating transformations.

7.7 The ‘viewBox’ attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The ‘viewBox’
attribute provides this capability.

All elements that establish a new viewport (see elements that establish viewports), plus the ‘marker’, ‘pattern’
and ‘view’ elements have attribute ‘viewBox’. The value of the ‘viewBox’ attribute is a list of four numbers <min-x>,

<min-y>, <width> and <height>, separated by whitespace and/or a comma, which specify a rectangle in user space
which should be mapped to the bounds of the viewport established by the given element, taking into account at-
tribute ‘preserveAspectRatio’. If specified, an additional transformation is applied to all descendants of the given
element to achieve the specified effect.

A negative value for <width> or <height> is an error (see Error processing). A value of zero disables rendering
of the element.

Example ViewBox illustrates the use of the ‘viewBox’ attribute on the outermost svg element to specify that
the SVG content should stretch to fit bounds of the viewport.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="300px" height="200px" version="1.1"
viewBox="0 0 1500 1000" preserveAspectRatio="none"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example ViewBox - uses the viewBox
attribute to automatically create an initial user coordinate
system which causes the graphic to scale to fit into the
viewport no matter what size the viewport is.</desc>
<!-- This rectangle goes from (0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,
the rectangle will end up filling the entire area
reserved for the SVG content. -->
<rect x="0" y="0" width="1500" height="1000"
fill="yellow" stroke="blue" stroke-width="12" />

<!-- A large, red triangle -->
<path fill="red" d="M 750,100 L 250,900 L 1250,900 z"/>
<!-- A text string that spans most of the viewport -->

<text x="100" y="600" font-size="200" font-family="Verdana" >
Stretch to fit
</text>
</svg>

o
o
(@]
g
=7
S
S
)
oM
S

Example ViewBox

Rendered into Rendered into
viewport with viewport with
width=300px, width=150px,
height=200px height=200px

Str It | |Str

The effect of the ‘viewBox’ attribute is that the user agent automatically supplies the appropriate transformation
matrix to map the specified rectangle in user space to the bounds of a designated region (often, the viewport). To
achieve the effect of the example on the left, with viewport dimensions of 300 by 200 pixels, the user agent needs
to automatically insert a transformation which scales both X and Y by 0.2. The effect is equivalent to having a
viewport of size 300px by 200px and the following supplemental transformation in the document, as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="300px" height="200px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<g transform="scale(0.2)">
<!-- Rest of document goes here -->
</g>
</svg>

To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user agent
needs to automatically insert a transformation which scales X by 0.1 and Y by 0.2. The effect is equivalent to hav-
ing a viewport of size 150px by 200px and the following supplemental transformation in the document, as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="150px" height="200px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<g transform="scale(0.1 0.2)">
<!-- Rest of document goes here -->
</g>
</svg>

o
o
(@]
g
=7
S
S
)
oM
S

(Note: in some cases the user agent will need to supply a translate transformation in addition to a scale trans-
formation. For example, on an outermost svg element, a translate transformation will be needed if the ‘viewBox’
attributes specifies values other than zero for <min-x> or <min-y>.)

Unlike the ‘transform’ attribute (see effect of the ‘transform’ on sibling attributes), the automatic transforma-
tion that is created due to a ‘viewBox’ does not affect the ‘x’, ‘y’, ‘width’ and ‘height’ attributes (or in the case of the
‘marker’ element, the ‘markerWidth’ and ‘markerHeight’ attributes) on the element with the ‘viewBox’ attribute.
Thus, in the example above which shows an ‘svg’ element which has attributes ‘width’, ‘height” and ‘viewBox’, the
‘width’ and ‘height’ attributes represent values in the coordinate system that exists before the ‘viewBox’ transform-
ation is applied. On the other hand, like the ‘transform’ attribute, it does establish a new coordinate system for all
other attributes and for descendant elements.

For the ‘viewBox” attribute:

Animatable: yes.

7.8 The ‘preserveAspectRatio’ attribute

In some cases, typically when using the ‘viewBox’ attribute, it is desirable that the graphics stretch to fit non-uni-
formly to take up the entire viewport. In other cases, it is desirable that uniform scaling be used for the purposes
of preserving the aspect ratio of the graphics.

Attribute preserveAspectRatio="[defer] <align> [<meetOrSlice>]", which is available for all elements that es-
tablish a new viewport (see elements that establish viewports), plus the ‘image’, ‘marker’, ‘pattern’ and ‘view’ ele-
ments, indicates whether or not to force uniform scaling.

For elements that establish a new viewport (see elements that establish viewports), plus the ‘marker’, ‘pattern’
and ‘view’ elements, ‘preserveAspectRatio’ only applies when a value has been provided for ‘viewBox’ on the same
element. For these elements, if attribute ‘viewBox’ is not provided, then ‘preserveAspectRatio’ is ignored.

For ‘image’ elements, ‘preserveAspectRatio’ indicates how referenced images should be fitted with respect to
the reference rectangle and whether the aspect ratio of the referenced image should be preserved with respect to
the current user coordinate system.

If the value of ‘preserveAspectRatio’ on an ‘image’ element starts with 'defer’ then the value of the ‘pre-
serveAspectRatio’ attribute on the referenced content if present should be used. If the referenced content lacks a
value for ‘preserveAspectRatio’ then the ‘preserveAspectRatio’ attribute should be processed as normal (ignoring
'defer’). For ‘preserveAspectRatio’ on all other elements the 'defer’ portion of the attribute is ignored.

The <align> parameter indicates whether to force uniform scaling and, if so, the alignment method to use in
case the aspect ratio of the ‘viewBox’ doesn't match the aspect ratio of the viewport. The <align> parameter must
be one of the following strings:

 none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly if neces-
sary such that the element's bounding box exactly matches the viewport rectangle.
(Note: if <align> is none, then the optional <meetOrSlice> value is ignored.)
* xMinYMin - Force uniform scaling.
Align the <min-x> of the element's ‘viewBox’ with the smallest X value of the viewport.
Align the <min-y> of the element's ‘viewBox’ with the smallest Y value of the viewport.

o xMidYMin - Force uniform scaling.
Align the midpoint X value of the element's ‘viewBox’ with the midpoint X value of the viewport.
Align the <min-y> of the element's ‘viewBox’ with the smallest Y value of the viewport.

o
o
(@]
g
=7
S
S
)
oM
S

« xMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's ‘viewBox” with the maximum X value of the viewport.
Align the <min-y> of the element's ‘viewBox’ with the smallest Y value of the viewport.
« xMinYMid - Force uniform scaling.
Align the <min-x> of the element's ‘viewBox’ with the smallest X value of the viewport.
Align the midpoint Y value of the element's ‘viewBox” with the midpoint Y value of the viewport.
o xMidYMid (the default) - Force uniform scaling.
Align the midpoint X value of the element's ‘viewBox” with the midpoint X value of the viewport.
Align the midpoint Y value of the element's ‘viewBox’ with the midpoint Y value of the viewport.
« xMaxYMid - Force uniform scaling.

Align the <min-x>+<width> of the element's ‘viewBox’ with the maximum X value of the viewport.
Align the midpoint Y value of the element's ‘viewBox” with the midpoint Y value of the viewport.
o xMinYMax - Force uniform scaling.
Align the <min-x> of the element's ‘viewBox’ with the smallest X value of the viewport.
Align the <min-y>+<height> of the element's ‘viewBox’ with the maximum Y value of the viewport.
o xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's ‘viewBox” with the midpoint X value of the viewport.
Align the <min-y>+<height> of the element's ‘viewBox” with the maximum Y value of the viewport.
o xMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's ‘viewBox’ with the maximum X value of the viewport.
Align the <min-y>+<height> of the element's ‘viewBox’ with the maximum Y value of the viewport.

The <meetOrSlice> parameter is optional and, if provided, is separated from the <align> value by one or more
spaces and then must be one of the following strings:

« meet (the default) - Scale the graphic such that:
o aspect ratio is preserved
o the entire ‘viewBox’ is visible within the viewport
o the ‘viewBox’ is scaled up as much as possible, while still meeting the other criteria
In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will extend
beyond the bounds of the ‘viewBox’ (i.e., the area into which the ‘viewBox’ will draw will be smaller than the
viewport).
o slice - Scale the graphic such that:
o aspect ratio is preserved
o the entire viewport is covered by the ‘viewBox’
o the ‘viewBox’ is scaled down as much as possible, while still meeting the other criteria
In this case, if the aspect ratio of the ‘viewBox’ does not match the viewport, some of the ‘viewBox’ will
extend beyond the bounds of the viewport (i.e., the area into which the ‘viewBox’ will draw is larger than the

viewport).

Example PreserveAspectRatio illustrates the various options on ‘preserveAspectRatio’. To save space, XML entities
have been defined for the three repeated graphic objects, the rectangle with the smile inside and the outlines of
the two rectangles which have the same dimensions as the target viewports. The example creates several new
viewports by including ‘svg’ sub-elements embedded inside the outermost svg element (see Establishing a new
viewport).

o
o
(@]
g
=7
S
S
)
oM
S

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd"

[<!ENTITY Smile "

<rect x='.5' y='.5"' width='29' height='39' fill='black' stroke='red'/>

<g transform='translate(0, 5)'>

<circle cx='15"' cy='15"' r="10"' fill='yellow'/>

<circle cx='12"' cy='12"' r='1.5' fill='black'/>

<circle cx='17"' cy='12"' r='1.5' fill='black'/>

<path d='M 10 19 A 8 8 0 0 0 20 19' stroke='black' stroke-width='2"'/>

</g9>

">

<!ENTITY Viewportl "<rect x='.5' y='.5' width='49' height='29"

fill='none' stroke='blue'/>">

<!ENTITY Viewport2 "<rect x='.5' y='.5' width='29' height='59"

fill="'none' stroke='blue'/>">

1>

<svg width="450px" height="300px" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>Example PreserveAspectRatio - illustrates preserveAspectRatio attribute</desc>
<rect x="1" y="1" width="448" height="298"
fill="none" stroke="blue"/>
<g font-size="9">
<text x="10" y="30">SVG to fit</text>
<g transform="translate(20,40)">&Smile;</g>
<text x="10" y="110">Viewport l</text>
<g transform="translate(10,120)">&iewportl;</g>
<text x="10" y="180">Viewport 2</text>
<g transform="translate(20,190)">&iewport2;</g>

<g id="meet-group-1" transform="translate(100, 60)">
<text x="0" y="-30">--------------- meet --------------- </text>
<g><text y="-10">xMin*</text>&Viewportl;
<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>
<g transform="translate(70,0)"><text y="-10">xMid*</text>&Viewportl;
<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>
<g transform="translate(0,70)"><text y="-10">xMax*</text>&Viewportl;
<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>
</g>

<g id="meet-group-2" transform="translate(250, 60)">
<text x="0" y="-30">---------- meet ---------- </text>
<g><text y="-10">*YMin</text>&Viewport2;
<svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>
<g transform="translate(50, 0)"><text y="-10">*YMid</text>&iewport2;
<svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>
<g transform="translate(100, 0)"><text y="-10">*YMax</text>&Viewport2;
<svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>
</g>

<g id="slice-group-1" transform="translate(100, 220)">
<text x="0" y="-30">---------- slice ---------- </text>
<g><text y="-10">xMin*</text>&Viewport2;
<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>
<g transform="translate(50,0)"><text y="-10">xMid*</text>&Viewport2;
<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 30 40"
width="30" height="60">&Smile;</svg></g>
<g transform="translate(100,0)"><text y="-10">XxMax*</text>&iewport2;
<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 30 40"

width="30" height="60">&Smile;</svg></g>
</g>

<g id="slice-group-2" transform="translate(250, 220)">
<text x="0" y="-30">--------------- slice ---------mmmmn- </text>
<g><text y="-10">*YMin</text>&Viewportl;
<svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>
<g transform="translate(70,0)"><text y="-10">*YMid</text>&Viewportl;
<svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>
<g transform="translate(140,0)"><text y="-10">*YMax</text>&Viewportl;
<svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 30 40"
width="50" height="30">&Smile;</svg></g>

o
o
(@]
g
=7
S
S
)
oM
S

</g>
</g>
</svg>
Example PreserveAspectRatio
SWG o fit meet meet
aMin™ e =¥ Min =¥ Med ¥ Max
“E“IDM 1 E E
allax®
Viewport 2
sice B
aMin™ i wllEx® =¥ Min “rMed ¥ Max
o N [:] N4
e e T . —

For the ‘preserveAspectRatio” attribute:
Animatable: yes.

7.9 Establishing a new viewport

At any point in an SVG drawing, you can establish a new viewport into which all contained graphics is drawn by
including an ‘svg’ element inside SVG content. By establishing a new viewport, you also implicitly establish a new
viewport coordinate system, a new user coordinate system, and, potentially, a new clipping path (see the defini-
tion of the ‘overflow’ property). Additionally, there is a new meaning for percentage units defined to be relative to
the current viewport since a new viewport has been established (see Units).

The bounds of the new viewport are defined by the x’, ‘y’, ‘width’ and ‘height’ attributes on the element es-
tablishing the new viewport, such as an ‘svg’ element. Both the new viewport coordinate system and the new user

o
o
(@]
g
=7
S
S
)
oM
S

s«

coordinate system have their origins at (‘x’, ‘y’), where x’ and ‘y’ represent the value of the corresponding attrib-

utes on the element establishing the viewport. The orientation of the new viewport coordinate system and the new

user coordinate system correspond to the orientation of the current user coordinate system for the element estab-

lishing the viewport. A single unit in the new viewport coordinate system and the new user coordinate system are

the same size as a single unit in the current user coordinate system for the element establishing the viewport.
Here is an example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="4in" height="3in" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">
<desc>This SVG drawing embeds another one,
thus establishing a new viewport
</desc>
<!-- The following statement establishing a new viewport
and renders SVG drawing B into that viewport -->
<svg x="25%" y="25%" width="50%" height="50%">
<!-- drawing B goes here -->
</svg>
</svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.
The following elements establish new viewports:

o The ‘svg’ element

o A ‘symbol’ element define new viewports whenever they are instanced by a ‘use’ element.

« An ‘image’ element that references an SVG file will result in the establishment of a temporary new viewport
since the referenced resource by definition will have an ‘svg’ element.

o A ‘foreignObject’ element creates a new viewport for rendering the content that is within the element.

Whether a new viewport also establishes a new additional clipping path is determined by the value of the ‘over-
flow’ property on the element that establishes the new viewport. If a clipping path is created to correspond to
the new viewport, the clipping path's geometry is determined by the value of the ‘clip’ property. Also, see Clip to
viewport vs. clip to ‘viewBox’.

7.10 Units

All coordinates and lengths in SVG can be specified with or without a unit identifier.
When a coordinate or length value is a number without a unit identifier (e.g., "25"), then the given coordinate
or length is assumed to be in user units (i.e., a value in the current user coordinate system). For example:

<text font-size="50">Text size is 50 user units</text>

Alternatively, a coordinate or length value can be expressed as a number followed by a unit identifier (e.g., "25cm"
or "15em"). (Note that CSS defined properties used in a CSS style sheet or the ‘style’ attribute require units for non-

zero lengths, see SVG's styling properties.) The list of unit identifiers in SVG matches the list of unit identifiers in
CSS: em, ex, px, pt, pc, cm, mm and in. The <length> type can also have a percentage unit identifier. The following
describes how the various unit identifiers are processed:

o
o
(@]
g
=7
S
S
)
oM
S

o Asin CSS, the em and ex unit identifiers are relative to the current font's font-size and x-height, respectively.
o One px unit is defined to be equal to one user unit. Thus, a length of "5px" is the same as a length of "5".
Note that at initialization, a user unit in the the initial coordinate system is equivalenced to the parent
environment's notion of a px unit. Thus, in the the initial coordinate system, because the user coordinate
system aligns exactly with the parent's coordinate system, and because often the parent's coordinate system
aligns with the device pixel grid, "5px" might actually map to 5 devices pixels. However, if there are any co-
ordinate system transformation due to the use of ‘transform’ or ‘viewBox’ attributes, because "5px" maps to
5 user units and because the coordinate system transformations have resulted in a revised user coordinate
system, "5px" likely will not map to 5 device pixels. As a result, in most circumstances, "px" units will not

map to the device pixel grid.

« The other absolute unit identifiers from CSS (i.e., pt, pc, cm, mm, in) are all defined as an appropriate multiple
of one px unit (which, according to the previous item, is defined to be equal to one user unit), based on what
the SVG user agent determines is the size of a px unit (possibly passed from the parent processor or envir-
onment at initialization time). For example, suppose that the user agent can determine from its environment
that "1px" corresponds to "0.2822222mm" (i.e., 90dpi). Then, for all processing of SVG content:

o "1pt" equals "1.25px" (and therefore 1.25 user units)

o "1pc" equals "15px" (and therefore 15 user units)

o "lmm" would be "3.543307px" (3.543307 user units)

o "lcm" equals "35.43307px" (and therefore 35.43307 user units)
o "1lin" equals "90px" (and therefore 90 user units)

Note that use of px units or any other absolute unit identifiers can cause inconsistent visual results on different
viewing environments since the size of "1px" may map to a different number of user units on different systems;
thus, absolute units identifiers are only recommended for the ‘width’ and the ‘height’ on and situations where the
content contains no transformations and it is desirable to specify values relative to the device pixel grid or to a
particular real world unit size.

For percentage values that are defined to be relative to the size of viewport:

« For any x-coordinate value or width value expressed as a percentage of the viewport, the value to use is the
specified percentage of the actual-width in user units for the nearest containing viewport, where actual-width
is the width dimension of the viewport element within the user coordinate system for the viewport element.

o For any y-coordinate value or height value expressed as a percentage of the viewport, the value to use is
the specified percentage of the actual-height in user units for the nearest containing viewport, where actual-
height is the height dimension of the viewport element within the user coordinate system for the viewport
element.

« For any other length value expressed as a percentage of the viewport, the percentage is calculated as the spe-
cified percentage of sqrt((actual-width)**2 + (actual-height)**2))/sqrt(2).

Example Units below illustrates some of the processing rules for different types of units.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="400px" height="200px" viewBox="0 0 4000 2000"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<title>Example Units</title>
<desc>Illustrates various units options</desc>

o
o
(@]
g
=7
S
S
)
oM
S

<!-- Frame the picture -->
<rect x="5" y="5" width="3990" height="1990"
fill="none" stroke="blue" stroke-width="10"/>

<g fill="blue" stroke="red" font-family="Verdana" font-size="150">

<!-- Absolute unit specifiers -->

<g transform="translate(400,0)">
<text x="-50" y="300" fill="black" stroke="none">Abs. units:</text>
<rect x="0" y="400" width="4in" height="2in" stroke-width=".4in"/>
<rect x="0" y="750" width="384" height="192" stroke-width="38.4"/>
<g transform="scale(2)">

<rect x="0" y="600" width="4in" height="2in" stroke-width=".4in"/>

</g>

</g>

<!-- Relative unit specifiers -->
<g transform="translate(1600,0)">
<text x="-50" y="300" fill="black" stroke="none">Rel. units:</text>
<rect x="0" y="400" width="2.5em" height="1.25em" stroke-width=".25em"/>
<rect x="0" y="750" width="375" height="187.5" stroke-width="37.5"/>
<g transform="scale(2)">
<rect x="0" y="600" width="2.5em" height="1.25em" stroke-width=".25em"/>
</g>
</g>

<!-- Percentages -->
<g transform="translate(2800,0)">
<text x="-50" y="300" fill="black" stroke="none">Percentages:</text>
<rect x="0" y="400" width="10%" height="10%" stroke-width="1%"/>
<rect x="0" y="750" width="400" height="200" stroke-width="31.62"/>
<g transform="scale(2)">
<rect x="0" y="600" width="10%" height="10%" stroke-width="1%"/>

</g>
</g>
</g>
</svg>
Example Units
Abs. units: Rel. units: Percentages:

The three rectangles on the left demonstrate the use of one of the absolute unit identifiers, the "in" unit (inch). The
reference image above was generated on a 96dpi system (i.e., 1 inch = 96 pixels). Therefore, the topmost rectangle,

o
o
(@]
g
=7
S
S
)
oM
S

which is specified in inches, is exactly the same size as the middle rectangle, which is specified in user units such
that there are 96 user units for each corresponding inch in the topmost rectangle. (Note: on systems with different
screen resolutions, the top and middle rectangles will likely be rendered at different sizes.) The bottom rectangle
of the group illustrates what happens when values specified in inches are scaled.

The three rectangles in the middle demonstrate the use of one of the relative unit identifiers, the "em" unit.
Because the ‘font-size’ property has been set to 150 on the outermost ‘g’ element, each "em" unit is equal to 150
user units. The topmost rectangle, which is specified in "em" units, is exactly the same size as the middle rect-
angle, which is specified in user units such that there are 150 user units for each corresponding "em" unit in the
topmost rectangle. The bottom rectangle of the group illustrates what happens when values specified in "em" units
are scaled.

The three rectangles on the right demonstrate the use of percentages. Note that the width and height of the
viewport in the user coordinate system for the viewport element (in this case, the outermost svg element) are 4000
and 2000, respectively, because processing the ‘viewBox” attribute results in a transformed user coordinate system.
The topmost rectangle, which is specified in percentage units, is exactly the same size as the middle rectangle,
which is specified in equivalent user units. In particular, note that the ‘stroke-width’ property in the middle rect-
angle is set to 1% of the sqrt((actual-width)**2 + (actual-height)**2)) / sqrt(2), which in this case is
.01%sqrt(400074000+2000*2000)/sqrt(2), or 31.62. The bottom rectangle of the group illustrates what happens when
values specified in percentage units are scaled.

7.11 Object bounding box units

The following elements offer the option of expressing coordinate values and lengths as fractions (and, in some
cases, percentages) of the bounding box, by setting a specified attribute to 'objectBoundingBox' on the given ele-
ment:

o
o
(@]
g
=7
S
S
)
oM
S

Element Attribute Effect

‘linearGradient’ ‘gradientUnits’ Indicates that the attributes which specify the gradient vector (‘x1’, ‘y1’,
‘x2’, ‘y2’) represent fractions or percentages of the bounding box of the
element to which the gradient is applied.

‘radialGradient’ ‘gradientUnits’ Indicates that the attributes which specify the center (‘cx’, ‘cy’), the radius
(‘r) and focus (‘fx’, ‘fy’) represent fractions or percentages of the
bounding box of the element to which the gradient is applied.

‘pattern’ ‘patternUnits’ Indicates that the attributes which define how to tile the pattern (‘x’, ‘y’,
‘width’, ‘height’) are established using the bounding box of the element to
which the pattern is applied.

‘pattern’ ‘patternContentUnits’ Indicates that the user coordinate system for the contents of the pattern is
established using the bounding box of the element to which the pattern is
applied.

‘clipPath’ ‘clipPathUnits’ Indicates that the user coordinate system for the contents of the ‘clipPath’

element is established using the bounding box of the element to which
the clipping path is applied.

‘mask’ ‘maskUnits’ Indicates that the attributes which define the masking region (‘x’, ‘y’,
‘width’, ‘height’) is established using the bounding box of the element to
which the mask is applied.

‘mask’ ‘maskContentUnits’ Indicates that the user coordinate system for the contents of the ‘mask’
element are established using the bounding box of the element to which
the mask is applied.

“filter’ ‘filterUnits’ Indicates that the attributes which define the filter effects region (‘x’, ‘y’,
‘width’, ‘height’) represent fractions or percentages of the bounding box of
the element to which the filter is applied.

filter’ ‘primitiveUnits’ Indicates that the various length values within the filter primitives
represent fractions or percentages of the bounding box of the element to
which the filter is applied.

In the discussion that follows, the term applicable element is the element to which the given effect applies. For
gradients and patterns, the applicable element is the graphics element which has its ‘fill’ or ‘stroke’ property ref-
erencing the given gradient or pattern. (See Inheritance of Painting Properties. For special rules concerning text
elements, see the discussion of object bounding box units and text elements.) For clipping paths, masks and filters,
the applicable element can be either a container element or a graphics element.

o
o
(@]
g
=7
S
S
)
oM
S

When keyword objectBoundingBox is used, then the effect is as if a supplemental transformation matrix were
inserted into the list of nested transformation matrices to create a new user coordinate system.

First, the (minx,miny) and (maxx,maxy) coordinates are determined for the applicable element and all of its
descendants. The values minx, miny, maxx and maxy are determined by computing the maximum extent of the
shape of the element in X and Y with respect to the user coordinate system for the applicable element. The bound-
ing box is the tightest fitting rectangle aligned with the axes of the applicable element's user coordinate system
that entirely encloses the applicable element and its descendants. The bounding box is computed exclusive of any
values for clipping, masking, filter effects, opacity and stroke-width. For curved shapes, the bounding box encloses
all portions of the shape, not just end points. For ‘text” elements, for the purposes of the bounding box calculation,
each glyph is treated as a separate graphics element. The calculations assume that all glyphs occupy the full glyph
cell. For example, for horizontal text, the calculations assume that each glyph extends vertically to the full ascent
and descent values for the font.

Then, coordinate (0,0) in the new user coordinate system is mapped to the (minx,miny) corner of the tight
bounding box within the user coordinate system of the applicable element and coordinate (1,1) in the new user
coordinate system is mapped to the (maxx,maxy) corner of the tight bounding box of the applicable element. In
most situations, the following transformation matrix produces the correct effect:

[(maxx-minx) 0 O (maxy-miny) minx miny]

When percentages are used with attributes that define the gradient vector, the pattern tile, the filter region or
the masking region, a percentage represents the same value as the corresponding decimal value (e.g., 50% means
the same as 0.5). If percentages are used within the content of a ‘pattern’, ‘clipPath’, ‘mask’ or ‘filter’ element, these
values are treated according to the processing rules for percentages as defined in Units.

Any numeric value can be specified for values expressed as a fraction or percentage of object bounding box
units. In particular, fractions less are zero or greater than one and percentages less than 0% or greater than 100%
can be specified.

Keyword objectBoundingBox should not be used when the geometry of the applicable element has no width
or no height, such as the case of a horizontal or vertical line, even when the line has actual thickness when viewed
due to having a non-zero stroke width since stroke width is ignored for bounding box calculations. When the geo-
metry of the applicable element has no width or height and objectBoundingBox is specified, then the given effect
(e.g., a gradient or a filter) will be ignored.

7.12 Intrinsic sizing properties of the viewport of SVG content

SVG needs to specify how to calculate some intrinsic sizing properties to enable inclusion within other languages.
The intrinsic width and height of the viewport of SVG content must be determined from the ‘width’ and ‘height’
attributes. If either of these are not specified, a value of '100%' must be assumed. Note: the ‘width’ and ‘height’
attributes are not the same as the CSS width and height properties. Specifically, percentage values do not provide
an intrinsic width or height, and do not indicate a percentage of the containing block. Rather, once the viewport is
established, they indicate the portion of the viewport that is actually covered by image data.

The intrinsic aspect ratio of the viewport of SVG content is necessary for example, when including SVG from

o
o
(@]
g
=7
S
S
)
oM
S

an ‘object’ element in HTML styled with CSS. It is possible (indeed, common) for an SVG graphic to have an in-
trinsic aspect ratio but not to have an intrinsic width or height. The intrinsic aspect ratio must be calculated based
upon the following rules:

« The aspect ratio is calculated by dividing a width by a height.

« If the ‘width’ and ‘height’ of the rootmost ‘svg’ element are both specified with unit identifiers (in, mm, cm,
pt, pc, px, em, ex) or in user units, then the aspect ratio is calculated from the ‘width’ and ‘height’ attributes
after resolving both values to user units.

« If either/both of the ‘width’ and ‘height’ of the rootmost ‘svg’ element are in percentage units (or omitted),
the aspect ratio is calculated from the width and height values of the ‘viewBox’ specified for the current SVG
document fragment. If the ‘viewBox’ is not correctly specified, or set to 'none’, the intrinsic aspect ratio can-
not be calculated and is considered unspecified.

Examples:
Example: Intrinsic Aspect Ratio 1

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" height="5cm">

</svg>
In this example the intrinsic aspect ratio of the viewport is 2:1. The intrinsic width is 10cm and the intrinsic height

is Scm.
Example: Intrinsic Aspect Ratio 2

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="100%" height="50%" viewBox="0 0 200 200">

</svg>
In this example the intrinsic aspect ratio of the rootmost viewport is 1:1. An aspect ratio calculation in this case

allows embedding in an object within a containing block that is only constrained in one direction.
Example: Intrinsic Aspect Ratio 3

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="10cm" viewBox="0 0 200 200">

</svg>
In this case the intrinsic aspect ratio is 1:1.

Example: Intrinsic Aspect Ratio 4

<svg xmlns="http://www.w3.0rg/2000/svg" version="1.2" baseProfile="tiny"
width="75%" height="10cm" viewBox="0 0 200 200">

</svg>

In this example, the intrinsic aspect ratio is 1:1.

o
o
(@]
g
=7
S
S
)
oM
S

7.13 Geographic coordinate systems

In order to allow interoperability between SVG content generators and user agents dealing with maps encoded in
SVG, the use of a common metadata definition for describing the coordinate system used to generate SVG docu-
ments is encouraged.

Such metadata must be added under the ‘metadata’ element of the topmost ‘svg’ element describing the map,
consisting of an RDF description of the Coordinate Reference System definition used to generate the SVG map
[RDF-PRIMER]. Note that the presence of this metadata does not affect the rendering of the SVG in any way; it
merely provides added semantic value for applications that make use of combined maps.

The definition must be conformant to the XML grammar described in GML 3.2.1, an OpenGIS Standard for
encoding common CRS data types in XML [GML]. In order to correctly map the 2-dimensional data used by SVG,
the CRS must be of subtype ProjectedCRS or Geographic2dCRS. The first axis of the described CRS maps the
SVG x-axis and the second axis maps the SVG y-axis.

The main purpose of such metadata is to indicate to the user agent that two or more SVG documents can be
overlayed or merged into a single document. Obviously, if two maps reference the same Coordinate Reference Sys-
tem definition and have the same SVG ‘transform’ attribute value then they can be overlayed without reprojecting
the data. If the maps reference different Coordinate Reference Systems and/or have different SVG ‘transform’ at-
tribute values, then a specialized cartographic user agent may choose to transform the coordinate data to overlay
the data. However, typical SVG user agents are not required to perform these types of transformations, or even
recognize the metadata. It is described in this specification so that the connection between geographic coordinate
systems and the SVG coordinate system is clear.

7.14 The ‘svg:transform’ attribute

Attribute definition:

svg:transform = "<transform>" | "none"

<transform>
Specifies the affine transformation that has been applied to the map data. The syntax is identical to that
described in The ‘transform’ attribute section.

none
Specifies that no supplemental affine transformation has been applied to the map data. Using this value
has the same meaning as specifying the identity matrix, which in turn is just the same as not specify-
ing the ‘svg:transform’ the attribute at all.

Animatable: no.

This attribute describes an optional additional affine transformation that may have been applied during this map-
ping. This attribute may be added to the OpenGIS ‘CoordinateReferenceSystem’ element. Note that, unlike the

http://portal.opengeospatial.org/files/?artifact_id=20509

‘transform’ attribute, it does not indicate that a transformation is to be applied to the data within the file. Instead,
it simply describes the transformation that was already applied to the data when being encoded in SVG.
There are three typical uses for the ‘svg:transform’ global attribute. These are described below and used in the

o
o
(@]
g
=7
S
S
)
oM
S

examples.

o Most ProjectedCRS have the north direction represented by positive values of the second axis and conversely
SVG has a y-down coordinate system. That's why, in order to follow the usual way to represent a map with
the north at its top, it is recommended for that kind of ProjectedCRS to use the ‘svg:transform’ global attrib-
ute with a 'scale(1, -1)' value as in the third example below.

o Most Geographic2dCRS have the latitude as their first axis rather than the longitude, which means that the
south-north axis would be represented by the x-axis in SVG instead of the usual y-axis. That's why, in or-
der to follow the usual way to represent a map with the north at its top, it is recommended for that kind of

Geographic2dCRS to use the ‘svg:transform’ global attribute with a 'rotate(-90)' value as in the first example
(while also adding the 'scale(1, -1)' as for ProjectedCRS).

« In addition, when converting for profiles which place restrictions on precision of real number values, it may
be useful to add an additional scaling factor to retain good precision for a specific area. When generating an
SVG document from WGS84 geographic coordinates (EPGS 4326), we recommend the use of an additional
100 times scaling factor corresponding to an ‘svg:transform’ global attribute with a 'rotate(-90) scale(100)' value
(shown in the second example). Different scaling values may be required depending on the particular CRS.

Below is a simple example of the coordinate metadata, which describes the coordinate system used by the docu-
ment via a URL

<?xml version="1.0"7?>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="100" height="100" viewBox="0 0 1000 1000">

<desc>An example that references coordinate data.</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:crs="http://www.ogc.org/crs"
xmlns:svg="http://www.w3.0rg/2000/svg">
<rdf:Description rdf:about="">
<!-- The Coordinate Reference System is described
through a URI. -->
<crs:CoordinateReferenceSystem
svg:transform="rotate(-90)"
rdf:resource="http://www.example.org/srs/epsg.xml#4326"/>
</rdf:Description>
</rdf:RDF>
</metadata>

<!-- The actual map content -->
</svg>

The second example uses a well-known identifier to describe the coordinate system. Note that the coordinates
used in the document have had the supplied transform applied.

<?xml version="1.0"7>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="100" height="100" viewBox="0 0 1000 1000">
<desc>Example using a well known coordinate system.</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns:crs="http://www.ogc.org/crs"
xmlns:svg="http://www.w3.0rg/2000/svg">
<rdf:Description rdf:about="">
<!-- In case of a well-known Coordinate Reference System
an 'Identifier' is enough to describe the CRS -->
<crs:CoordinateReferenceSystem svg:transform="rotate(-90) scale(100, 100)">
<crs:Identifier>
<crs:code>4326</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:CoordinateReferenceSystem>
</rdf:Description>
</rdf:RDF>
</metadata>

o
o
(@]
g
=7
S
S
)
oM
S

<!-- The actual map content -->
</svg>

The third example defines the coordinate system completely within the SVG document.

<?xml version="1.0"?>
<svg xmlns="http://www.w3.0rg/2000/svg" version="1.1"
width="100" height="100" viewBox="0 0 1000 1000">

<desc>Coordinate metadata defined within the SVG document</desc>

<metadata>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:crs="http://www.ogc.org/crs"
xmlns:svg="http://www.w3.0rg/2000/svg">
<rdf:Description rdf:about="">
<!-- For other CRS it should be entirely defined -->
<crs:CoordinateReferenceSystem svg:transform="scale(1,-1)">
<crs:NameSet>
<crs:name>Mercator projection of WGS84</crs:name>
</crs:NameSet>
<crs:ProjectedCRS>
<!-- The actual definition of the CRS -->
<crs:CartesianCoordinateSystem>
<crs:dimension>2</crs:dimension>
<crs:CoordinateAxis>
<crs:axisDirection>north</crs:axisDirection>
<crs:AngularUnit>
<crs:Identifier>
<crs:code>9108</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:AngularUnit>
</crs:CoordinateAxis>
<crs:CoordinateAxis>
<crs:axisDirection>east</crs:axisDirection>
<crs:AngularUnit>
<crs:Identifier>
<crs:code>9108</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:AngularUnit>
</crs:CoordinateAxis>
</crs:CartesianCoordinateSystem>
<crs:CoordinateReferenceSystem>
<!-- the reference system of that projected system is
WGS84 which is EPSG 4326 in EPSG codeSpace -->
<crs:NameSet>
<crs:name>WGS 84</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>4326</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
</crs:CoordinateReferenceSystem>
<crs:CoordinateTransformationDefinition>

<crs:sourceDimensions>2</crs:sourceDimensions>
<crs:targetDimensions>2</crs:targetDimensions>
<crs:ParameterizedTransformation>
<crs:TransformationMethod>
<!-- the projection is a Mercator projection which is
EPSG 9805 in EPSG codeSpace -->
<crs:NameSet>
<crs:name>Mercator</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>9805</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:description>Mercator (2SP)</crs:description>
</crs:TransformationMethod>
<crs:Parameter>
<crs:NameSet>
<crs:name>Latitude of 1st standart parallel</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8823</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>0</crs:value>
</crs:Parameter>
<crs:Parameter>
<crs:NameSet>
<crs:name>Longitude of natural origin</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8802</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>0</crs:value>
</crs:Parameter>
<crs:Parameter>
<crs:NameSet>
<crs:name>False Easting</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8806</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>0</crs:value>
</crs:Parameter>
<crs:Parameter>
<crs:NameSet>
<crs:name>False Northing</crs:name>
</crs:NameSet>
<crs:Identifier>
<crs:code>8807</crs:code>
<crs:codeSpace>EPSG</crs:codeSpace>
<crs:edition>5.2</crs:edition>
</crs:Identifier>
<crs:value>0</crs:value>
</crs:Parameter>
</crs:ParameterizedTransformation>
</crs:CoordinateTransformationDefinition>
</crs:ProjectedCRS>
</crs:CoordinateReferenceSystem>
</rdf:Description>
</rdf:RDF>
</metadata>

o
o
(@]
g
=7
S
S
)
oM
S

<!-- the actual map content -->
</svg>

o
o
(@]
g
=7
S
S
)
oM
S

7.15 DOM interfaces

7.15.1 Interface SVGPoint
Many of the SVG DOM interfaces refer to objects of class SVGPoint. An SVGPoint is an (x, y) coordinate pair.
When used in matrix operations, an SVGPoint is treated as a vector of the form:

[x]

[yl
[1]

If an SVGRect object is designated as read only, then attempting to assign to one of its attributes will result in an
exception being thrown.

interface SVGPoint {

attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

SVGPoint matrixTransform(in SVGMatrix matrix);
Attributes:

o X (float)

The x coordinate.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised if the SVGPoint object is read only, or corresponds to a DOM attribute that is read only.

o y (float)
The y coordinate.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised if the SVGPoint object is read only, or corresponds to a DOM attribute that is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Operations:

¢ SVGPoint matrixTransform(in SVGMatrix matrix)

o
o
(@]
g
=7
S
S
)
oM
S

Applies a 2x3 matrix transformation on this SVGPoint object and returns a new, transformed SVGPoint ob-
ject:

newpoint = matrix * thispoint
Parameters

» SVGMatrix matrix
The matrix which is to be applied to this SVGPoint object.

Returns
A new SVGPoint object.

7.15.2 Interface SVGPointList

This interface defines a list of SVGPoint objects.
SVGPointList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-
sider using a single base class to implement the various SVGxxxList interfaces.

interface SVGPointList {
readonly attribute unsigned long numberOfItems;
void clear() raises(DOMException);
SVGPoint initialize(in SVGPoint newItem) raises(DOMException);
SVGPoint getItem(in unsigned long index) raises(DOMException);
SVGPoint insertItemBefore(in SVGPoint newItem, in unsigned long index) raises(DOMException);
SVGPoint replaceItem(in SVGPoint newItem, in unsigned long index) raises(DOMException);
SVGPoint removeItem(in unsigned long index) raises(DOMException);

SVGPoint appendItem(in SVGPoint newItem) raises(DOMException);
b

Attributes:

« numberOfltems (readonly unsigned long)

The number of items in the list.
Operations:

« void clear()

Clears all existing current items from the list, with the result being an empty list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

SVGPoint initialize(in SVGPoint newltem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

» SVGPoint newltem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

+ DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

SVGPoint getltem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

« unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

« DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

« SVGPoint insertItemBefore(in SVGPoint newltem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newltem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

e SVGPoint newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfltems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

« SVGPoint replaceltem(in SVGPoint newltem, in unsigned long index)

Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

e SVGPoint newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR

Raised if the index number is greater than or equal to numberOfltems.

» SVGPoint removeltem(in unsigned long index)

Removes an existing item from the list.
Parameters

« unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

« SVGPoint appendItem(in SVGPoint newltem)

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

e SVGPoint newltem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o
o
(@]
g
=7
S
S
)
oM
S

7.15.3 Interface SVGMatrix

Many of SVG's graphics operations utilize 2x3 matrices of the form:

[a c e]
[b d f]

which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c e]
[bd f]
[0 0 1]

interface SVGMatrix {

attribute float a setraises(DOMException);
attribute float b setraises(DOMException);
attribute float c setraises(DOMException);
attribute float d setraises(DOMException);
attribute float e setraises(DOMException);
attribute float f setraises(DOMException);

SVGMatrix multiply(in SVGMatrix secondMatrix);

SVGMatrix inverse() raises(SVGException);

SVGMatrix translate(in float x, in float y);

SVGMatrix scale(in float scaleFactor);

SVGMatrix scaleNonUniform(in float scaleFactorX, in float scaleFactorY);
SVGMatrix rotate(in float angle);

SVGMatrix rotateFromVector(in float x, in float y) raises(SVGException);
SVGMatrix flipX();

SVGMatrix flipY();

SVGMatrix skewX(in float angle);

SVGMatrix skewY(in float angle);

Attributes:

o a (float)

The a component of the matrix.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

¢ b (float)

The b component of the matrix.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o C (float)
The ¢ component of the matrix.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

¢ d (float)
The d component of the matrix.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o ¢ (float)
The e component of the matrix.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« f(float)

The f component of the matrix.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o
o
(@]
g
=7
S
S
)
oM
S

Operations:

o SVGMatrix multiply(in SVGMatrix secondMatrix)

Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning the resulting
new matrix.

Parameters

« SVGMatrix secondMatrix
The matrix which is post-multiplied to this matrix.

Returns
The resulting matrix.

o SVGMatrix inverse()

Returns the inverse matrix.

Returns
The inverse matrix.

Exceptions

+ SVGException, code SVG_MATRIX_NOT_INVERTABLE
Raised if this matrix is not invertable.

o SVGMatrix translate(in float x, in float y)

Post-multiplies a translation transformation on the current matrix and returns the resulting matrix.
Parameters

« float x
The distance to translate along the x-axis.

o float y
The distance to translate along the y-axis.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Returns
The resulting matrix.

o
o
(@]
g
=7
S
S
)
oM
S

o SVGMatrix scale(in float scaleFactor)

Post-multiplies a uniform scale transformation on the current matrix and returns the resulting matrix.
Parameters

« float scaleFactor
Scale factor in both X and Y.

Returns
The resulting matrix.

¢ SVGMatrix scaleNonUniform(in float scaleFactorX, in float scaleFactorY)

Post-multiplies a non-uniform scale transformation on the current matrix and returns the resulting matrix.
Parameters

« float scaleFactorX
Scale factor in X.

« float scaleFactorY
Scale factor in Y.

Returns
The resulting matrix.

o SVGMatrix rotate(in float angle)
Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.

Parameters

« float angle
Rotation angle.

Returns
The resulting matrix.

o SVGMatrix rotateFromVector(in float x, in float y)

Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix. The rotation
angle is determined by taking (+/-) atan(y/x). The direction of the vector (x, y) determines whether the pos-
itive or negative angle value is used.

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

o float x
The X coordinate of the vector (x,y). Must not be zero.

o float y
The Y coordinate of the vector (x,y). Must not be zero.

Returns
The resulting matrix.

Exceptions

o SVGException, code SVG_INVALID_VALUE_ERR
Raised if one of the parameters has an invalid value.

o SVGMatrix flipX()
Post-multiplies the transformation [-1 0 0 1 0 0] and returns the resulting matrix.

Returns
The resulting matrix.

o SVGMatrix flipY()
Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.

Returns
The resulting matrix.

o SVGMatrix skewX(in float angle)
Post-multiplies a skewX transformation on the current matrix and returns the resulting matrix.
Parameters

« float angle
Skew angle.

Returns
The resulting matrix.

o
o
(@]
g
=7
S
S
)
oM
S

o SVGMatrix skewY(in float angle)

Post-multiplies a skewY transformation on the current matrix and returns the resulting matrix.
Parameters

o float angle
Skew angle.

Returns
The resulting matrix.

7.15.4 Interface SVGTransform

SVGTransform is the interface for one of the component transformations within an SVGTransformList; thus, an
SVGTransform object corresponds to a single component (e.g., 'scale(...)’ or 'matrix(...)") within a ‘transform’ attrib-
ute specification.

interface SVGTransform {

// Transform Types
const unsigned short SVG_TRANSFORM UNKNOWN = 0;
const unsigned short SVG_TRANSFORM MATRIX = 1;
const unsigned short SVG_TRANSFORM TRANSLATE = 2;
const unsigned short SVG_TRANSFORM SCALE = 3;

const unsigned short SVG_TRANSFORM ROTATE = 4;
const unsigned short SVG_TRANSFORM SKEWX = 5;
const unsigned short SVG_TRANSFORM SKEWY = 6;

readonly attribute unsigned short type;
readonly attribute SVGMatrix matrix;
readonly attribute float angle;

void setMatrix(in SVGMatrix matrix) raises(DOMException);
void setTranslate(in float tx, in float ty) raises(DOMException);
void setScale(in float sx, in float sy) raises(DOMException);
void setRotate(in float angle, in float cx, in float cy) raises(DOMException);
void setSkewX(in float angle) raises(DOMException);
void setSkewY(in float angle) raises(DOMException);
Y

Constants in group “Transform Types”:

¢ SVG_TRANSFORM_UNKNOWN (unsigned short)

The unit type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o SVG_TRANSFORM_MATRIX (unsigned short)

A 'matrix(...)' transformation.

o
o
(@]
g
=7
S
S
)
oM
S

¢ SVG_TRANSFORM_TRANSLATE (unsigned short)

A 'translate(...)' transformation.

¢ SVG_TRANSFORM_SCALE (unsigned short)

A 'scale(...)" transformation.

¢ SVG_TRANSFORM_ROTATE (unsigned short)

A 'rotate(...)' transformation.

¢ SVG_TRANSFORM_SKEWX (unsigned short)

A 'skewX(...)" transformation.

o SVG_TRANSFORM_SKEWY (unsigned short)

A 'skewY(...)' transformation.
Attributes:

« type (readonly unsigned short)
The type of the value as specified by one of the SVG_TRANSFORM_* constants defined on this interface.

e matrix (readonly SVGMatrix)

The matrix that represents this transformation. The matrix object is live, meaning that any changes made to
the SVGTransform object are immediately reflected in the matrix object and vice versa. In case the matrix
object is changed directly (i.e., without using the methods on the SVGTransform interface itself) then the
type of the SVGTransform changes to SVG_TRANSFORM_MATRIX.

o For SVG_TRANSFORM_MATRIX, the matrix contains the a, b, c, d, e, f values supplied by the user.

o For SVG_TRANSFORM_TRANSLATE, e and f represent the translation amounts (a=1, b=0, ¢=0 and
d=1).

o For SVG_TRANSFORM_SCALE, a and d represent the translation amounts (b=0, c=0, e=0 and f=0).

o For SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY, a, b,
c and d represent the matrix which will result in the given transformation (e=0 and f=0).

« angle (readonly float)

A convenience attribute for SVG_TRANSFORM _ROTATE, SVG TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY. It holds the angle that was specified.

For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and SVG_TRANSFORM_SCALE,
angle will be zero.

o
o
(@]
g
=7
S
S
)
oM
S

Operations:

« void setMatrix(in SVGMatrix matrix)

Sets the transform type to SVG_TRANSFORM_MATRIX, with parameter matrix defining the new trans-
formation. The values from the parameter matrix are copied, the matrix parameter does not replace
SVGTransform::matrix.

Parameters

o SVGMatrix matrix
The new matrix for the transformation.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« void setTranslate(in float tx, in float ty)

Sets the transform type to SVG_TRANSFORM_TRANSLATE, with parameters tx and ty defining the trans-
lation amounts.

Parameters

o float tx
The translation amount in X.

o float ty
The translation amount in Y.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

« void setScale(in float sx, in float sy)

Sets the transform type to SVG_TRANSFORM_SCALE, with parameters sx and sy defining the scale
amounts.

Parameters

o float sx
The scale amount in X.

o float sy
The scale amount in Y.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« void setRotate(in float angle, in float cx; in float cy)

Sets the transform type to SVG_TRANSFORM_ROTATE, with parameter angle defining the rotation angle
and parameters cx and cy defining the optional center of rotation.

Parameters

« float angle
The rotation angle.

o float cx
The x coordinate of center of rotation.

« float cy
The y coordinate of center of rotation.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« void setSkewX(in float angle)
Sets the transform type to SVG_TRANSFORM_SKEWX, with parameter angle defining the amount of skew.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Parameters

o float angle

o
o
(@]
g
=7
S
S
)
oM
S

The skew angle.
Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« void setSkewY(in float angle)
Sets the transform type to SVG_TRANSFORM_SKEWY, with parameter angle defining the amount of skew.

Parameters

o float angle
The skew angle.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

7.15.5 Interface SVGTransformList

This interface defines a list of SVGTransform objects.

The SVGTransformList and SVGTransform interfaces correspond to the various attributes which specify a set
of transformations, such as the ‘transform’ attribute which is available for many of SVG's elements.

SVGTransformList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

An SVGTransformList object can be designated as read only, which means that attempts to modify the object
will result in an exception being thrown, as described below.

interface SVGTransformList {
readonly attribute unsigned long numberOfItems;

void clear() raises(DOMException);

SVGTransform initialize(in SVGTransform newItem) raises(DOMException);

SVGTransform getItem(in unsigned long index) raises(DOMException);

SVGTransform insertItemBefore(in SVGTransform newItem, in unsigned long index) raises(DOMException);
SVGTransform replaceItem(in SVGTransform newItem, in unsigned long index) raises(DOMException);
SVGTransform removeItem(in unsigned long index) raises(DOMException);

SVGTransform appendItem(in SVGTransform newItem) raises(DOMException);

SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix);

SVGTransform consolidate() raises(DOMException);

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Attributes:

o numberOfltems (readonly unsigned long)

o
o
(@]
g
=7
S
S
)
oM
S

The number of items in the list.
Operations:

« void clear()

Clears all existing current items from the list, with the result being an empty list.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o SVGTransform initialize(in SVGTransform newltem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

o SVGTransform newltem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o SVGTransform getltem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

« unsigned long index

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

SVGTransform insertltemBefore(in SVGTransform newltem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newltem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

o SVGTransform newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfltems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

SVGTransform replaceltem(in SVGTransform newltem, in unsigned long index)

Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Parameters

¢ SVGTransform newltem

o
o
(@]
g
=7
S
S
)
oM
S

The item which is to be inserted into the list.

« unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

« DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

o SVGTransform removeltem(in unsigned long index)

Removes an existing item from the list.
Parameters

« unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

o SVGTransform appendItem(in SVGTransform newltem)

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Parameters

¢ SVGTransform newltem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

SVGTransform createSVGTransformFromMatrix(in SVGMatrix matrix)

Creates an SVGTransform object which is initialized to transform of type SVG_TRANSFORM_MATRIX and
whose values are the given matrix. The values from the parameter matrix are copied, the matrix parameter
is not adopted as SVGTransform::matrix.

Parameters

e SVGMatrix matrix
The matrix which defines the transformation.

Returns
The returned SVGTransform object.

SVGTransform consolidate()

Consolidates the list of separate SVGTransform objects by multiplying the equivalent transformation
matrices together to result in a list consisting of a single SVGTransform object of type
SVG_TRANSFORM_MATRIX. The consolidation operation creates new SVGTransform object as the first
and only item in the list. The returned item is the item itself and not a copy. Any changes made to the item
are immediately reflected in the list.

Returns
The resulting SVGTransform object which becomes single item in the list. If the list was empty, then a
value of null is returned.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list corresponds to a read only attribute or when the object itself is read only.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

7.15.6 Interface SVGAnimatedTransformList

Used for the various attributes which specify a set of transformations, such as the ‘transform’ attribute which is

o
o
(@]
g
=7
S
S
)
oM
S

available for many of SVG's elements, and which can be animated.

interface SVGAnimatedTransformList {
readonly attribute SVGTransformList baseVal;
readonly attribute SVGTransformList animVal;

b

Attributes:

« baseVal (readonly SVGTransformList)

The base value of the given attribute before applying any animations.

o animVal (readonly SVGTransformList)

A read only SVGTransformList representing the current animated value of the given attribute. If the given
attribute is not currently being animated, then the SVGTransformList will have the same contents as baseVal.
The object referenced by animVal will always be distinct from the one referenced by baseVal, even when the
attribute is not animated.

7.15.7 Interface SVGPreserveAspectRatio

The SVGPreserveAspectRatio interface corresponds to the ‘preserveAspectRatio’ attribute, which is available for
some of SVG's elements.

An SVGPreserveAspectRatio object can be designated as read only, which means that attempts to modify the ob-
ject will result in an exception being thrown, as described below.

interface SVGPreserveAspectRatio {

// Alignment Types
const unsigned short SVG_PRESERVEASPECTRATIO_UNKNOWN = 0;
const unsigned short SVG_PRESERVEASPECTRATIO NONE = 1;
const unsigned short SVG_PRESERVEASPECTRATIO_ XMINYMIN
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMIN
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMIN
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMID
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMID
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMID
const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMAX
const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMAX
const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMAX

LU | | | | | I [
HOoOoONOURAWN

S o ot oo S S Sm s an

// Meet-or-slice Types

const unsigned short SVG_MEETORSLICE UNKNOWN = 0;
const unsigned short SVG_MEETORSLICE MEET = 1;
const unsigned short SVG_MEETORSLICE SLICE = 2;

attribute unsigned short align setraises(DOMException);
attribute unsigned short meetOrSlice setraises(DOMException);

i

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Constants in group “Alignment Types”:

¢ SVG_PRESERVEASPECTRATIO_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

o SVG_PRESERVEASPECTRATIO_NONE (unsigned short)

Corresponds to value 'none’ for attribute ‘preserveAspectRatio’.

o SVG_PRESERVEASPECTRATIO_XMINYMIN (unsigned short)

Corresponds to value 'xMinYMin' for attribute ‘preserveAspectRatio’.

o SVG_PRESERVEASPECTRATIO_XMIDYMIN (unsigned short)

Corresponds to value 'xMidYMin' for attribute ‘preserveAspectRatio’.

o SVG_PRESERVEASPECTRATIO_XMAXYMIN (unsigned short)

Corresponds to value 'xMaxYMin' for attribute ‘preserveAspectRatio’.

¢ SVG_PRESERVEASPECTRATIO_XMINYMID (unsigned short)

Corresponds to value 'XMinYMid' for attribute ‘preserveAspectRatio’.

¢ SVG_PRESERVEASPECTRATIO_XMIDYMID (unsigned short)

Corresponds to value 'xMidYMid' for attribute ‘preserveAspectRatio’.

o SVG_PRESERVEASPECTRATIO_XMAXYMID (unsigned short)

Corresponds to value 'xMaxYMid' for attribute ‘preserveAspectRatio’.

o SVG_PRESERVEASPECTRATIO_XMINYMAX (unsigned short)

Corresponds to value 'xMinYMax' for attribute ‘preserveAspectRatio’.

¢ SVG_PRESERVEASPECTRATIO_XMIDYMAX (unsigned short)

Corresponds to value 'xMidYMax' for attribute ‘preserveAspectRatio’.

o
o
(@]
g
=7
S
S
)
oM
S

« SVG_PRESERVEASPECTRATIO_XMAXYMAX (unsigned short)

Corresponds to value 'xMaxYMax' for attribute ‘preserveAspectRatio’.
Constants in group “Meet-or-slice Types”:

e« SVG_MEETORSLICE_UNKNOWN (unsigned short)

The enumeration was set to a value that is not one of predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an existing value to this type.

¢ SVG_MEETORSLICE_MEET (unsigned short)

Corresponds to value 'meet’ for attribute ‘preserveAspectRatio’.
o SVG_MEETORSLICE_SLICE (unsigned short)
Corresponds to value 'slice' for attribute ‘preserveAspectRatio’.
Attributes:

« align (unsigned short)

The type of the alignment value as specified by one of the SVG_PRESERVEASPECTRATIO_* constants
defined on this interface.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the object corresponds to a read only attribute or when the object itself is read only.

« meetOrSlice (unsigned short)

The type of the meet-or-slice value as specified by one of the SVG_MEETORSLICE_* constants defined on
this interface.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the object corresponds to a read only attribute or when the object itself is read only.

7.15.8 Interface SVGAnimatedPreserveAspectRatio

Used for attributes of type SVGPreserveAspectRatio which can be animated.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

interface SVGAnimatedPreserveAspectRatio {
readonly attribute SVGPreserveAspectRatio baseVal;
readonly attribute SVGPreserveAspectRatio animVal;

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:

« baseVal (readonly SVGPreserveAspectRatio)

The base value of the given attribute before applying any animations.

o animVal (readonly SVGPreserveAspectRatio)

A read only SVGPreserveAspectRatio representing the current animated value of the given attribute. If
the given attribute is not currently being animated, then the SVGPreserveAspectRatio will have the same
contents as baseVal. The object referenced by animVal will always be distinct from the one referenced by
baseVal, even when the attribute is not animated.

8 Paths

o
o
(@]
g
=7
S
S
)
oM
S

Contents

8.1 Introduction
8.2 The ‘path’ element
8.3 Path data
8.3.1 General information about path data
8.3.2 The "moveto" commands
8.3.3 The "closepath” command
8.3.4 The "lineto" commands
8.3.5 The curve commands

8.3.6 The cubic Bézier curve commands
8.3.7 The quadratic Bézier curve commands
8.3.8 The elliptical arc curve commands
8.3.9 The grammar for path data
8.4 Distance along a path
8.5 DOM interfaces
8.5.1 Interface SVGPathSeg
8.5.2 Interface SVGPathSegClosePath
8.5.3 Interface SVGPathSegMovetoAbs
8.5.4 Interface SVGPathSegMovetoRel
8.5.5 Interface SVGPathSegLinetoAbs
8.5.6 Interface SVGPathSegLinetoRel
8.5.7 Interface SVGPathSegCurvetoCubicAbs
8.5.8 Interface SVGPathSegCurvetoCubicRel
8.5.9 Interface SVGPathSegCurvetoQuadraticAbs
8.5.10 Interface SVGPathSegCurvetoQuadraticRel
8.5.11 Interface SVGPathSegArcAbs
8.5.12 Interface SVGPathSegArcRel
8.5.13 Interface SVGPathSegLinetoHorizontal Abs
8.5.14 Interface SVGPathSegLinetoHorizontalRel
8.5.15 Interface SVGPathSegLinetoVertical Abs
8.5.16 Interface SVGPathSegLinetoVerticalRel
8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs
8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel
8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs
8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel
8.5.21 Interface SVGPathSegList
8.5.22 Interface SVGAnimatedPathData
8.5.23 Interface SVGPathElement

o
o
(@]
g
=7
S
S
)
oM
S

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, used as a clipping path, or any combination of
the three. (See Filling, Stroking and Paint Servers and Clipping, Masking and Compositing.)

A path is described using the concept of a current point. In an analogy with drawing on paper, the current
point can be thought of as the location of the pen. The position of the pen can be changed, and the outline of a
shape (open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current point),
lineto (draw a straight line), curveto (draw a curve using a cubic Bézier), arc (elliptical or circular arc) and closepath
(close the current shape by drawing a line to the last moveto) elements. Compound paths (i.e., a path with multiple
subpaths) are possible to allow effects such as "donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG paths. Various implementation notes
for SVG paths can be found in ‘path’ element implementation notes and Elliptical arc implementation notes.

A path is defined in SVG using the ‘path’ element.

8.2 The ‘path’ element

Categories: ‘path’
Graphics element, shape element

Content model:
Any number of the following elements, in any order:
animation elements
descriptive elements

Attributes:
conditional processing attributes
core attributes
graphical event attributes
presentation attributes
‘class’
‘style’
‘externalResourcesRequired’
‘transform’
‘&
‘pathLength’

DOM Interfaces:
SVGPathElement

Attribute definitions:

d = "path data"
The definition of the outline of a shape. See Path data.
Animatable: yes. Path data animation is only possible when each path data specification within an animation
specification has exactly the same list of path data commands as the ‘d’ attribute. If an animation is specified

o
o
(@]
g
=7
S
S
)
oM
S

and the list of path data commands is not the same, then the animation specification is in error (see Error
Processing). The animation engine interpolates each parameter to each path data command separately based
on the attributes to the given animation element. Flags and booleans are interpolated as fractions between
zero and one, with any non-zero value considered to be a value of one/true.

pathLength = "<number>"
The author's computation of the total length of the path, in user units. This value is used to calibrate the user
agent's own distance-along-a-path calculations with that of the author. The user agent will scale all distance-
along-a-path computations by the ratio of ‘pathLength’ to the user agent's own computed value for total path

length. ‘pathLength’ potentially affects calculations for text on a path, motion animation and various stroke
operations.

A negative value is an error (see Error processing).

Animatable: yes.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a ‘path’ element which contains a d="(path data)" attribute, where the ‘d’ attribute
contains the moveto, line, curve (both cubic and quadratic Béziers), arc and closepath instructions.

Example triangle01 specifies a path in the shape of a triangle. (The M indicates a moveto, the Ls indicate
linetos, and the z indicates a closepath,).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="4cm" height="4cm" viewBox="0 0 400 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<title>Example triangle@l- simple example of a 'path'</title>
<desc>A path that draws a triangle</desc>
<rect x="1" y="1" width="398" height="398"
fill="none" stroke="blue" />
<path d="M 100 100 L 300 100 L 200 300 z"
fill="red" stroke="blue" stroke-width="3" />
</svg>

o
o
(@]
g
=7
S
S
)
oM
S

Example triangle01

Path data can contain newline characters and thus can be broken up into multiple lines to improve readability.
Because of line length limitations with certain related tools, it is recommended that SVG generators split long path
data strings across multiple lines, with each line not exceeding 255 characters. Also note that newline characters
are only allowed at certain places within path data.

The syntax of path data is concise in order to allow for minimal file size and efficient downloads, since many
SVG files will be dominated by their path data. Some of the ways that SVG attempts to minimize the size of path
data are as follows:

« All instructions are expressed as one character (e.g., a moveto is expressed as an M).

« Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L 200 200" con-
tains unnecessary spaces and could be expressed more compactly as "M 100 100L200 200").

o The command letter can be eliminated on subsequent commands if the same command is used multiple times
in a row (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100 -200" and use "M 100 200 L 200 100
-100 -200" instead).

« Relative versions of all commands are available (uppercase means absolute coordinates, lowercase means re-
lative coordinates).

o Alternate forms of lineto are available to optimize the special cases of horizontal and vertical lines (absolute
and relative).

o Alternate forms of curve are available to optimize the special cases where some of the control points on the
current segment can be determined automatically from the control points on the previous segment.

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable decimal
point is a Unicode U+0046 FULL STOP ("") character (also referred to in Unicode as PERIOD, dot and decimal
point) and no other delimiter characters are allowed [UNICODE]. (For example, the following is an invalid nu-
meric value in a path data stream: "13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values are relative to the current point at the start
of the command.

In the tables below, the following notation is used:

 (): grouping of parameters
o +: 1 or more of the given parameter(s) is required

The following sections list the commands.

8.3.2 The "moveto" commands

o
o
(@]
g
=7
S
S
)
oM
S

The "moveto” commands (M or m) establish a new current point. The effect is as if the "pen" were lifted and
moved to a new location. A path data segment (if there is one) must begin with a "moveto” command. Subsequent
"moveto" commands (i.e., when the "moveto" is not the first command) represent the start of a new subpath:

Command || Name || Parameters Description
Start a new sub-path at the given (x,y) coordinate. M (uppercase)
indicates that absolute coordinates will follow; m (lowercase) indicates
that relative coordinates will follow. If a moveto is followed by multiple

M pairs of coordinates, the subsequent pairs are treated as implicit lineto

(absolute) commands. Hence, implicit lineto commands will be relative if the

moveto || (x y)+

m moveto is relative, and absolute if the moveto is absolute. If a relative

(relative) moveto (m) appears as the first element of the path, then it is treated
as a pair of absolute coordinates. In this case, subsequent pairs of
coordinates are treated as relative even though the initial moveto is
interpreted as an absolute moveto.

8.3.3 The "closepath" command

The "closepath" (Z or z) ends the current subpath and causes an automatic straight line to be drawn from the cur-
rent point to the initial point of the current subpath. If a "closepath” is followed immediately by a "moveto", then
the "moveto" identifies the start point of the next subpath. If a "closepath” is followed immediately by any other
command, then the next subpath starts at the same initial point as the current subpath.

When a subpath ends in a "closepath,’ it differs in behavior from what happens when "manually” closing a
subpath via a "lineto" command in how ‘stroke-linejoin” and ‘stroke-linecap’ are implemented. With "closepath”,
the end of the final segment of the subpath is "joined" with the start of the initial segment of the subpath using
the current value of ‘stroke-linejoin’. If you instead "manually” close the subpath via a "lineto” command, the start
of the first segment and the end of the last segment are not joined but instead are each capped using the current
value of ‘stroke-linecap’. At the end of the command, the new current point is set to the initial point of the current

subpath.
Command Name Parameters Description
Zor Close the current subpath by drawing a straight line from the current
, closepath || (none) point to current subpath's initial point. Since the Z and z commands
take no parameters, they have an identical effect.

8.3.4 The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

o
o
(@]
g
=7
S
S
)
oM
S

Command Name Parameters Description
Draw a line from the current point to the given (x,y) coordinate which
L becomes the new current point. L (uppercase) indicates that
. absolute coordinates will follow; | (lowercase) indicates that relative
(absolute) || lineto (xy)+
. coordinates will follow. A number of coordinates pairs may be
| (relative) 0 .
specified to draw a polyline. At the end of the command, the new
current point is set to the final set of coordinates provided.
Draws a horizontal line from the current point (cpx, cpy) to (x, cpy). H
H (uppercase) indicates that absolute coordinates will follow; h
horizontal (lowercase) indicates that relative coordinates will follow. Multiple x
(absolute) . X+) . .
h (relative) lineto values can be provided (although usually this doesn't make sense).
At the end of the command, the new current point becomes (x, cpy)
for the final value of x.
Draws a vertical line from the current point (cpx, cpy) to (cpx, y). V
v (uppercase) indicates that absolute coordinates will follow; v
(absolute) vertical . (lowercase) indicates that relative coordinates will follow. Multiple y
v (relative) lineto v values can be provided (although usually this doesn't make sense).
At the end of the command, the new current point becomes (cpx, y)
for the final value of y.

8.3.5 The curve commands
These three groups of commands draw curves:
o Cubic Bézier commands (C, ¢, S and s). A cubic Bézier segment is defined by a start point, an end point, and
two control points.
o Quadratic Bézier commands (Q, q, T and t). A quadratic Bézier segment is defined by a start point, an end

point, and one control point.
« Elliptical arc commands (A and a). An elliptical arc segment draws a segment of an ellipse.

8.3.6 The cubic Bézier curve commands

The cubic Bézier commands are as follows:

Command Name Parameters Description

Draws a cubic Bézier curve from the current point to (x,y) using
(x1,y1) as the control point at the beginning of the curve and (x2,y2)
as the control point at the end of the curve. C (uppercase) indicates

£
o
(@]
g
=7
S
S
)
oM
S

C .) L
(x1yl x2 y2 || that absolute coordinates will follow; c (lowercase) indicates that
(absolute) || curveto
) X y)+ relative coordinates will follow. Multiple sets of coordinates may be
c (relative) " -
specified to draw a polybézier. At the end of the command, the new
current point becomes the final (x,y) coordinate pair used in the
polybézier.
Draws a cubic Bézier curve from the current point to (x,y). The first
control point is assumed to be the reflection of the second control
point on the previous command relative to the current point. (If there
is no previous command or if the previous command was not an C,
S shorthand/ ¢, S or s, assume the first control point is coincident with the current
(absolute) || smooth (x2 y2 x y)+ || point.) (x2,y2) is the second control point (i.e., the control point at
s (relative) || curveto the end of the curve). S (uppercase) indicates that absolute

coordinates will follow; s (lowercase) indicates that relative
coordinates will follow. Multiple sets of coordinates may be specified
to draw a polybézier. At the end of the command, the new current
point becomes the final (x,y) coordinate pair used in the polybézier.

Example cubic01 shows some simple uses of cubic Bézier commands within a path. The example uses an internal
CSS style sheet to assign styling properties. Note that the control point for the "S" command is computed auto-
matically as the reflection of the control point for the previous "C" command relative to the start point of the "S"
command.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="5cm" height="4cm" viewBox="0 0 500 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<title>Example cubic@l- cubic Bézier commands in path data</title>
<desc>Picture showing a simple example of path data
using both a "C" and an "S" command,
along with annotations showing the control points
and end points</desc>
<style type="text/css"><![CDATA[
.Border { fill:none; stroke:blue; stroke-width:1 }
.Connect { fill:none; stroke:#888888; stroke-width:2 }
.SamplePath { fill:none; stroke:red; stroke-width:5 }
.EndPoint { fill:none; stroke:#888888; stroke-width:2 }
.CtlPoint { fill:#888888; stroke:none }
.AutoCtlPoint { fill:none; stroke:blue; stroke-width:4 }
.Label { font-size:22; font-family:Verdana }
11></style>

<rect class="Border" x="1" y="1" width="498" height="398" />

<polyline class="Connect" points="100,200 100,100" />
<polyline class="Connect" points="250,100 250,200" />
<polyline class="Connect" points="250,200 250,300" />
<polyline class="Connect" points="400,300 400,200" />

<path class="SamplePath" d="M100,200 C100,100 250,100 250,200
S400,300 400,200" />

<circle class="EndPoint" cx="100" cy="200" r="10" />

<circle class="EndPoint" 250" cy="200" r="10" />

<circle class="EndPoint" 400" cy="200" r="10" />

<circle class="CtlPoint" 100" cy="100" r="10" />

<circle class="CtlPoint" cx="250" cy="100" r="10" />

<circle class="CtlPoint" cx="400" cy="300" r="10" />

<circle class="AutoCtlPoint" cx="250" cy="300" r="9" />

<text class="Label" x="25" y="70">M100,200 C100,100 250,100 250,200</text>

<text class="Label" x="325" y="350"
style="text-anchor:middle">5400,300 400,200</text>

<+
e
(o)
g
<
S
S
O
Q)
2

</svg>
Example cubic01

M100,200 C100,100 250,100 250,200
. L

o L]
5400, 300 400,200

The following picture shows some how cubic Bézier curves change their shape depending on the position of the
control points. The first five examples illustrate a single cubic Bézier path segment. The example at the lower right
shows a "C" command followed by an "S" command.

L] L] » L]
M100,200 C100, 200 400, 100 400,200 ME00, 200 067 5,100 975,100 900,200
-
L L]
M100, 500 C25 400 475,400 400,500 MED0, SO0 C500, 350 900,650 900,500
L
. L

M100,800 C175, 700 325,700 400,800

o []
HE00, 800 0625 700 725, 700 750,800
5875,200 300,800

8.3.7 The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

o
o
(@]
g
=7
S
S
)
oM
S

Command Name Parameters Description

Draws a quadratic Bézier curve from the current point to (x,y) using
(x1,y1) as the control point. Q (uppercase) indicates that absolute

Q quadratic coordinates will follow; q (lowercase) indicates that relative

(absolute) || Bézier (x1yl xy)+ || coordinates will follow. Multiple sets of coordinates may be

q (relative) || curveto specified to draw a polybézier. At the end of the command, the new
current point becomes the final (x,y) coordinate pair used in the
polybézier.

Draws a quadratic Bézier curve from the current point to (x,y). The
control point is assumed to be the reflection of the control point on

Shorthand/ the previous command relative to the current point. (If there is no
T smooth previous command or if the previous command was nota Q, q, T or
(absolute) || quadratic xy)+ t, assume the control point is coincident with the current point.) T
t (relative) || Bézier (uppercase) indicates that absolute coordinates will follow; t
curveto (lowercase) indicates that relative coordinates will follow. At the end

of the command, the new current point becomes the final (x,y)
coordinate pair used in the polybézier.

Example quad01 shows some simple uses of quadratic Bézier commands within a path. Note that the control point
for the "T" command is computed automatically as the reflection of the control point for the previous "Q" com-
mand relative to the start point of the "T" command.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="12cm" height="6cm" viewBox="0 0 1200 600"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<title>Example quad0@l - quadratic Bézier commands in path data</title>
<desc>Picture showing a "Q" a "T" command,
along with annotations showing the control points
and end points</desc>
<rect x="1" y="1" width="1198" height="598"
fill="none" stroke="blue" stroke-width="1" />

<path d="M200,300 Q400,50 600,300 T1000,300"
fill="none" stroke="red" stroke-width="5" />
<!-- End points -->
<g fill="black" >
<circle cx="200" cy="300" r="10"/>
<circle cx="600" cy="300" r="10"/>
<circle cx="1000" cy="300" r="10"/>
</g>
<!-- Control points and lines from end points to control points -->
<g fill="#888888" >
<circle cx="400" cy="50" r="10"/>
<circle cx="800" cy="550" r="10"/>
</g>
<path d="M200,300 L400,50 L600,300

L800,550 L1006,300"
fill="none" stroke="#888888" stroke-width="2" />
</svg>

o
o
(@]
g
=7
S
S
)
oM
S

Example quado1

8.3.8 The elliptical arc curve commands

The elliptical arc commands are as follows:

Command || Name Parameters Description

Draws an elliptical arc from the current point to (x, y). The size and
orientation of the ellipse are defined by two radii (rx, ry) and an

(rx . . L . :
rY . x-axis-rotation, which indicates how the ellipse as a whole is
A L. X-axis-rotation . .
elliptical rotated relative to the current coordinate system. The center (cx, cy)
(absolute) large-arc-flag)
) arc of the ellipse is calculated automatically to satisfy the constraints

a (relative) sweep-flag x)

™ imposed by the other parameters. large-arc-flag and sweep-flag

contribute to the automatic calculations and help determine how the
arc is drawn.

Example arcs01 shows some simple uses of arc commands within a path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.0rg/Graphics/SVG/1.1/DTD/svgll.dtd">
<svg width="12cm" height="5.25cm" viewBox="0 0 1200 400"
xmlns="http://www.w3.0rg/2000/svg" version="1.1">
<title>Example arcs0l - arc commands in path data</title>
<desc>Picture of a pie chart with two pie wedges and
a picture of a line with arc blips</desc>
<rect x="1" y="1" width="1198" height="398"
fill="none" stroke="blue" stroke-width="1" />

<path d="M300,200 h-150 al56,156 0 1,0 150,-150 z"
fill="red" stroke="blue" stroke-width="5" />
<path d="M275,175 v-150 al56,156 0 0,0 -150,150 z"

o
o
(@]
g
=7
S
S
)
oM
S

fill="yellow" stroke="blue" stroke-width="5" />

<path d="M600,350 1 50,-25
a25,25 -30 0,1 50,-25 1 50,-25
a25,50 -30 0,1 50,-25 1 50,-25
a25,75 -30 0,1 50,-25 1 50,-25
a25,100 -30 0,1 50,-25 1 50,-25"
fill="none" stroke="red" stroke-width="5" />
</svg>

Example arcs01

The elliptical arc command draws a section of an ellipse which meets the following constraints:

« the arc starts at the current point

« the arc ends at point (x, y)

« the ellipse has the two radii (rx, ry)

« the x-axis of the ellipse is rotated by x-axis-rotation relative to the x-axis of the current coordinate system.

For most situations, there are actually four different arcs (two different ellipses, each with two different arc sweeps)
that satisfy these constraints. large-arc-flag and sweep-flag indicate which one of the four arcs are drawn, as
follows:

o Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180 degrees
(the "large-arc"), and two will represent an arc sweep of less than or equal to 180 degrees (the "small-arc"). If
large-arc-flag is '1', then one of the two larger arc sweeps will be chosen; otherwise, if large-arc-flag is '0',
one of the smaller arc sweeps will be chosen,

o If sweep-flag is '1', then the arc will be drawn in a "positive-angle" direction (i.e., the ellipse formula
x=cx+rx”cos(theta) and y=cy+ry”sin(theta) is evaluated such that theta starts at an angle corresponding to
the current point and increases positively until the arc reaches (x,y)). A value of 0 causes the arc to be drawn
in a "negative-angle" direction (i.e., theta starts at an angle value corresponding to the current point and de-
creases until the arc reaches (x,y)).

The following illustrates the four combinations of large-arc-flag and sweep-flag and the four different arcs that
will be drawn based on the values of these flags. For each case, the following path data command was used:

o
o
(@]
g
=7
S
S
)
oM
S

<path d="M 125,75 alee,50 6 ?,? 100,50"
style="fill:none; stroke:red; stroke-width:6"/>

where "?,?" is replaced by "0,0" "0,1" "1,0" and "1,1" to generate the four possible cases.

Arc start; Arc start Arc shart

‘Az end \-_ﬁr: end Arc znd
large-arc-flag=0 large-arc-flag=0

sweep-flag=0 sweep-flag=1

o . HE/'D

C/hr: end Arc and
large-arc-flag=1 large-arc-flag=1

sweep-flag=0 sweep-flag=1

Refer to Elliptical arc implementation notes for detailed implementation notes for the path data elliptical arc com-
mands.

8.3.9 The grammar for path data
The following notation is used in the Backus-Naur Form (BNF) description of the grammar for path data:

e ™:0or more

e +:1o0r more

e 200r1

o (): grouping

o |: separates alternatives

« double quotes surround literals

The following is the BNF for SVG paths.

svg-path:

wsp* moveto-drawto-command-groups? wsp*
moveto-drawto-command-groups:

moveto-drawto-command-group

| moveto-drawto-command-group wsp* moveto-drawto-command-groups
moveto-drawto-command-group:

moveto wsp* drawto-commands?
drawto-commands:

drawto-command

| drawto-command wsp* drawto-commands
drawto-command:

closepath

| lineto

| horizontal-lineto

| vertical-lineto

| curveto

| smooth-curveto

| quadratic-bezier-curveto

| smooth-quadratic-bezier-curveto

| elliptical-arc
moveto:

("M" | "m") wsp* moveto-argument-sequence
moveto-argument-sequence:

coordinate-pair

| coordinate-pair comma-wsp? lineto-argument-sequence
closepath:

("z" | "z")
lineto:

("L" | "l") wsp* lineto-argument-sequence
lineto-argument-sequence:

coordinate-pair

| coordinate-pair comma-wsp? lineto-argument-sequence
horizontal-lineto:

o
o
(@]
g
=7
S
S
)
oM
S

("H" | "h") wsp* horizontal-lineto-argument-sequence
horizontal-lineto-argument-sequence:
coordinate

| coordinate comma-wsp? horizontal-lineto-argument-sequence
vertical-lineto:

("V" | "v") wsp* vertical-lineto-argument-sequence
vertical-lineto-argument-sequence:

coordinate

| coordinate comma-wsp? vertical-lineto-argument-sequence
curveto:

("C" | "c") wsp* curveto-argument-sequence
curveto-argument-sequence:

curveto-argument

| curveto-argument comma-wsp? curveto-argument-sequence
curveto-argument:

coordinate-pair comma-wsp? coordinate-pair comma-wsp? coordinate-pair
smooth-curveto:

("S" | "s") wsp* smooth-curveto-argument-sequence
smooth-curveto-argument-sequence:

smooth-curveto-argument

| smooth-curveto-argument comma-wsp? smooth-curveto-argument-sequence
smooth-curveto-argument:

coordinate-pair comma-wsp? coordinate-pair
quadratic-bezier-curveto:

("Q" | "q") wsp* quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument-sequence:

quadratic-bezier-curveto-argument

| quadratic-bezier-curveto-argument comma-wsp?

quadratic-bezier-curveto-argument-sequence

quadratic-bezier-curveto-argument:

coordinate-pair comma-wsp? coordinate-pair
smooth-quadratic-bezier-curveto:

("T" | "t") wsp* smooth-quadratic-bezier-curveto-argument-sequence
smooth-quadratic-bezier-curveto-argument-sequence:

coordinate-pair

| coordinate-pair comma-wsp? smooth-quadratic-bezier-curveto-argument-sequence
elliptical-arc:

("A" | "a") wsp* elliptical-arc-argument-sequence
elliptical-arc-argument-sequence:

elliptical-arc-argument

| elliptical-arc-argument comma-wsp? elliptical-arc-argument-sequence
elliptical-arc-argument:

nonnegative-number comma-wsp? nonnegative-number comma-wsp?

number comma-wsp flag comma-wsp? flag comma-wsp? coordinate-pair

coordinate-pair:

coordinate comma-wsp? coordinate
coordinate:

number
nonnegative-number:

integer-constant

| floating-point-constant
number:

sign? integer-constant

| sign? floating-point-constant

o
o
(@]
g
=7
S
S
)
oM
S

flag:

IIOII | Illll
comma-wsp:

(wsp+ comma? wsp*) | (comma wsp*)
comma:

integer-constant:
digit-sequence
floating-point-constant:
fractional-constant exponent?
| digit-sequence exponent
fractional-constant:

digit-sequence? "." digit-sequence
| digit-sequence "."
exponent:
("e" | "E") sign? digit-sequence
sign:
II+II | II_II
digit-sequence:
digit
| digit digit-sequence
digit:
ot | "1 | 2" | "3 | "4" | "5" | "e" | "7" | "8" | "9"
wsp:

(#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at the point
when a character is encountered which no longer satisfies the production. Thus, in the string "M 100-200", the first
coordinate for the "moveto" consumes the characters "100" and stops upon encountering the minus sign because
the minus sign cannot follow a digit in the production of a "coordinate". The result is that the first coordinate will
be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto" consumes the characters "0.6" and stops
upon encountering the second decimal point because the production of a "coordinate" only allows one decimal
point. The result is that the first coordinate will be "0.6" and the second coordinate will be ".5".

Note that the BNF allows the path ‘d’ attribute to be empty. This is not an error, instead it disables rendering
of the path.

o
o
(@]
g
=7
S
S
)
oM
S

8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require that the
user agent compute the distance along the geometry of a graphics element, such as a ‘path’.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and re-
quire substantial computation. It is recommended that authoring products and user agents employ algorithms that
produce as precise results as possible; however, to accommodate implementation differences and to help distance
calculations produce results that approximate author intent, the ‘pathLength’ attribute can be used to provide the
author's computation of the total length of the path so that the user agent can scale distance-along-a-path compu-
tations by the ratio of ‘pathLength’ to the user agent's own computed value for total path length.

A "moveto" operation within a ‘path’ element is defined to have zero length. Only the various "lineto", "cur-
veto" and "arcto" commands contribute to path length calculations.

8.5 DOM interfaces

8.5.1 Interface SVGPathSeg

The SVGPathSeg interface is a base interface that corresponds to a single command within a path data specifica-
tion.

interface SVGPathSeg {

// Path Segment Types

const unsigned short PATHSEG_UNKNOWN = 0;
const unsigned short PATHSEG_CLOSEPATH = 1
const unsigned short PATHSEG_MOVETO_ABS
const unsigned short PATHSEG_MOVETO REL
const unsigned short PATHSEG_LINETO_ABS
const unsigned short PATHSEG_LINETO REL B

const unsigned short PATHSEG_CURVETO_CUBIC_ABS = 6;
const unsigned short PATHSEG_CURVETO_ CUBIC REL = 7;

2
3
4
5

const unsigned short PATHSEG_CURVETO_QUADRATIC ABS = 8;
const unsigned short PATHSEG_CURVETO_QUADRATIC REL = 9;
const unsigned short PATHSEG_ARC_ABS = 10;
const unsigned short PATHSEG_ARC_REL = 11;
const unsigned short PATHSEG_LINETO HORIZONTAL ABS = 12;

const unsigned short PATHSEG_LINETO HORIZONTAL REL = 13;
const unsigned short PATHSEG_LINETO VERTICAL ABS = 14;
const unsigned short PATHSEG_LINETO VERTICAL REL = 15;
const unsigned short PATHSEG_CURVETO_ CUBIC SMOOTH_ABS = 1
const unsigned short PATHSEG_CURVETO_CUBIC SMOOTH REL = 1
const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS
const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL

~N o

18;
19;

readonly attribute unsigned short pathSegType;
readonly attribute DOMString pathSegTypeAsLetter;
b

Constants in group “Path Segment Types”:

« PATHSEG_UNKNOWN (unsigned short)

o
o
(@]
g
=7
S
S
)
oM
S

The unit type is not one of predefined types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

o PATHSEG_CLOSEPATH (unsigned short)

Corresponds to a "closepath” (z) path data command.

« PATHSEG_MOVETO_ABS (unsigned short)

Corresponds to a "absolute moveto" (M) path data command.

« PATHSEG_MOVETO_REL (unsigned short)

Corresponds to a "relative moveto" (m) path data command.

o PATHSEG_LINETO_ABS (unsigned short)

Corresponds to a "absolute lineto” (L) path data command.

o PATHSEG_LINETO_REL (unsigned short)

Corresponds to a "relative lineto" (1) path data command.

« PATHSEG_CURVETO_CUBIC_ABS (unsigned short)

Corresponds to a "absolute cubic Bézier curveto" (C) path data command.

« PATHSEG_CURVETO_CUBIC_REL (unsigned short)

Corresponds to a "relative cubic Bézier curveto" (c) path data command.

« PATHSEG_CURVETO_QUADRATIC_ABS (unsigned short)

Corresponds to a "absolute quadratic Bézier curveto" (Q) path data command.

« PATHSEG_CURVETO_QUADRATIC_REL (unsigned short)

Corresponds to a "relative quadratic Bézier curveto" (q) path data command.

« PATHSEG_ARC_ABS (unsigned short)

Corresponds to a "absolute arcto” (A) path data command.

o
o
(@]
g
=7
S
S
)
oM
S

« PATHSEG_ARC_REL (unsigned short)

Corresponds to a "relative arcto” (a) path data command.

o PATHSEG_LINETO_HORIZONTAL_ABS (unsigned short)

Corresponds to a "absolute horizontal lineto" (H) path data command.

o PATHSEG_LINETO_HORIZONTAL_REL (unsigned short)

Corresponds to a "relative horizontal lineto" (h) path data command.

o PATHSEG_LINETO_VERTICAL_ABS (unsigned short)

Corresponds to a "absolute vertical lineto" (V) path data command.

o PATHSEG_LINETO_VERTICAL_REL (unsigned short)

Corresponds to a "relative vertical lineto" (v) path data command.

« PATHSEG_CURVETO_CUBIC_SMOOTH_ABS (unsigned short)

Corresponds to a "absolute smooth cubic curveto” (S) path data command.

« PATHSEG_CURVETO_CUBIC_SMOOTH_REL (unsigned short)

Corresponds to a "relative smooth cubic curveto" (s) path data command.

« PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS (unsigned short)

Corresponds to a "absolute smooth quadratic curveto” (T) path data command.

« PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL (unsigned short)

Corresponds to a "relative smooth quadratic curveto” (t) path data command.

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:

« pathSegType (readonly unsigned short)

The type of the path segment as specified by one of the constants defined on this interface.

» pathSegTypeAsLetter (readonly DOMString)

The type of the path segment, specified by the corresponding one character command name.

8.5.2 Interface SVGPathSegClosePath

The SVGPathSegClosePath interface corresponds to a "closepath” (z) path data command.

interface SVGPathSegClosePath : SVGPathSeg {
b

8.5.3 Interface SVGPathSegMovetoAbs

The SVGPathSegMovetoAbs interface corresponds to an "absolute moveto" (M) path data command.

interface SVGPathSegMovetoAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
b

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

¢ y (float)
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

8.5.4 Interface SVGPathSegMovetoRel

The SVGPathSegMovetoRel interface corresponds to a "relative moveto” (m) path data command.

o
o
(@]
g
=7
S
S
)
oM
S

interface SVGPathSegMovetoRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
b

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.

Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o y (float)

The relative Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.5 Interface SVGPathSegLinetoAbs

The SVGPathSegLinetoAbs interface corresponds to an "absolute lineto" (L) path data command.

interface SVGPathSegLinetoAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);

i

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y (float)

The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.6 Interface SVGPathSegLinetoRel

The SVGPathSegLinetoRel interface corresponds to a "relative lineto" (1) path data command.

interface SVGPathSegLinetoRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
b

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

¢ y (float)
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

8.5.7 Interface SVGPathSegCurvetoCubicAbs

The SVGPathSegCurvetoCubicAbs interface corresponds to an "absolute cubic Bézier curveto” (C) path data com-
mand.

interface SVGPathSegCurvetoCubicAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float yl setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

Y

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y (float)
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e x1 (float)
The absolute X coordinate for the first control point.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

 y1 (float)

The absolute Y coordinate for the first control point.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o
o
(@]
g
=7
S
S
)
oM
S

o x2 (float)

The absolute X coordinate for the second control point.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y2 (float)

The absolute Y coordinate for the second control point.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.8 Interface SVGPathSegCurvetoCubicRel

The SVGPathSegCurvetoCubicRel interface corresponds to a "relative cubic Bézier curveto” (c) path data com-
mand.

interface SVGPathSegCurvetoCubicRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float yl setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

y (float)
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

x1 (float)
The relative X coordinate for the first control point.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

y1 (float)
The relative Y coordinate for the first control point.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

x2 (float)
The relative X coordinate for the second control point.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

e y2 (float)

The relative Y coordinate for the second control point.

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.9 Interface SVGPathSegCurvetoQuadraticAbs

The SVGPathSegCurvetoQuadraticAbs interface corresponds to an "absolute quadratic Bézier curveto” (Q) path
data command.

interface SVGPathSegCurvetoQuadraticAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float yl setraises(DOMException);
b

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o y (float)
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e x1 (float)

The absolute X coordinate for the first control point.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y1 (float)

The absolute Y coordinate for the first control point.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.10 Interface SVGPathSegCurvetoQuadraticRel
The SVGPathSegCurvetoQuadraticRel interface corresponds to a "relative quadratic Bézier curveto" (q) path data

command.

interface SVGPathSegCurvetoQuadraticRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x1 setraises(DOMException);
attribute float yl setraises(DOMException);
b

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o y (float)
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o x1 (float)

The relative X coordinate for the first control point.

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y1 (float)

The relative Y coordinate for the first control point.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.11 Interface SVGPathSegArcAbs

The SVGPathSegArcAbs interface corresponds to an "absolute arcto" (A) path data command.

interface SVGPathSegArcAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float rl setraises(DOMException);
attribute float r2 setraises(DOMException);
attribute float angle setraises(DOMException);
attribute boolean largeArcFlag setraises(DOMException);
attribute boolean sweepFlag setraises(DOMException);

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y (float)

The absolute Y coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o
o
(@]
g
=7
S
S
)
oM
S

o 11 (float)

The x-axis radius for the ellipse (i.e., r1).
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o 12 (float)

The y-axis radius for the ellipse (i.e., r2).
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« angle (float)
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« largeArcFlag (boolean)
The value of the large-arc-flag parameter.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

« sweepFlag (boolean)

The value of the sweep-flag parameter.

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.12 Interface SVGPathSegArcRel

The SVGPathSegArcRel interface corresponds to a "relative arcto" (a) path data command.

interface SVGPathSegArcRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float rl setraises(DOMException);
attribute float r2 setraises(DOMException);
attribute float angle setraises(DOMException);
attribute boolean largeArcFlag setraises(DOMException);
attribute boolean sweepFlag setraises(DOMException);

+

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

¢ y (float)
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o 11 (float)

The x-axis radius for the ellipse (i.e., r1).

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o
o
(@]
g
=7
S
S
)
oM
S

o 12 (float)

The y-axis radius for the ellipse (i.e., r2).
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« angle (float)

The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate system.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« largeArcFlag (boolean)
The value of the large-arc-flag parameter.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

« sweepFlag (boolean)
The value of the sweep-flag parameter.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

8.5.13 Interface SVGPathSegLinetoHorizontalAbs

The SVGPathSegLinetoHorizontalAbs interface corresponds to an "absolute horizontal lineto" (H) path data com-
mand.

interface SVGPathSegLinetoHorizontalAbs : SVGPathSeg {
attribute float x setraises(DOMException);

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.14 Interface SVGPathSegLinetoHorizontalRel

The SVGPathSegLinetoHorizontalRel interface corresponds to a "relative horizontal lineto" (h) path data com-
mand.

interface SVGPathSegLinetoHorizontalRel : SVGPathSeg {
attribute float x setraises(DOMException);

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.15 Interface SVGPathSegLinetoVerticalAbs

The SVGPathSegLinetoVertical Abs interface corresponds to an "absolute vertical lineto" (V) path data command.

interface SVGPathSegLinetoVerticalAbs : SVGPathSeg {

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

attribute float y setraises(DOMException);

o
o
(@]
g
=7
S
S
)
oM
S

Attributes:

¢ y (float)

The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.16 Interface SVGPathSegLinetoVerticalRel

The SVGPathSegLinetoVerticalRel interface corresponds to a "relative vertical lineto" (v) path data command.

interface SVGPathSegLinetoVerticalRel : SVGPathSeg {
attribute float y setraises(DOMException);

Attributes:

o y (float)

The relative Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.17 Interface SVGPathSegCurvetoCubicSmoothAbs

The SVGPathSegCurvetoCubicSmoothAbs interface corresponds to an "absolute smooth cubic curveto” (S) path
data command.

interface SVGPathSegCurvetoCubicSmoothAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);
b

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Attributes:

o X (float)

o
o
(@]
g
=7
S
S
)
oM
S

The absolute X coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

e y (float)

The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o x2 (float)
The absolute X coordinate for the second control point.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

* y2 (float)
The absolute Y coordinate for the second control point.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.18 Interface SVGPathSegCurvetoCubicSmoothRel

The SVGPathSegCurvetoCubicSmoothRel interface corresponds to a "relative smooth cubic curveto" (s) path data
command.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

interface SVGPathSegCurvetoCubicSmoothRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
attribute float x2 setraises(DOMException);
attribute float y2 setraises(DOMException);
i

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o y (float)
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o x2 (float)
The relative X coordinate for the second control point.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

* y2 (float)
The relative Y coordinate for the second control point.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

8.5.19 Interface SVGPathSegCurvetoQuadraticSmoothAbs

The SVGPathSegCurvetoQuadraticSmoothAbs interface corresponds to an "absolute smooth cubic curveto” (T)

o
o
(@]
g
=7
S
S
)
oM
S

path data command.

interface SVGPathSegCurvetoQuadraticSmoothAbs : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
Y

Attributes:

o X (float)

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o y (float)

The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.20 Interface SVGPathSegCurvetoQuadraticSmoothRel
The SVGPathSegCurvetoQuadraticSmoothRel interface corresponds to a "relative smooth cubic curveto" (t) path
data command.

interface SVGPathSegCurvetoQuadraticSmoothRel : SVGPathSeg {
attribute float x setraises(DOMException);
attribute float y setraises(DOMException);
b

Attributes:

o X (float)

The relative X coordinate for the end point of this path segment.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

Exceptions on setting

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

o
o
(@]
g
=7
S
S
)
oM
S

e y (float)

The relative Y coordinate for the end point of this path segment.
Exceptions on setting

o DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised on an attempt to change the value of a read only attribute.

8.5.21 Interface SVGPathSegList

This interface defines a list of SVGPathSeg objects.
SVGPathSegList has the same attributes and methods as other SVGxxxList interfaces. Implementers may con-
sider using a single base class to implement the various SVGxxxList interfaces.

interface SVGPathSegList {
readonly attribute unsigned long numberOfItems;
void clear() raises(DOMException);
SVGPathSeg initialize(in SVGPathSeg newItem) raises(DOMException);
SVGPathSeg getItem(in unsigned long index) raises(DOMException);
SVGPathSeg insertItemBefore(in SVGPathSeg newItem, in unsigned long index) raises(DOMException);
SVGPathSeg replaceItem(in SVGPathSeg newItem, in unsigned long index) raises(DOMException);
SVGPathSeg removeItem(in unsigned long index) raises(DOMException);

SVGPathSeg appendItem(in SVGPathSeg newItem) raises(DOMException);
b

Attributes:

« numberOfltems (readonly unsigned long)

The number of items in the list.
Operations:

« void clear()

Clears all existing current items from the list, with the result being an empty list.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

SVGPathSeg initialize(in SVGPathSeg newltem)

Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter. If the inserted item is already in a list, it is removed from its previous list before it is inserted
into this list. The inserted item is the item itself and not a copy.

Parameters

» SVGPathSeg newltem
The item which should become the only member of the list.

Returns
The item being inserted into the list.

Exceptions

+ DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

SVGPathSeg getltem(in unsigned long index)

Returns the specified item from the list. The returned item is the item itself and not a copy. Any changes
made to the item are immediately reflected in the list.

Parameters

« unsigned long index
The index of the item from the list which is to be returned. The first item is number 0.

Returns
The selected item.

Exceptions

« DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

o SVGPathSeg insertItemBefore(in SVGPathSeg newltem, in unsigned long index)

Inserts a new item into the list at the specified position. The first item is number 0. If newltem is already in
a list, it is removed from its previous list before it is inserted into this list. The inserted item is the item itself
and not a copy. If the item is already in this list, note that the index of the item to insert before is before the
removal of the item.

Parameters

o SVGPathSeg newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item before which the new item is to be inserted. The first item is number 0. If the
index is equal to 0, then the new item is inserted at the front of the list. If the index is greater than or
equal to numberOfltems, then the new item is appended to the end of the list.

Returns
The inserted item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o SVGPathSeg replaceltem(in SVGPathSeg newltem, in unsigned long index)

Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list. The inserted item is the item itself and not a copy. If the item
is already in this list, note that the index of the item to replace is before the removal of the item.

Parameters

o SVGPathSeg newltem
The item which is to be inserted into the list.

« unsigned long index
The index of the item which is to be replaced. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187

o
o
(@]
g
=7
S
S
)
oM
S

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR

Raised if the index number is greater than or equal to numberOfltems.

» SVGPathSeg removeltem(in unsigned long index)

Removes an existing item from the list.
Parameters

« unsigned long index
The index of the item which is to be removed. The first item is number 0.

Returns
The removed item.

Exceptions

« DOMException, code NO_MODIFICATION_ALLOWED_ERR
Raised when the list cannot be modified.

o DOMException, code INDEX_SIZE_ERR
Raised if the index number is greater than or equal to numberOfltems.

o SVGPathSeg appendlItem(in SVGPathSeg newltem)

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its previous list
before it is inserted into this list. The inserted item is the item itself and not a copy.

Parameters

» SVGPathSeg newltem
The item which is to be inserted. The first item is number 0.

Returns
The inserted item.

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-17189187
http://www.w3.org/TR/DOM-Level-2