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Abstract—Link prediction is a task in Social Network Analysis
that consists of predicting connections that are most likely to
appear considering previous observed links in a social network.
The majority of works in this area only performs the task
by exploring the state of the network at a specific moment
to make the prediction of new links, without considering the
behavior of links as time goes by. In this light, we investigate if
temporal information can bring any performance gain to the link
prediction task. A traditional approach for link prediction uses
a chosen topological similarity metric on non-connected pairs of
nodes of the network at present time to obtain a score that is
going to be used by an unsupervised or a supervised method
for link prediction. Our approach initially consists of building
time series for each pair of non-connected nodes by computing
their similarity scores at different past times. Then, we deploy a
forecasting model on these time series and use their forecasts as
the final scores of the pairs. Our preliminary results using two
link prediction methods (unsupervised and supervised) on co-
authorship networks revealed satisfactory results when temporal
information was considered.

I. INTRODUCTION

With the advance of the Internet, people and organizations
could interact and collaborate more, providing the basis for the
emergence of social networks in virtual environments. A social
network is a set of individuals joined together by some kind
of relationship, such as friendship [3] in which two people are
connected if they are friends. Since this kind of network is
generally complex and highly dynamic, it is really important
to understand its behavior along time [24].

Social Network Analysis (SNA) is a broad field of research
that tries to cope with the dynamics of that kind of structure
[25]. Different tasks can be associated to SNA. In this paper,
our specific aim is to investigate the dynamics of links in a
social network, that is, we want to predict what relationships
are most likely to be formed based on previous states of the
network. That is a well-known task treated by SNA called link
prediction [2].

Several approaches can deal with the link prediction prob-
lem [27], [8], [23]. The most widespread one is based on
topological patterns. Basically, it consists of applying topo-
logical similarity metrics to non-connected pairs of nodes in
the network at a time ¢ in order to predict if a link will occur
at a time ¢’ (¢’ > t). Such metrics provide scores to each pair
of nodes which are then used to perform the prediction task
either by an unsupervised or a supervised technique.

In the unsupervised technique, the pairs of non-connected
nodes are ranked by their similarity scores and the top ranked
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ones are predicted to be connected. In the supervised strategy,
in turn, the link prediction is treated as a classification prob-
lem. In this approach, pairs of nodes are assigned to positive
class if they are connected, or negative class otherwise. The
similarity scores related by a chosen set of topological metrics
are adopted in this approach as features which are used by a
supervised classifier to perform the link prediction task.

Although traditional approaches for link prediction have
shown good results, they fail in exploring the network evo-
lution as such, since they only statically analyze the network
at the current moment, i.e., topological metrics are computed
using all network data up to the present time without con-
sidering when links were created in the network. Our work
tries to deal with this limitation by exploring how topological
metrics evolve in the network over time. In order to accomplish
this goal, each chosen similarity metric is applied to all non-
connected pairs of nodes in the network in different past times.
Then, a time series is built for each pair, recording the values
provided by the metric. Finally, a forecasting model is applied
to the series in order to predict their next values, which are
going to be used as input to unsupervised and supervised link
prediction methods. Although some works [11], [5], [21] tried
to use time-aware techniques for link prediction, to the best
of our knowledge, this work is the first one to investigate
the prediction of links by using time series forecasting over
similarity metrics.

In order to verify the viability of the proposed approach,
we performed experiments on two co-authorship networks
extracted from two sections of the physics e-Print arXiv'.
In these experiments, we adopted similarity metrics from
the state-of-the-art of link prediction, such as preferential
attachment, common neighbors, Adamic/Adar, among others
[4], [19], [1], [22]. Furthermore, we adopted both unsupervised
[14], [18], [16] and supervised [15], [2], [6] methods to
compare our results with the ones achieved by the tradi-
tional approach. In general, the experiments showed that our
approach performs better than the traditional one for both
unsupervised and supervised strategy.

Section II, briefly presents the link prediction problem. Sec-
tion III in turn describes the proposed approach and presents
the similarity metrics and forecasting models used. Section
IV describes the social network data adopted, the experimental
process and discusses the results. Finally, Section V concludes
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the paper by presenting some considerations and future work.

II. LINK PREDICTION

Link prediction consists of using previously observed net-
work states to find hidden connections or predict links that
are most likely to appear in the future [8]. There are several
approaches to treat this problem. The most popular ones are
based on node features (content and/or semantics), proba-
bilistic models (relational learning) and topological/structural
patterns.

In the node-wise based approach, similarity measures are
adopted to associate nodes based on their content or semantics
[27]. Nodes are represented as a vector of features they have,
and similarity metrics are then applied to pairs of nodes aiming
to find how close they are.

The probabilistic approach attempts to find a model that
best represents the network. The idea is to build a probabilistic
model defined by a set of parameters 6, estimated using the
observed social network. Then the existence of a connection
between a given pair of nodes x and y is determined by the
conditional probability P(e<*:¥~ ) [27]. Examples of models
in this approach are Relational Markov Networks, Relational
Bayesian Networks and Relational Dependency Networks.

The approach based on topological patterns of the network
[27], [18], [10], [14] consists of extracting scores from non-
connected nodes of the network by means of topological
metrics (see section III-A). These metrics provide a degree of
similarity between two nodes by exploring structural patterns
of the network in analysis [14]. Those scores are then used as
the basis for building models that can perform the prediction.

The topological based approach is the most widespread one.
It also presents good performance and is easy to implement
[27], [18], [10], [14]. Besides, topological metrics are focused
on the network structure, which is what we aim to investigate
considering the time dimension. That is why our proposed
approach is based on such metrics.

Traditionally, there are two strategies to deal with the predic-
tion after the similarity scores are calculated: unsupervised and
supervised approaches. The first one consists of ranking the
non-linked pairs of nodes, positioning the ones with highest
scores in the top of the list. Then the top L pairs of nodes
are predicted to be linked. This method is very simple to
implement and does not require a labeled training set to
perform the prediction. However, it shows some limitations
such as the need to define the threshold L and the difficulty
in combining information provided by more than one metric.

The supervised learning strategy treats the link prediction
task as a classification problem, in which pairs of nodes that
are actually linked are assigned to class 1 (positive class),
whereas the non-connected ones are assigned to class 0 (neg-
ative class). Unlike the unsupervised method, the supervised
strategy requires a labeled training set to train the classifier
that is going to be used. Finally, the prediction task can be
performed by deploying a set of pairs of nodes in the trained
classifier.

III. PROPOSED APPROACH

The link prediction problem has been traditionally defined
as: “Given a snapshot of a social network at time ¢, we seek to
accurately predict the edges that will be added to the network
during the interval from time ¢ to a given future time ¢ [14].
Almost all previous work following this definition perform the
link prediction by analyzing the complete network structure at
the current time, without considering that the existing links
were created in different moments in the past. Since they use
a static structure of the network to predict new connections,
these approaches do not consider changes in the network
behavior over time and, consequently, they are not able to
model its evolution as such.

Consider the example illustrated in Fig. 1. It can be seen that
the nodes a and b are more active than the other ones in the
network through time, i.e., new connections tend to be formed
from them. This behavior can only be captured by a strategy
that takes into account temporal information. The traditional
approach, in contrast, is limited to explore a punctual state of
the network, which does not bring any knowledge about the
activeness of the nodes over time.

Fig. 1: Example of network states at different times.

Some previous work tried to overcome this limitation.
Berlingerio et al. [5] proposed to discover association rules
that best explain the appearance of new connections and nodes.
Huang et al. [11] fitted the occurrence of links into time series,
using an autoregressive model to project their future values in
order to measure the probability of new connections. Potgieter
et al. [21] considered modeling topological metrics over time
and applying some metrics aiming to calculate representative
scores to pairs of non-connected nodes. These methods showed
that temporal information improves the link prediction task,
which stimulates us for further investigation.

The approach proposed in this work performs the prediction
of new links by exploring the evolution of topological metrics.
We addressed such evolution as a time series problem. Addi-
tionally, we used a set of well-known statistical forecasting
models to estimate future values. Finally, we applied either
unsupervised or supervised methods to link prediction.

The basic idea is to build time series for each non-connected
pairs of nodes of the network using the similarity scores
provided by a topological metric. A forecasting model is then
used in order to predict the next value of the series. Such value
is going to be the final score of the pair of nodes to be used
by the link prediction methods.



First of all, the network GG observed at time ¢ must be
split into several time-sliced snapshots, that is, states of the
network at different times in the past. Afterwards, a window
of prediction must be defined. It represents how further in
the future we want to make the prediction. Then, consecutive
snapshots are grouped in small sets which we call frames.
Those contain as many snapshots as the length of the window
of prediction. These frames compose what we denominate
Framed Time-Sliced Network Structure (S).

Let G; be the graph representation of a network at time
t. Let [G1,Ga,...,Gr] be the frame formed by the union of
the graphs from time 1 to 7". Let n be the number of periods
(frames) in the series. And let w be the window of prediction.
Formally, S can be defined as:

S ={[G1,Gs,...,Gy],
[Gw+17Gw+27~~7G2w]7~'7 (1)
7G77/LU}}

For instance, suppose that we observed a network from 2002
to 2007 and our aim is to predict links that will appear up to
2 years later. In this example, the forecast horizon (window
of prediction) is 2 years by definition. In our proposal, we
aim to model how the network evolves every 2 years in
order to predict what will happen in the forecast horizon.
Hence, we adopt a 2-years frame and S would be defined
as follows: {[G2002, G2003), [G2004, G2005), [G2006, G2007] }-
Furthermore, the frame we want to predict is, therefore,
[G2008, G2009]-

Once the network structure is split, we follow the steps
bellow:

[G(’!L—l)w-i-h G(7L—1)’u}+27

1) Choose a similarity metric (e.g. preferential attachment,
common neighbors,...);
2) For each pair of non-connected nodes:

a) Create a time series by applying the chosen metric
to the pair of nodes on each frame of S;

b) The score must be null for a frame in which any
of the nodes in the pair does not exist;

Once the time series was built, its forecast is computed
by using a forecasting model:

3) Choose a forecasting model (e.g. moving average, sim-
ple exponential smoothing,...):

4) For each time series describing a non-connected pair of
nodes:

a) Set the score of the pair of nodes to be the one-step
ahead prediction given by the chosen forecasting
model when applied to the series.

After the scores were calculated, either unsupervised or
supervised methods can be used to predict new links.

A. Similarity Metrics

In this section, we present the topological metrics used to
support the prediction process. First, we introduce the notation
that will help to understand the metrics. Let I'(x) be the set of
neighbors of a node z in a graph; let || A|| be the cardinality of

the set A. In our work, all the analyzed graphs are undirected
and then ||I'(z)|| is the degree of the node z.
o Preferential Attachment (PA)
The PA measure assumes that the probability of a future
link between two nodes is proportional to their degrees.
Barabasi et al. [4] and Newman [19] verified that for a
pair of nodes in a co-authorship network, such probability
is correlated to the product of the number of collaborators
they have. Hence, it is defined as:

PA(z,y) = [[L(2)]] x [Tyl 2)

o Common Neighbors (CN)
This metric states that the bigger the number of neighbors
two nodes share, the higher is their probability to form
a link in the future [19]. Formally, the metric is defined
as:

CN(z,y) = |[I'(z) NI (y)]] 3)

o Adamic Adar (AA)
It refines the CN metric by increasing the importance
of nodes which possess less connections [1]. Its formal
definition is:

1
M= 2 ren @

zel'(z)N (y
o Jaccard’s Coefficient (JC)
It measures the probability of two nodes be linked by
calculating the ratio between the number of neighbors
they share and the total number of distinct neighbors they
have [22]. It is defined as:
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B. Forecasting Models

In this section we present the forecasting models adopted
in our work. Since the behavior of the time series in analysis
is not known in advance, we used forecasting models with
different underlying assumptions in order to verify the ones
that best describe the network evolution. Complex models are
potentially more efficient for large time series. However, the
series we are working with are short (data is relatively recent),
thus we chose simple models because they are easy to cal-
culate, computationally efficient and have good performance
[17].

We introduce here some useful notations. Let Z;(t =
1,..T") be a time series with T observations. Let Z; be the
time series forecast at time ¢.

e Moving Average (MA)

This method makes the prediction of a series by taking
the mean of its n most recent observed values [26]. In
our work, we defined n = 2 for simplicity. The moving
average forecast at time ¢ can be defined as:

- Zy A+ Dy o+ .+ Ziy

Zy = (6)
n

o Average (Av)
This method is similar to moving average but it uses all



past values of the series. The forecast in this case is given
by:
; Zy 1+ Ly o+ ..+ ZiT
Zy = T

(7

e Random Walk (RW)

It considers as forecast the last observed value of the
series. It can be seen as a moving average with n set to
1. The forecast in this method is defined as:

Zt - thl (8)

o Linear Regression (LR)

This model fits the series data to a straight line. The level
a; of the series and the trend 515 (which estimates the slope
of the series [12]) are defined by minimizing the sum of
the squared errors between the observed values of the
series and expected values estimated by the model. The
forecast is defined as:

Zisn = g + hby 9)

Simple Exponential Smoothing (SES)

This model forecasts a series by taking a weighted mean
of its past values. In this model, the most recent past
values would be more relevant to produce forecasts [26].
Given a weight «, its forecast is defined as:

Zt = OéZt_l + (1 - a)Zt_l (10)

As in the LR model, the value of the constant «
was defined by minimizing the sum of squared errors
produced by the model.

o Linear Exponential Smoothing (LES)

If a series has some kind of tendency, the forecasts
produced by methods such as SES may overestimate or
underestimate the real observed values of the series, thus
harming the forecasting accuracy [17]. The LES model
refines the SES by adding a component 3 that takes into
account short trends in the series. In this model, three
equations are used to generate a forecast. They are:

Zyin = Sy + W, (11)

St = aZt + (1 — a)(St,1 + thl)
Ty = B(St — Se—1) + (1 = B) T

The basic equation (11) bears resemblance to LR model,
but the components intercept (level) and slope (trend)
are adjusted at each new observation of the series. The
former is a smoothed estimate of the value of the data at
the end of each period. The latter is a smoothed estimate
of average growth at the end of each period [13]. In this
work, a and 8 were estimated by minimizing the sum of
squared errors produced by the model. Additionally, the
initial values of S; and T} were set to Z; and Zy — Z;
respectively.

(11a)
(11b)

IV. EXPERIMENTS AND RESULTS

In this section, we describe the social network data used in
our experiments, the methods adopted in the link prediction
task and the results obtained by our proposed approach for
link prediction compared to the traditional one.

A. Data

For the experiments developed in this work, we adopted
co-authorship networks, which are social networks where the
nodes represent the authors, who are connected to each other
if they collaborated in a paper. This kind of network is
widely used to understand topology and dynamics of complex
networks, since it corresponds to the largest publicly available
digitalized social network [20], [4].

We adopted two co-authorship networks from two sections
of Arxiv2. The first network is composed by authors that
collaborated in theoretical high energy physics area (hep-th?).
The second one is formed by authors who published papers
in high energy physics - lattice area (hep-lat*) (see Table I for
information about the size of the networks). We extracted data
from the year 1991 to 2010 for hep-th network and from 1993
to 2010 for hep-lat one.

TABLE I: Network size in terms of nodes and edges.

hep-th hep-lat
Authors 17917 4631
Collaborations 59013 31738

Regarding the proposed approach, we made predictions two
years ahead. Therefore, snapshots from 2009 to 2010 were
used to generate the test network, whereas the others were
used to build S as described in section III.

In order to generate the test set, first we take all non-
connected pairs in the training network (union of all frames in
S) as initial candidates to be analyzed. Then we assign each
pair of nodes that is actually linked in test network to the
positive class, or to the negative class otherwise.

The supervised learning requires a labeled training set so
that a classifier can use it to build its classification model.
To generate it, initially we set the last frame in S to be the
validation network and take the other frames in S to compose
the training network. Then we apply the same process we did
to build the test set.

Since co-authorship networks are highly sparse, we need
to reduce the number of candidate pairs in order to make
computation feasible. Aiming to decrease it, from the list of
initial candidates we chose only the ones that are two steps
apart at most. Since the majority of the metrics we adopted are
based on common neighbors, consequently, it has no sense to
compute scores for pairs of nodes more than two steps apart
[15].

Zhttp://www.arxiv.org
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Table II and Table III present the class distribution of
examples in the training and test sets. As it can be seen,
class distributions are highly imbalanced, which is a com-
mon problem in link prediction task. Whereas unsupervised
learning methods are unable to deal with imbalanced problem
since they have no information about class distributions by
definition, supervised learning strategies are able to balance
data [15].

TABLE II: Test pairs of nodes distribution by class.

hep-th hep-lat
Non-linked (class 0) 458.933 295.111
Linked (class 1) 917 851
Total 459.850 295.962

TABLE III: Training pairs of nodes distribution by class.

hep-th hep-lat
Non-linked (class 0) 327.586 197.855
Linked (class 1) 983 1122
Total 328.569 198.977

Bearing that in mind, we used the strategy described in
[15] to deal with the imbalance between negative and positive
classes in the training set, which consisted of undersampling
the majority class. This process resulted in a final training
set containing 983 negative and 983 positive instances for the
hep-th network, and 1122 negative and 1122 positive for the
hep-lat one.

B. Experiments with Unsupervised Link Prediction

As described in section II, in the traditional unsupervised
approach for link prediction, the pairs of non-connected nodes
are ranked according to their scores defined by a chosen
similarity metric. The top ranked pairs are then considered
as the ones with highest probability of being connected in
the future. In this experiment, we perform a similar approach
however using the forecasts of a chosen similarity measure to
rank the non-connected pairs of nodes.

Given a similarity metric and a forecasting model, we com-
puted the forecast associated to each pair of nodes following
the steps described in section III. Then, we ranked the scores
and built ROC curves by evaluating the pairs from the top to
the bottom of the ranked list. Finally, we computed the the
Area Under the ROC curve (AUC), which was used as a mea-
sure of performance. The AUC is an important performance
measure which has been traditionally used in imbalanced
classification problems. It relates the sensitivity (true positive
rate) and specificity (true negative rate) of a classifier [7]. The
AUC was computed for each combination of similarity metrics
and forecasting models described respectively in section III-A
and III-B.

The results are summarized in Table IV and Table V.
As it can be seen, the proposed approach outperforms the
traditional unsupervised approach (last column) for almost

all combinations of similarity metric and forecasting model
adopted in our experiments. The traditional approach was
better than the proposed approach only for some settings of
experiments which adopted exponential smoothing methods.

TABLE IV: Results for unsupervised learning on test set from
hep-th network.

RW MA Av LR SES LES Trad
PA 0.6889 0.6768 0.5718 0.6456 0.6095 0.6202 0.5039
CN 0.6521 0.6720 0.6593 0.6929 0.5427 0.5477 0.6158
AA 0.6545 0.6761 0.6656 0.6957 0.5434 0.5484 0.6684
JC 0.6536 0.6736 0.6567 0.6888 0.5418 0.5478 0.5680

TABLE V: Results for unsupervised learning on test set from
hep-lat network.

RW  MA Av LR SES LES Trad
PA 0.7761 0.7902 0.6932 0.7452 0.7007 0.7036 0.5877
CN 0.7429 0.7716 0.7580 0.7730 0.5745 0.5741 0.7318
AA 0.7468 0.7755 0.7637 0.7768 0.5729 0.5738 0.7531
JC 0.7442 0.7712 0.7483 0.7688 0.5707 0.5702 0.6634

The results suggest that the prediction is better with more
conservative forecasting models, that is, the ones that make
predictions by considering a gradual increase or decrease in
the trend rather than a sharp raise or fall caused by the stronger
influence of the most recent series’ values (which is the case
of the models based on exponential smoothing).

For more reliable results, the forecasting models were also
evaluated with stratified 5-fold cross-validation. Since there is
no training set in the unsupervised learning, the test set was
split into folds and the AUC measure was computed for each
fold. The results are summarized in Table VI and Table VII.

As in the absolute results, the LR was the best forecasting
model for all metrics, except for the PA measure (for which
the RW model provided the best results) in the hep-th network.
In the hep-lat network, the absolute results showed better
performance of the LR model against the others for the metrics
CN and AA. On the other hand, statistical results pointed MA
as the best forecasting model for CN metric and Av for AA
metric.

In general, LR was the best forecasting model for hep-th
network and MA had better performance for hep-lat network.
This suggests that, for the former network, the activeness of the
pairs of nodes along the network evolution is really important
to make a good prediction. Since LR model can explore long-
term trend in a series, it can reach better results.

For the hep-lat network, it seems that most recent data
carries more information about future connections. That is why
MA performs better than other forecasting models.

C. Experiments with Supervised Link Prediction

The traditional supervised approach treats the link predic-
tion problem as a classification task, i.e., given a pair of nodes,
classify it as belonging to a positive class if a link is likely to



TABLE VI: Relative average performance of forecasting models on the hep-th network with unsupervised learning.

RW MA Av

LR SES

LES Trad

PA  0.6840+0.0006 0.6578+0.0008 0.537540.0003 0.6296+0.0001 0.6167+0.0016 0.6196+0.0001 0.5165=+0.0006

CN 0.648240.0004 0.670510.0014 0.6754+0.0014 0.70451-0.0003 0.5464+0.0002 0.538110.0001 0.5943£0.0005

AA 0.6598+0.0014 0.6810+£0.0013 0.680410.0004 0.7274+0.0005 0.5549+0.0003 0.555240.0009 0.669640.0002

JC 0.669110.0009 0.6678+0.0002 0.648410.0001

0.6812£0.0001 0.5697+0.0008 0.5444+0.0002 0.5829+40.0002

TABLE VII: Relative average performance of forecasting models on the hep-lat network with unsupervised learning.

RwW MA Av

LR SES

LES Trad

PA 0.768740.0004 0.8128+0.0004 0.676840.0014 0.7632+0.0003 0.724740.0010 0.715240.0003 0.5933+0.0004

CN 0.7303£0.0007 0.7854+0.0004 0.742140.0005 0.7678+0.0002 0.572540.0002 0.562240.0001 0.7184£0.0010

AA 0.7493£0.0008 0.770110.0009 0.7766+0.0003 0.7721:£0.0004 0.5654+0.0002 0.566840.0001 0.7559£0.0006

JC 0.7726+0.0008 0.7869+0.0005 0.7743+0.0001 0.7703£0.0005 0.572240.0002 0.5791£0.0002 0.661240.0001

be observed or a negative class otherwise. Each pair of nodes
in this approach is represented as a feature vector which is used
in the classification. The features adopted in the traditional
supervised approach are commonly the similarity measures
describing the pair of nodes, computed using all the network
data.

In our proposed supervised approach, we considered two
distinct feature vectors. Initially, we adopted as feature vector
the set of forecasts of all metrics described in section III-A
(this feature vector is referred here as fv). Additionally, we
combined both the aforementioned predicted scores and the
measures adopted in the traditional approach. This feature
vector is named here as h-fv (hybrid feature vector).

As classifier, we adopted the implementation of Support
Vector Machine (SVM) from the WEKA environment [9]
with default parameters (the SMO algorithm). As performance
measure, we adopted the AUC measure as in the previous
section.

The results of our experiments are presented in Table
VIII and Table IX. From these tables, we can see that the
supervised learning outperforms the unsupervised one (see
previous section) for all forecasting models used. This result
suggests that, when combined by the SVM, the predicted
scores carry more information about the network evolution
compared to the scores used in isolation.

TABLE VIII: Results for supervised learning on test set from
hep-th network.

RW MA Av LR SES LES  Trad
fv 0.7392 0.7541 0.6871 0.7418 0.6228 0.6291 0.6091
h-fv 0.7185 0.7450 0.6997 0.7415 0.6420 0.6363  —

TABLE IX: Results for supervised learning on test set from
hep-lat network.

RW MA Av LR SES LES Trad
fv 0.8149 0.8514 0.7953 0.8297 0.6215 0.6303 0.7518
h-fv 0.8401 0.8393 0.8106 0.8337 0.7723 0.7701  —

For hep-th network, MA was the best forecasting model
for both feature vectors (fv and h-fv). In turn, for the hep-
lat network, RW showed better results considering the h-fv
method. There was also an improvement in performance when
we considered hybrid feature vectors in the hep-lat network,
suggesting that both information sources (time-aware as well
as static information) are important for the link prediction task
on that network.

As we did with the unsupervised method, we also performed
a stratified 5-fold cross-validation for the supervised learning.
In order to preserve temporal information, the stratification
was done such that the test folds always contained data more
recent than the training folds. The results are presented in
Table X and Table XI.

As it can be seen, the statistical results are not much
different from the absolute ones. The only difference is in the
forecasting model that had the best performance considering
the h-fv method in hep-lat network, which in absolute terms
was RW and regarding the relative results was MA.

It is also important to highlight that the assumption we did
in the unsupervised learning regarding the best forecasting
models for hep-th network is not valid for the supervised
method. Here, MA showed better results than LR model
considering both methods (fv and h-fv).

In general, forecasting models that take into account most
recent observed values in the series obtained better perfor-
mance for the supervised network. Compared to the results
obtained in the unsupervised method, this suggests that when
topological metrics are used in isolation, more temporal infor-
mation is needed to perform a good prediction. On the other
hand, when combined to each other, the need for strong time-
aware background is reduced. Thus, forecasting models which
analyze short-term trend in a series can reach better results.

V. CONCLUSION

This work focused on performing a link prediction task by
using time series to model the evolution of topological metrics.
Most of previous works are based on the classical approach,
which deals with the problem by making punctual analysis in



TABLE X: Relative average performance of forecasting models on the hep-th network with supervised learning.

RW MA Av

LR SES LES Trad

fv 0.7393£0.0212 0.754240.0132 0.6870+£0.0239 0.741440.0136 0.6228+0.0193 0.6284+0.0120 0.6070+0.0263

h-fv 0.7177+0.0301 0.7418+0.0143 0.6969+0.0135 0.7400+0.0232 0.6378+0.0222 0.6327+0.0213 -

TABLE XI: Relative average performance of forecasting models on the hep-lat network with supervised learning.

RW MA Av

LR SES LES Trad

fv 0.8152+0.0102 0.8246+0.0616 0.7952+0.0151 0.823040.0090 0.6216+0.0228 0.629540.0132 0.7520+0.0065

h-fv 0.83964+0.0139 0.8402-£0.0157 0.808640.0123 0.8330+0.0189 0.77324+0.0172 0.7703+0.0175 -

the network [18], [16], [6], not considering its evolution over
time.

From our analysis, we could notice that time-aware infor-
mation brings a performance gain to the link prediction prob-
lem considering both unsupervised and supervised learning.
Furthermore, when this kind of information is gathered with
static one (obtained by the traditional approach) the results are
improved in some networks.

We also noticed that the combination of time-aware in-
formation reduces the need for strong temporal background,
which benefits forecasting models that explore most recent
values in the series, i.e., most recent states of the network.

This work still shows limitations regarding the number of
networks used in the experiments and their domains. Although
co-authorship networks have been used in several works in
the literature [14], [15], [6], our aim is to broaden our
investigations by exploring the consequences of time-aware
link prediction in other social networks.
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