球 (數學)

在數學中,指以球面為邊界的空間

(英語:ball)在數學裡,是指球面內部的空間。球可以是封閉的(包含球面的邊界點,稱為閉球),也可以是開放的(不包含邊界點,稱為開球)。

一個球
歐氏空間裡,是指球面的內部。

球的概念不只存在於三維歐氏空間裡,亦存在於較低或較高維度,以及一般度量空間裡。維空間裡的球稱為維球,且包含於維球面內。因此,在歐氏平面裡,球為一圓盤,包含在內。在三維空間裡,球則是指在二維球面邊界內的空間。

歐氏空間裡的球

編輯

  維歐氏空間裡,一個中心為   ,半徑為    維(開)球是個由所有距   的距離小於   的點所組成之集合。一個中心為  ,半徑為    維閉球是個由所有距   的距離小於等於   的點所組成之集合。

  維歐氏空間裡,每個球都是某個超球面內部的空間。在一維時,球是個有界的區間;在二維時,是某個的內部(圓盤);而在三維時,則是某個球面的內部。

體積

編輯

  維歐氏空間裡,半徑   的球之   維體積為[1]

 

其中,Γ是李昂哈德·歐拉Γ函數(可被視為階乘實數的延伸)。使用Γ函數在整數與半整數時的公式,可不需要估算Γ函數即可計算出球的體積:

 
 

在奇數維度時的體積公式裡,對每個奇數 雙階乘 (2k + 1)!! 定義為 (2k + 1)!! = 1 · 3 · 5 ··· (2k − 1) · (2k + 1)。

一般度量空間裡的球

編輯

令 (M,d) 為一度量空間,即具有度量(距離函數)d 的集合 M。中心為 M 內的點 p,半徑為 r > 0 的開球,通常標計為 Br(p) 或 B(pr),定義為

 

其閉球,可標計為 Br[p] 或 B[pr],則定義為

 

請特別注意,一個球(無論開放或封閉)總會包含點 p,因為依定義, r > 0。

開球的閉包通常標記為  。雖然    總是成立的,但   則不一定總是為真。舉例來說,在一個具離散度量的度量空間 X 裡,對每個 X 內的 p 而言, ,但  

一個(開或閉)單位球為一半徑為 1 的球。

度量空間的子集是有界的,若該子集包含於某個球內。一個集合是全有界的,若給定一正值半徑,該集合可被有限多個具該半徑的球所覆蓋。

度量空間裡的開球為拓撲空間裡的,其中所有的開集合均為某些(有限或無限個)開球的聯集。該拓撲空間被稱為由度量 d 導出之拓撲。

賦範向量空間裡的球

編輯

每個具範數 |·| 的賦範向量空間亦為一度量空間,其中度量 d(x, y) = |x − y|。在此類空間裡,每個球 Br(p) 均可視為是單位球 B1(0) 平移 p,再縮放 r 後所得之集合。

前面討論的歐氏空間裡的球亦為賦範向量空間裡球的一例。

p-範數

編輯

在具 p-範數 Lp笛卡爾空間   裡,開球是指集合

 

在二維(n=2)時,L1(通常稱為曼哈頓度量)的球是對角線平行於坐標軸的正方形;而 L切比雪夫度量)的球則是個邊平行於坐標軸的正方形。對於 p 的其他值,該球則會是超橢圓的內部。

在三維(n=3)時,L1 的球是個對角線平行為坐標軸的八面體,而 L 的球則是個邊平行為坐標軸的正立方體。對於 p 的其他值,該球則會是超橢球的內部。

一般凸範數

編輯

更一般性地,給定任一 Rn中心對稱有界開放的集合 X,均可定義一個在 Rn範數,該球均為 X 平移再一致縮放後所得之集合。須注意,若將此定理內的「開」子集以「閉」子集替代,則定理不能成立,因為原點也符合定理內所定之集合,但無法定義 Rn 內的範數。

拓撲空間裡的球

編輯

拓撲學的文獻裡,「球」可能有兩種含義,由上下文決定。

開集

編輯

「(開)球」一詞有時被非正式地用於指代任何開集:可以用「p 點周圍的一個球」代表包含p 的一個開集。該集合同胚於什麼依賴於背景拓撲空間以及所選取的開集。同樣,「閉球」有時用於表示這樣一個開集的閉包。(這可能產生誤導,例如超度量空間中一個閉球不是同樣半徑的開球的閉包,它們都是既開且閉的。)

有時,鄰域用於指代這個意義上的球,但是鄰域其實有更一般的意義:p 的一個鄰域是任何包含一個p 的開集的集合,因此通常不是開集。

拓撲球

編輯

X 內的 n 維(開或閉)拓撲球是指 X 內同胚於 n 維(開或閉)歐幾里得球的任一子集,該子集不一定需要由某個度量導出。n 維拓撲球在組合拓撲學裡很重要,為建構胞腔復形的基礎。

任一 n 維開拓撲球均同胚於笛卡爾空間 Rn 及 n 維開單位超方形  。任一 n 維閉拓撲球均同胚於 n 維閉超方形 [0, 1]n

n 維球同胚於 m 維球,若且唯若 n = m。n 維開球 B 與 Rn 間的同胚可分成兩種類型,以 B 的兩種可能之拓撲定向來區分。

一個 n 維拓撲球不一定是光滑的;若該球是光滑的,亦不一定需微分同胚於一 n 維歐幾里得球。

另見

編輯

參考文獻

編輯
  • D. J. Smith and M. K. Vamanamurthy, "How small is a unit ball?", Mathematics Magazine, 62 (1989) 101–107.
  • "Robin conditions on the Euclidean ball", J. S. Dowker [1]
  • "Isometries of the space of convex bodies contained in a Euclidean ball", Peter M. Gruber[2][永久失效連結]

參見

編輯
  NODES
Idea 2
idea 2